

Programmable Logic Control

XGI/XGR/XEC/XMC Instructions and Programming

XGT Series

Safety Instruction

1

Before using the product …

For your safety and effective operation, please read the safety instructions
thoroughly before using the product.

► Safety Instructions should always be observed in order to prevent accident

or risk with the safe and proper use the product.

► Instructions are separated into “Warning” and “Caution”, and the meaning of

the terms is as follows;

This symbol indicates the possibility of serious injury
or death if some applicable instruction is violated

This symbol indicates the possibility of slight injury
or damage to products if some applicable instruction
is violated

► The marks displayed on the product and in the user’s manual have the

following meanings.

Be careful! Danger may be expected.

Be careful! Electric shock may occur.

► The user’s manual even after read shall be kept available and accessible to

 any user of the product.

Warning

Caution

Safety Instruction

2

Safety Instructions when designing

 Please, install protection circuit on the exterior of PLC to protect
 the whole control system from any error in external power or PLC

 module. Any abnormal output or operation may cause serious problem
 in safety of the whole system.

- Install applicable protection unit on the exterior of PLC to protect
the system from physical damage such as emergent stop switch,
protection circuit, the upper/lowest limit switch, forward/reverse
operation interlock circuit, etc.

- If any system error (watch-dog timer error, module installation error,
etc.) is detected during CPU operation in PLC, the whole output is
designed to be turned off and stopped for system safety. However,
in case CPU error if caused on output device itself such as relay or
TR can not be detected, the output may be kept on, which may
cause serious problems. Thus, you are recommended to install an
addition circuit to monitor the output status.

 Never connect the overload than rated to the output module nor
 allow the output circuit to have a short circuit, which may cause a
 fire.

 Never let the external power of the output circuit be designed to
 be On earlier than PLC power, which may cause abnormal output or

operation.

 In case of data exchange between computer or other external
equipment and PLC through communication or any operation of
PLC (e.g. operation mode change), please install interlock in the
sequence program to protect the system from any error. If not, it
may cause abnormal output or operation.

Warning

Safety Instruction

3

Safety Instructions when designing

Safety Instructions when designing

 I/O signal or communication line shall be wired at least 100mm
 away from a high-voltage cable or power line. If not, it may cause
 abnormal output or operation.

Caution

 Use PLC only in the environment specified in PLC manual or
general standard of data sheet. If not, electric shock, fire, abnormal
operation of the product or flames may be caused.

 Before installing the module, be sure PLC power is off. If not,
electric shock or damage on the product may be caused.

 Be sure that each module of PLC is correctly secured. If the
product is installed loosely or incorrectly, abnormal operation, error or
dropping may be caused.

 Be sure that I/O or extension connecter is correctly secured. If
not, electric shock, fire or abnormal operation may be caused.

 If lots of vibration is expected in the installation environment,
don’t let PLC directly vibrated. Electric shock, fire or abnormal
operation may be caused.

 Don’t let any metallic foreign materials inside the product, which
may cause electric shock, fire or abnormal operation.

Caution

Safety Instruction

4

Safety Instructions when wiring

 Prior to wiring, be sure that power of PLC and external power is
turned off. If not, electric shock or damage on the product may be
caused.

 Before PLC system is powered on, be sure that all the covers of

the terminal are securely closed. If not, electric shock may be caused

Warning

 Let the wiring installed correctly after checking the voltage rated
of each product and the arrangement of terminals. If not, fire,
electric shock or abnormal operation may be caused.

 Secure the screws of terminals tightly with specified torque when
wiring. If the screws of terminals get loose, short circuit, fire or abnormal
operation may be caused.

 Surely use the ground wire of Class 3 for FG terminals, which is

exclusively used for PLC. If the terminals not grounded correctly,
abnormal operation may be caused.

 Don’t let any foreign materials such as wiring waste inside the
module while wiring, which may cause fire, damage on the product
or abnormal operation.

Caution

Safety Instruction

5

Safety Instructions for test-operation or repair

Safety Instructions for waste disposal

 Don’t touch the terminal when powered. Electric shock or abnormal
operation may occur.

 Prior to cleaning or tightening the terminal screws, let all the
external power off including PLC power. If not, electric shock or
abnormal operation may occur.

 Don’t let the battery recharged, disassembled, heated, short or
soldered. Heat, explosion or ignition may cause injuries or fire.

Warning

 Don’t remove PCB from the module case nor remodel the module.
Fire, electric shock or abnormal operation may occur.

 Prior to installing or disassembling the module, let all the

external power off including PLC power. If not, electric shock or
abnormal operation may occur.

 Keep any wireless installations or cell phone at least 30cm away
from PLC. If not, abnormal operation may be caused.

Caution

 Product or battery waste shall be processed as industrial waste.
The waste may discharge toxic materials or explode itself.

Caution

Safety Instruction

6

Revision History

1

Revision History

Version Date Remark Chapter

V 1.0 ’07. 3 First Edition -

V 1.1 ’07. 6 Process Control Library added Ch13

V 1.2 ’07. 12 ST (Structured Text) language added Ch14

V 2.0 ’08. 3 XGR CPU added Entire

V 2.1 ’09. 3 1. XEC added

2. Function for XEC added

 (1) APM_SSSB

 (2) PIDAT

 (3) PIDHBD

Entire

11-31

13-4

13-8

V 2.3 ’10. 6 1. XPM dedicated instructions added

2. 4 Positioning instructions (VRD, VWR) added

3. Description on ST language modified

4. Example of ST language added

Ch6.4.11, Ch11.5

Ch6.4.10~6.4.11

Ch11.4~11.5

Ch14

Ch7~Ch11

V 2.4 ’10. 9 1. Positioning instructions added or modified Ch6.4.11, Ch11.5

V 2.5 ’12.11 1. Positioning instructions added Ch6.4.10~6.4.11

Ch11.4~Ch11.5

V 2.6 ’13.06 1. PUTE and GETE instructions added Ch6.4.8

Ch11.2

V 2.7 ’14.04 1. UDATA instructions added

2. XPM_STC instruction added

3. CPT instruction information added

Ch11

Ch11

Ch8

Revision History

2

Version Date Remark Chapter

V 2.8 ’14.09 1. SCALE instruction information modified

 - Information about handling max/ min input value

2. ARY_CMP_EQ, ARY_CMP_NE added

 - Compare elements with 2 array

3. EBWRITE, EBREAD, RSET information modified

 - Information about R block number

Ch13

Ch8

Ch8, Ch10

V 2.9 ’15.10 1. FIFO instruction information modified

2. Safety Function Block added

Ch10

Ch15

V 3.0 ’16.7 1. XPM_CRD instruction information modified

2. XPM_PASHING instruction added

3. XPM_SSSD instruction added

4. XPM_SSSPD instruction added

5. P2PRD_OFFSET instruction added

6. P2PWR_OFFSET instruction added

Ch11

Ch11

Ch11

Ch11

Ch11

Ch11

V 3.1 ’17.3 1. Ch16. Motion Function Blocks added

2. App5. Flag List(XMC) added

Ch16

Appendix5

V 3.2 ’18.2 1. GET_IP, SET_IP function added

2. IL(IEC) programming function added

11-16~11-19

CH17

V 3.3 ’18.06 1. XPM_SETOVR, XPM_CAMA instruction added

2. LS_OnOffCam, LS_RotaryKnifeCamGen,

LS_CrossSealCamGen instruction added

CH11

CH16

V3.4 ’18.09 1. SPA instruction added CH10

V3.5 ’19.05 1. Motion instruction added

(1) LS_OnOffCamEx instruction added

(2) NC_RetraceMove and other 9 instructions

 are added

(3) File_Open and other 4 instructions are added

2. Motion Flags are added

CH16

Appendix5

Revision History

3

Version Date Remark Chapter

V3.6 ’20.05 1. LSIS to change its corporate name to

LS ELECTRIC

Entire

V3.7 ’20.07 1. GROUP instruction added

(1) GROUP_FIND, GROUP_MOVE,

GROUP_FILL, GROUP_ROTATE,

GROUP_SHIFT

2. Communication instruction added

(1) M_GET_LED

CH7

CH11

V3.9 ’20.12 1. Contact added

(LOADP NOT, LOADN NOT, ANDP NOT, ANDN

NOT, ORP NOT, ORN NOT)

2. Instruction added

(1) R_EDGE, F_EDGE

3. Group Instruction added

(1) GROUP_MOVE32, GROUP_FILL32

4. ANY_MOVE instruction added

(1) ANY_MOVE, ANY_MOVE2

5. ARY_SCH2 instruction added

CH5

CH5

CH7

CH7

CH8

V4.0 ’21.07 1. ANY_CMP instruction added

(1) ANY_CMP, ANY_CMP_NE, ANY_CMP_EQ

2. SHIFT_A function example added

3. Applied item of SPA Function Block revised

4. Communication function block added

(1) SET_CNET_PARAM, GET_CNET_PARAM

CH7

CH8

CH10

CH11

Revision History

4

 About User's Manual

1

Thank you for purchasing PLC of LS ELECTRIC Co., Ltd.
Before use, make sure to carefully read and understand the User’s Manual about the functions, performances,
installation and programming of the product you purchased in order for correct use and importantly, let the end user and
maintenance administrator to be provided with the User’s Manual.

The User’s Manual describes the product. If necessary, you may refer to the following description and order accordingly.
In addition, you may connect our website (http://www.lselectric.co.kr/) and download the information as a PDF file.

Relevant User’s Manuals

Title Description

XG5000 User’s Manual

(for XGK, XGB)

XG5000 software user manual describing online function such as programming,

print, monitoring, debugging by using XGK, XGB CPU.

XG5000 User’s Manual

(for XGI, XGR)

XG5000 software user manual describing online function such as programming,

print, monitoring, debugging by using XGI, XGR CPU.

XGK/XGB Instructions &

Programming User’s Manual

User’s manual for programming to explain how to use instructions that are used

PLC system with XGK, XGB CPU.

XGI/XGR/XEC Instructions &

Programming User’s Manual

User’s manual for programming to explain how to use instructions that are used

PLC system with XGI, XGR, XEC CPU.

XGK CPU User’s Manual

(XGK-CPUA/E/H/S/U)

XGK-CPUA/CPUE/CPUH/CPUS/CPUU user manual describing about XGK

CPU module, power module, base, IO module, specification of extension cable

and system configuration, EMC standard.

XGI CPU User’s Manual

(XGI-CPUU/CPUH/CPUS)

XGI-CPUU/CPUH/CPUS user manual describing about XGI CPU module,

power module, base, IO module, specification of extension cable and system

configuration, EMC standard.

XGR Redundant Series

User’s Manual

XGR- CPUH/F, CPUH/T user manual describing about XGR CPU module,

power module, extension drive, base, IO module, specification of extension cable

and system configuration, EMC standard.

XG-PM User’s Manual
XG-PM software user manual describing online function such as motion

programing, monitoring, debugging by using Motion Control Module.

http://www.lselectric.co.kr/

About User's Manual

2

Table of Contents

1

Ch 1. Introduction ... 1-1

1.1 Characteristics of IEC 61131-3 Language .. 1-1
1.2 Types of Language ... 1-1

Ch 2. The Structure of Software .. 2-1~2-2

2.1 Introduction .. 2-1
2.2 Project ... 2-1
2.3 Global/Direct Variable ... 2-1
2.4 Parameter ... 2-1
2.5 User Data Type ... 2-1
2.6 Scan Program ... 2-2
2.7 User Function/Function Block .. 2-2
2.8 Task Program .. 2-2

Ch 3. Common Elements ... 3-1~3-17

3.1 Expression .. 3-1
3.1.1 Identifiers .. 3-1
3.1.2 Data Expression ... 3-1

3.2 Data Type .. 3-3
3.2.1 Basic Data Type ... 3-3
3.2.2 Data Type Hierarchy Chart .. 3-5
3.2.3 Initial Value .. 3-5
3.2.4 Data Type Structure ... 3-6

3.3 Variable .. 3-9
3.3.1 Variable Expression ... 3-9
3.3.2 Variable Declaration .. 3-11
3.3.3 Reserved Variable .. 3-13
3.3.4 Reserved Word .. 3-13

3.4 Program Type ... 3-14
3.4.1 Function .. 3-14
3.4.2 Function Block .. 3-14
3.4.3 Program .. 3-15

3.5 Command Selection ... 3-15
3.5.1 Internally Determined Command .. 3-15
3.5.2 Command Selection Rules ... 3-17

Table of Contents

2

Ch 4. SFC (Sequential Function Chart) ... 4-1~4-12

4.1 Introduction .. 4-1
4.2 SFC Structure ... 4-2

4.2.1 Step ... 4-2
4.2.2 Transition .. 4-2
4.2.3 Action .. 4-3
4.2.4 Action Qualifier ... 4-4

4.3 Extension Regulation.. 4-9
4.3.1 Serial Connection ... 4-9
4.3.2 Selection Branch .. 4-9
4.3.3 Parallel Branch (simultaneous branch) ... 4-10
4.3.4 Jump .. 4-11

Ch 5. LD (Ladder Diagram) ... 5-1~5-8

5.1 Introduction .. 5-1
5.2 Bus .. 5-1
5.3 Link .. 5-2
5.4 Contact .. 5-2
5.5 Coil ... 5-3
5.6 Calling of Function and Function Block ... 5-4

Ch 6. Functions and Function Blocks ... 6-1~6-22

6.1 Functions ... 6-1
6.1.1 Type Conversion Function ... 6-1
6.1.2 Numerical Operation Function .. 6-7
6.1.3 Bit Array Function ... 6-8
6.1.4 Selection Function .. 6-9
6.1.5 Data Exchange Function ... 6-9
6.1.6 Comparison Function... 6-9
6.1.7 Character String Function .. 6-10
6.1.8 Date and Time of Day Function ... 6-10
6.1.9 System Control Function .. 6-11
6.1.10 File Function .. 6-11
6.1.11 Data Manipulation Function .. 6-11
6.1.12 Stack Operation Function .. 6-12

6.2 MK (MASTER-K) Function .. 6-12
6.3 Array Operation Function ... 6-12
6.4 Basic Function Block .. 6-13

6.4.1 Bistable Function Block .. 6-13
6.4.2 Edge Detection Function Block ... 6-13
6.4.3 Counter ... 6-13
6.4.4 Timer ... 6-13

Table of Contents

3

6.4.5 File Function Block ... 6-14
6.4.6 Other Function Block ... 6-14
6.4.7 Communication Function Block .. 6-14
6.4.8 Special Function Block ... 6-15
6.4.9 Motion Control Function Block .. 6-15
6.4.10 Positioning Function Block (APM) ... 6-15
6.4.11 Positioning Function Block (XPM) ... 6-17

6.5 Expanded Function .. 6-19
6.6 Motion Function Block .. 6-19

Ch 7. Basic Functions ... 7-1~7-182

Ch 8. Application Functions ..8-1~8-116

Ch 9. Basic Function Blocks .. 9-1~9-30

Ch 10. Application Function Blocks .. 10-1~10-52

Ch 11. Communication and Special Function Blocks ... 11-1~11-190

11.1 Communication Function Blocks .. 11-1
11.2 Special Function Block.. 11-29
11.3 Motion Control Function Block ... 11-37
11.4 Positioning Function Block (APM) .. 11-43
11.5 Positioning Function Block (XPM) .. 11-103

Ch 13. Process Control Library .. 13-1~13-78

13.1 Process Control Library .. 13-1
13.2 Process Control Function and Function Block .. 13-3
13.3 Data Process Function, Function Block .. 13-17
13.4 Arithmetic Operation Function Block ... 13-40
13.5 Data Measuring Function, Function Block .. 13-51

Ch 12. Expanded Functions ... 12-1~12-6

Table of Contents

4

Ch 14. ST (Structured Text) ... 14-1~14-25

14.1 General ... 14-1
14.2 Comments .. 14-1
14.3 Expression .. 14-2

14.3.1 + operator ... 14-3
14.3.2 - operator .. 14-3
14.3.3 * operator .. 14-4
14.3.4 / operator .. 14-4
14.3.5 MOD operator .. 14-5
14.3.6 ** operator .. 14-5
14.3.7 AND or & operator ... 14-6
14.3.8 OR operator ... 14-6
14.3.9 XOR operator ... 14-7
14.3.10 = operator ... 14-7
14.3.11 <> operator ... 14-8
14.3.12 > operator ... 14-8
14.3.13 < operator ... 14-9
14.3.14 >= operator ... 14-10
14.3.15 <= operator ... 14-10
14.3.16 NOT operator ... 14-11
14.3.17 - operator .. 14-11

14.4 Statements .. 14-11
14.4.1 Assignment statements ... 14-12
14.4.2 Selection statements.. 14-12
14.4.3 Iteration statements .. 14-12
14.4.4 IF ... 14-14
14.4.5 CASE .. 14-15
14.4.6 FOR .. 14-16
14.4.7 WHILE .. 14-17
14.4.8 REPEAT ... 14-17
14.4.9 EXIT .. 14-19

14.5 Function and Function Block .. 14-20
14.5.1 How to use ... 14-20
14.5.2 Example ... 14-24

Ch 15. Safety Function Blocks ... 15-1~15-100

15.1 Safety Function Blocks List .. 15-1
15.2 Safety Function Blocks ... 15-2

Table of Contents

5

Ch 16. Motion Function Blocks .. 16-1~16-225

16.1 Common Elements of Motion Function blocks ... 16-1

16.1.1 The state of axis ... 16-1
16.1.2 The state of group .. 16-3
16.1.3 Basic I/O Variable ... 16-4
16.1.4 BufferMode Input ... 16-6
16.1.5 Changes in Parameters during Execution of Motion Function Block .. 16-6
16.1.6 Group Operation Route Change Settings .. 16-7
16.1.7 Motion Function Block Errors .. 16-10

16.2 Motion Function Blocks .. 16-11

Ch 17. IL(Instruction List) ... 17-1~17-32

17.1 Summary .. 17-1
17.2 Current Result:CR .. 17-1
17.3 Expression .. 17-2
17.4 Label .. 17-3
17.5 Modifier .. 17-3
17.6 Basic operator ... 17-4

17.6.1 LD ... 17-5
17.6.2 ST ... 17-6
17.6.3 SET ... 17-7
17.6.4 RST(Reset) .. 17-7
17.6.5 AND .. 17-8
17.6.6 OR .. 17-9
17.6.7 XOR .. 17-10
17.6.8 ADD .. 17-11
17.6.9 SUB .. 17-12
17.6.10 MUL .. 17-13
17.6.11 DIV .. 17-14
17.6.12 GT ... 17-14
17.6.13 GE .. 17-15
17.6.14 EQ .. 17-17
17.6.15 NE ... 17-18
17.6.16 LE ... 17-19
17.6.17 LT .. 17-20
17.6.18 JMP .. 17-21
17.6.19 CAL ... 17-22
17.6.20 RET .. 17-23
17.6.21 SCAL .. 17-24
17.6.22) ... 17-25

17.7 Non-executable statement(comments) ... 17-26
17.8 Function and function block ... 17-26

17.8.1 Function .. 17-26

Table of Contents

6

17.8.2 Function block .. 17-27
17.8.3 Stereotyped form ... 17-27
17.8.4 Nonformatted form ... 17-29
17.8.5 Example ... 17-32

Appendix 1 Numerical System and Data Structure .. A1-1~A1-6

A1.1 Numerical (data) Representation .. A1-1
A1.2 Integer Representation .. A1-6
A1.3 Negative Representation ... A1-6

Appendix 2 Flag List (XGI) ... A2-1~A2-9

A2.1 Modes and Status .. A2-1
A2.2 System Error .. A2-2
A2.3 System Warning ... A2-3
A2.4 User Flag .. A2-4
A2.5 Operation Result Flag .. A2-4
A2.6 System Run Status Information ... A2-5
A2.7 High-speed Link Flag ... A2-7
A2.8 P2P Flag ... A2-7
A2.9 PID Flag .. A2-7

Appendix 3 Flag List (XGR) ... A3-1~A3-16

A3.1 User Flag .. A3-1
A3.2 System Error Representative Flag .. A3-2
A3.3 System Error Detail Flag .. A3-4
A3.4 System Warning Representative Flag .. A3-5
A3.5 System Warning Detail Flag .. A3-7
A3.6 System Operation Status Information Flag ... A3-8
A3.7 Redundant Operation Mode Information Flag ... A3-11
A3.8 Operation Result Information Flag .. A3-11
A3.9 Operation mode Key Status Flag .. A3-12
A3.10 Link Flag (L) List ... A3-13
A3.11 Communication Flag (P2P) List .. A3-15
A3.12 Reserved Word .. A3-16

Appendix 4 Flag List (XEC).. A4-1~A4-14

A4.1 Special Relay (F) List ... A4-1
A4.2 High Speed Link Flag ... A4-6

Table of Contents

7

A4.3 P2P Flag ... A4-6
A4.4 PID flag ... A4-6
A4.5 High Speed Counter flag ... A4-8
A4.6 Positioning flag ... A4-9

Appendix 5 Flag List (XMC) ... A5-1~A5-16
A5.1 System Flag List ... A5-1
A5.2 Motion Flag List .. A5-4

Table of Contents

8

Chapter 1. Introduction

1-1

Chapter 1. Introduction
1.1 Overview

1) Background
This user’s guide describes the languages supported by XGI /XGR/XEC PLC. The XGI /XGR/XEC PLC is based on
the standard language of International Electrotechnical Commission (IEC).

2) Features of IEC 61131-3 Language
The features of the IEC language supported by the PLC are as follows
▷ Supports several data types.
▷ Offers program elements such as functions, function blocks, and programs to enable bottom-up design and top-down

design and structural creation of a PLC program.

▷ Program storage in a library system to enable future use in other environments. This enables the reuse of the
software.

▷ Supports various languages so that the user can select the optimal language suitable for the environment.

3) Types of Language
 The PLC language standardized by IEC consists of two illustrated languages, two character languages and SFC.
▷ Illustrated language

 a) Ladder Diagram (LD): It is a graphical language based on the ladder logic.
 b) Function Block Diagram (FBD): It is a graphical language for depicting signal and data flows through function

blocks.
▷ Character language
 a) Instruction List (IL): It is a low-level ‘assembly like’ language based on similar instruction list languages.

 b) Structured Text (ST):It is a high-level PASCAL type language.
▷ Sequential Function Chart (SFC)

Chapter 1. Introduction

1-2

Chapter 2. Software Structure

2-1

Chapter 2. Software Structure

2.1 Introduction
Before creating a PLC program, ensure that you have an overall PLC system defined in software terms. The overall PLC
system is defined as one project in XGI /XGR/XEC PLC. In the project, you must define hierarchically all composition
elements necessary for the PLC system.

Project

User Data Type

User Function/Function Block

Scan Program

Parameter

Global/Direct Variable

Basic Parameter

I/O Parameter

Task Program

Chapter 2. Software Structure

2-2

2.2 Project
For a XGI/XGR/XEC PLC program, the first priority is given to project configuration. Creating a project comprises of

configuring
and programming all elements necessary for a PLC system (scan programs, task definitions, basic parameters, I/O

parameters,
and so on).

1) Global/Direct Variable
The project enables global variable setting, direct variable setting and flag, in which a user prepares or uses the
necessary information.

2) Parameter
 The user can alter the default CPU parameters and/or configure the IO Modules
▷ Basic Parameter: consists of four parts; setting such as basic operation set up, time and output control, retain area

setting
 ,error operation setting and MODBUS data setting.
▷ I/O Parameter: Used to configure I/O modules.

3) User Data Type
Data type is a classification showing its unique characteristics. For instance, ANY_NUM contains all of LREAL, REAL,
LINT, DINT, INT, SINT, ULINT, UDINT, UINT, and USINT. For additional information on User Data Type, refer to
Common Elements

4) Scan Program
The scan program is a basic method of executing a program repeatedly on a PLC. It sequentially performs the same
operations as per the program starting from the first step to the last step. For example, a scan program can read input
data at the input module, run a program and display the results to the output module.

5) User Function/Function Block
▷ Function : Is an operation unit that immediately yields the operation results for an input such as four arithmetical

 operations and comparative operations
▷ Function block : Is an operation unit that memorizes the operation results within the commands such as timer and

counter or results derived from several scans. Function blocks are the fundamental element for logic programs.
Function blocks like timer and counter have input and output connections to indicate the flow.

6) Task Program
▷ Task program does not repeat scanning unlike a scan program and instead, executes only when its execution

condition occurs. If several tasks are waiting, a higher priority task program is processed first. Among tasks of
equal priority, the processing happens by the order of occurrence

▷ There are fixed cycle tasks and internal contact tasks.

Chapter 3. Common Elements

3-1

Chapter 3. Common Elements

3.1 Overview
The elements of XGI/XGR/XEC PLC program (programs, functions, function blocks) can be programmed in other
languages such as LD, SFC, and so on. All the language share common grammar elements.

3.2 Expression

3.1.1 Identifiers
▷ Identifiers must be mixed of alphabet, numeric and all letters starting with underlined letters.
▷ Identifiers are used as variable names.
▷ Blank (space) is not allowed in identifiers.
▷ In case of variable or instance name, identifiers may consist of Korean, Alphabet and Chinese characters.
▷ There’s no difference between small letters and capitals in alphabet; all the letters of the alphabet are recognized as

upper case.

Types Examples

Capital alphabet and number IW210, IW215Z, QX75, IDENT
Capital alphabets ,numbers and underline(_) LIM_SW_2, LIMSW5, ABCD, AB_CD
Capital alphabet and number characters starting
with an underline(_)

_MAIN, _12V7, _ABCD

3.1.2 Data Expression
The data in XGI/XGR/XEC PLC is; numeric data type, character string, time data type, and so on.

Types Examples

Integer -12, 0, 123_456, +986

Real number -12.0, 0.0, 0.456, 3.14159_26

Real number with an exponent -1.34E-12, 1.0E+6, 1.234E6

Binary number 2#1111_1111, 2#11100000

Octal number 8#377(decimal 255) 8#340(decimal 224)

Hexadecimal number 16#FF(decimal 255) 16#E0(decimal 224)

BOOL data 0, 1, TRUE, FALSE

1) Numeric data type
▷ There are integer and real numbers.
▷ Discontinuous underline (_) can be placed between numeric characters; and it doesn’t have any meaning.
▷ Decimal complies with general decimal data type expression and if there is a decimal point, they are real numbers.
▷ In case of expressing exponent, you can use plus/minus signs can be used. The letter ‘E’ standing for the exponent

does not distinguish capitals from small letters.

Chapter 3. Common Elements

3-2

▷ When using real numbers with exponents, the followings are not allowed.
 Ex) 12E-5 (×) 12.0E-5 (○)

▷ Integer includes binary, octal, hexadecimal numbers and decimal, which can be distinguished by placing # in front of
each numerical character.

▷ 0 ~ 9 and A ~ F are used (including small letters a ~ f) in expressing hexadecimal.
▷ There is no need have plus/minus signs in expressing hexadecimal.
▷ Boolean data may be expressed as an integer 0 or 1.

2) Character String
▷ Character string covers all the letters with single quotation marks.
▷ In case of the character string constant and the initialization, the length is limited up to 31 letters.

Ex) ‘CONVEYER’

3) Time data type
Time data types are classified as follow:

▷ Duration data: calculates and controls the elapsed time of a controlling event.
▷ Time of Day and Date data : displays the time of the starting/ending point of a controlling event.

(a) Duration
▷ Duration data starts with the reserved word, 'T#' or 't#'.
▷ Several data types such as date (d), hour (h), minute (m), second (s) and millisecond (ms) must be written in

sequence. Duration data can start with any unit (d,h,m,s and ms). In case of millisecond , the minimum unit can be
omitted but the medium unit between duration units must not be skipped.

▷ Cannot use the underline (_).
▷ Duration data can overflow at the maximum unit, if any, and the data with a decimal point is available except ‘ms’. It

does not exceed T#49d17h2m47s295ms (32bits by ‘ms’ unit)
▷ The data is limited to the third decimal place in the second unit (s).
▷ Decimal point is not available at ‘ms’ unit.
▷ Capital and small letters are both available.

Content Examples

Duration (no underline)
T#14ms, T#14.7s, T#14.7m, T#14.7h
t#14.7d, t#25h15m, t#5d14h12m18s356ms

(b) Time of day and date
▷ There are three types expressing ‘Time of Day and Date’ as follows: Date, Time of Day; Date and Time.

Content Reserved word

 Date prefix D#

 Time of Day prefix TOD#

 Date and time prefix DT#

▷ The data of starting point is January 1, 1984.
▷ There's a limit on 'Time of Day’ and ‘Date and Time', which is up to the third decimal place in the ‘ms’ unit.
▷ The overflow is not allowed for all the units when expressing ‘Time of Day’ and ‘Date and Time’.

Chapter 3. Common Elements

3-3

Content Examples

Date D#1984-06-25
d#1984-06-25

Time of Day TOD#15:36:55.36
tod#15:36:55.369

Date and Time DT#1984-06-25-15:36:55.36
dt#1984-06-25-15:36:55.369

3.2 Data Type
Data has a data type showing its character.

3.2.1 Basic Data Type
 XGI/XGR/XEC PLC supports the following basic data types.

No. Reserved Word Data Type
Size
(bits) Range

1 SINT Short Integer 8 -128 ~ 127
2 INT Integer 16 -32,768 ~ 32,767
3 DINT Double Integer 32 -2,147,483,648 ~ 2,147,483,647
4 LINT Long Integer 64 -263 ~ 263-1
5 USINT Unsigned Short Integer 8 0 ~ 255
6 UINT Unsigned Integer 16 0 ~ 65,535
7 UDINT Unsigned Double Integer 32 0 ~ 4,294,967,295
8 ULINT Unsigned Long Integer 64 0 ~ 264-1

9 REAL Real Numbers 32
-3.402823466e+038 ~ -1.175494351e-038
or 0 or
1.175494351e-038 ~ 3.402823466e+038

10 LREAL Long Real Numbers 64

-1.7976931348623157e+308 ~
 -2.2250738585072014e-308
or 0 or 2.2250738585072014e-308 ~
 1.7976931348623157e+308

11 TIME Duration 32 T#0S ~ T#49D17H2M47S295MS
12 DATE Date 16 D#1984-01-01 ~ D#2163-6-6
13 TIME_OF_DAY Time Of Day 32 TOD#00:00:00 ~ TOD#23:59:59.999

14 DATE_AND_TIME Date and Time of Day 64
DT#1984-01-01-00:00:00 ~
DT#2163-06-06-23:59:59.999

15 STRING Character String 32*8 -
16 BOOL Boolean 1 0,1
17 BYTE Bit String of Length 8 8 16#0 ~ 16#FF
18 WORD Bit String of Length 16 16 16#0 ~ 16#FFFF
19 DWORD Bit String of Length 32 32 16#0 ~ 16#FFFFFFFF
20 LWORD Bit String of Length 64 64 16#0 ~ 16#FFFFFFFFFFFFFFFF

Chapter 3. Common Elements

3-4

3.2.2 Data Type Hierarchy Chart
 Data types used in XGI/XGR/XEC PLC are as follows:

TIME

ANY_INT

ANY_DATEANY_STRINGANY_BIT

ANY

ANY_REAL

ANY_NUM

LINT
DINT
INT
SINT
ULINT
UDINT
UINT
USINT

LWORD
DWORD
WORD
BYTE
BOOL

DATE_AND_TIME
DATE

TIME_OF_DAY
REAL
LREAL

▷ Data expressed as ANY_NUM includes LREAL, REAL, LINT, DINT, INT, SINT, ULINT, UDINT, UINT and USINT.
▷ For example, if a data type is expressed as ANY_BIT, it can use one of the following data types: LWORD, DWORD,

WORD, BYTE and BOOL.

3.2.3 Initial Value
 If an initial value of data is not assigned, it is automatically assigned as follows.

Data Type Initial Value

SINT, INT, DINT, LINT 0
USINT, UINT, UDINT, ULINT 0
BOOL, BYTE, WORD, DWORD, LWORD 0
REAL, LREAL 0.0
TIME T#0s
DATE D#1984-01-01
TIME_OF_DAY TOD#00:00:00
DATE_AND_TIME DT#1984-01-01-00:00:00
STRING ' ' (empty string)

Chapter 3. Common Elements

3-5

3.2.4 Data Type Structure

Bit String

Unsigned Integer

16 bit, range: 0 ~ 65,535

7 015 8
UINT

USINT

8 bit , range: 0 ~ 255

7 0

UDINT

32 bit, range: 0 ~ 4,294,967,295

0151631

0313263
ULINT

64 bit, range: 0 ~ 264-1

Integer (negative number is expressed as 2's complement)

16 bit, range: -32,768 ~ 32,767

7 015 8
INT

SINT

8 bit, range: -128 ~ 127

7 0

DINT

32 bit. range: -2,147,483,648 ~ 2,147,483,647

0151631

0313263
LINT

64 bit, range: -263 ~ 263-1

Chapter 3. Common Elements

3-6

Real (based on the IEEE Standard 754-1984)

32 bit, range: 1.401298E-45 ~ 3.402823E38

22233031 0
REAL S Exponent Fraction

51526263 0
LREAL FractionExponentS

64 bit, range: 4.9406564E-324 ~ 1.7976931E308

- S: sign (0: positive number; 1: negative number)

- Exponent: exponent of 2(2e-127: e=b30b29...b23, e=b62b61...b52)

- Fraction: a decimal fraction (Fraction: f=b22b21...b0, f=b51b50...b0)

Time

TIME
32 bit, range: 0 ~ 4,294,967,295ms ,T#49d17h2m47s295ms

031

Date

TOD
0151631

16 bit, range: D#1984-01-01 ~ D#2163-6-6

7 015 8
DATE

32 bit, range: TOD#00:00:00 ~ TOD#23:59:59.999

063
DT

64 bit, range: DT#1984-01-01-00:00:00 ~ DT#2163-12-31-23:59:59.999

31324748

DATETOD0 0 0 0 0 00 0 0 0 0 0 0 0 0 0

#BCD

BYTE
8 bit, range: 0 ~ 99

7 0

0313263
LWORD

64 bit, range: 0 ~ 9,999,999,999,999,999

DWORD
32 bit, range: 0 ~ 99,999,999

031

16 bit, range: 0 ~ 9999

015
WORD

78

34

2324 781516

15164748

10
1 10

0

10
0 10

1 10
2 10

3

10
7 10

8 10
9 10

10 10
0 10

1 10
2 10

3 10
4 10

5 10
6 10

11 10
12 10

13 10
14 10

15

10
7 10

0 10
1 10

2 10
3 10

4 10
5 10

6

Chapter 3. Common Elements

3-7

3.3 Variable
A variable has its own value and refer to data used in a program. ‘Variable’ refer to something that can vary such as an
input/output of PLC, memory, and so on.

3.3.1 Variable Expression
▷ Variables can be expressed in two ways: by giving a name to a data element using an identifier (Variable by Identifier)

or by directly assigning a memory address or an input/output of PLC to a data element (Direct Variable).
▷ A variable by identifier must be unique within its ‘effective scope’ (program area where the variable was declared) in

order to distinguish it from other variables.
▷ A direct variable is expressed as one, which starts with the percent sign (%) followed by the ‘location prefix’, a prefix of

the data size, and more than one unsigned integer numbers divided by a period (.). The prefixes are shown as follows.

Location prefix
No. Prefix Meaning
1 I Input Location
2 Q Output Location
3 M Memory Location (M)
4 R Memory Location (R)
5 W Memory Location (W)

Size prefix
No. Prefix Meaning
1 X 1 bit size
2 None 1 bit size
3 B 1 byte (8 bits) size
4 W 1 word (16 bits) size
5 D 1 double word (32 bits) size
6 L 1 long word (64 bits) size

 Expression format

%[Location Prefix][Size Prefix] n1.n2.n3
Number I, Q M, R, W

n1 Base number (starting from “0”)
The n1th data according to [size prefix]
(starting from “0”)

n2 Slot number (starting from “0”)
The n2th data of the n1th data (starting
from “0”) : available to omit

n3
n3 data according to the [size prefix] (starting
from “0”)

Not used

Chapter 3. Common Elements

3-8

Examples

%QX3.1.4 or %Q3.1.4 4th output of no.1 slot on no.3 base (1 bit)

%IW2.4.1 1st word input of no.4 slot on no.2 base (16bits)

%MD48 48th double word memory

%MW40.3 3rd bit of 40th word memory

 (internal memory does not have a base or a slot number)

▷ Small alphabets are not allowed as a prefix.
▷ A variable without a size prefix is treated as 1 bit.
▷ Direct variables are available to use without a variable declaration.

3.3.2 Variable Declaration
▷ Program elements (programs, functions, function blocks, and so on) have parts that can be declared to edit their

variables.
▷ Variables must be declared before using them in the program elements.
▷ The contents of a variable declaration are as follows.

 1) Variable types

The variable type defines how to declare variables.

Variable types Description
VAR General variable available to read/write
VAR_RETAIN Retaining(data-keeping) variable
VAR_CONSTANT Read only variable
VAR_EXTERNAL Declaration to use the variable declared as VAR_GLOBAL

 2) Data type

Data type sets a variable data type.
 3) Memory allocation

Memory allocation assigns memory for a variable.
 Auto ---- The compiler sets a variable location automatically (Automatic Allocation Variable).
 Assign (AT) ---- A user sets a location of variable, using a direct variable (Direct Variable).

Chapter 3. Common Elements

3-9

Reference
The location of Automatic Allocation Variable is not fixed. If variable VAL1, for example, was declared as BOOL, it is not
fixed in the internal memory; the compiler and linker fix its location. If the program is compiled again after modification,
the location may change.
The merit of Automatic Allocation Variable is that users do not have to care the location of the internal variables
because its location is not overlapped as long as a variable name is different from others.
Use of Direct Variable is not recommended except %Ⅰand % Q because the location of a variable is fixed and it could

be overlapped in a wrong-used case.

▷ Initial Value Assignment: assigns an initial value. A variable is set with an initial value as shown in section ‘3.2.3. Initial

Value’ if not assigned.

Reference
The initial value is not assigned when it comes to VAR_EXTERNAL.
In case of ‘Variable Declaration’, you cannot assign an initial value to %Ⅰor %Q variables.

▷ You can declare variable VAR_RETAIN that keeps its data in case of power failure. Rules are:

 1) ‘Retention Variable’ retains its data when the system is set as ‘Warm Restart’.
 2) In case of ‘Cold Restart’, variables are initialized as the initial values set by users or the basic initial values.

▷ Variables, which are not declared as VAR_RETAIN, must be initialized as the initial values set by a user or the basic
initial values in case of ‘Warm Restart’ or ‘Cold Restart’.

Reference
Variables, which are assigned as %I or %Q, must not to be declared as VAR_RETAIN or VAR_CONSTANT.

▷ Users can declare variables 'Array' with Elementary Data Type. When declaring the Array Variable, users are

supposed to set Data Type and Array Size; ‘STRING’ type among Elementary Data Types is not allowed.

▷ Effective scope of variable declaration, the area which is available to use the variable, is limited to the program where

variables are declared. And users can't use variables declared in other program in the above area. On the contrary,
users can get an access to 'Global Variable' from other program elements by declaring it as 'VAR_EXTERNAL'.

Chapter 3. Common Elements

3-10

Examples of Variable Declaration
Variable Name Variable Kind Data Type Initial Value Memory Allocation

I_VAL VAR INT 1234 Auto
BIPOLAR VAR_RETAIN REAL - Auto
LIMIT_SW VAR BOOL - %IX1.0.2
GLO_SW VAR_EXTERNAL DWORD - Auto
READ_BUF VAR ARRAY OF INT[10] - Auto

3.3.3 Reserved Variable
▷ ‘Reserved Variable’ refers to variables previously declared in the system. These variables are used for special

purposes and users cannot declare variables with the name of the Reserved Variables.
▷ Users can use the reserved variables without variable declaration.
▷ For additional information, refer to Appendix 2 : Flag List(XGI) Summary of Special internal flag(F) and XGI-CPUU

User’s Manual.

3.3.4 Reserved Word
Reserved words are previously defined words to use in the system. And these reserved words cannot be used as an
identifier.

Reserved words
ACTION ... END_ACTION
ARRAY ... OF
AT
CASE ... OF ... ELSE ... END_CASE
CONFIGURATION ... END_CONFIGURATION
Name of data type
DATE#, D#DATE_AND_TIME#, DT#
EXIT
FOR ... TO ... BY ... DO ... END_FOR
FUNCTION ... END_FUNCTION
FUNCTION_BLOCK ... END_FUNCTION_BLOCK
Name of function block
IF ... THEN ... ELSIF ... ELSE ... END_IF
OK
Operator (IL language)
Operator (ST language)
PROGRAM
PROGRAM ... END_PROGRAM
REPEAT ... UNTIL ... END_REPEAT
RESOURCE ... END_RESOURCE
RETAIN
RETURN
STEP ... END_STEP
STRUCTURE ... END_STRUCTURE
T#
TASK ... WITH
TIME_OF_DAY#, TOD#
TRANSITION ... FROM... TO ... END_TRANSITION

Chapter 3. Common Elements

3-11

Reserved words
TYPE ... END_TYPE
VAR ... END_VAR
VAR_INPUT ... END_VAR
VAR_OUTPUT ... END_VAR
VAR_IN_OUT ... END_VAR
VAR_EXTERNAL ... END_VAR
VAR_ACCESS ... END_VAR
VAR_GLOBAL ... END_VAR
WHILE ... DO ... END_WHILE
WITH

3.4 Program Type
There are three types of program: function, function block and program. You cannot call its own program in the program
 (recursive call is prohibited)

3.4.1 Function
▷ A function has one output and does not have any data with status in it. That is, to be a function, consistent input must

yield consistent output.
▷ An internal variable of a function cannot have an initial value.
▷ You cannot declare a function as VAR_EXTERNAL and use it.
▷ You cannot use direct variables inside the function.
▷ You can call a function program elements and use it.
▷ Data transfer from program composition elements which call the function, to the function, is executed through an input

of a function.
▷ You cannot call a function block or a program from inside a function.
▷ A function has a variable whose name is the same as that of the function and whose data type is the same as the

data type of the result of the function. This variable is automatically creates when you make a function and the result
value of the function displays in the output.

3.4.2 Function Block
▷ A function block can have a several outputs.
▷ A function block has data inside. A function block must declare the instance as it declares variables before using them.

Instance is a set of variables used in a function block. A function block must have its data memory to preserve the
output value as well as variables used inside, which is called as “instance.” A program is a kind of a function block and
also needs to declare “instance.” However, users cannot call a program inside a program or a function block for use,
contrary to a function block.

▷ You can declare a direct variable inside a function block, and moreover, you can use a direct variable declared as
Global Variable and allocated according to ‘Assign (AT)’ after declaring it as VAR_EXTERNAL.

▷ You can call a program inside the function block.

3.4.3 Program
▷ Users can use a program after declaring an instance like a function block.
▷ User can use direct variables in the program.
▷ A program does not have input/output variables.
▷ A program can call functions or function blocks.

Chapter 3. Common Elements

3-12

3.5 Function Selection

3.5.1 Internally Determined Function
▷ Although a function has one name, a command in which a variety of variable types can be entered is divided into

various commands, depending on available variables. For instance, ADD can be divided and processed in various
kinds, depending on the number of input defined or I/O variable types. If you select in the following figure, the function
shown in a ladder program is ADD but ADD2_SINT function executes internally.

Chapter 3. Common Elements

3-13

▷ An internally used function automatically selects in XG5000, depending on a user-selected variable type. For instance,

two inputs are selected among ADD function and I/O variables are selected as DINT, ADD2_DINT is selected as
described above.

▷ Although IEC allows an operation between and among same types, XG5000 has a “Strict type check”
(ViewProgram Check) option to allow an operation if its operand sizes (BYTE, WORD, DWORD, and LWORD) are
same.

Chapter 3. Common Elements

3-14

 3.5.2 Function Selection Rules
▷ If an input variable is of multiple data type, then, an internally used function is used to determine the type of the output

variable.
▷ If a constant is used as input in a function in which various input variable types and one output variable type are

allowed, a function is determined by a constant.
For instance, ***_TO_BCD is used as below,

A function is determined depending on output variable type because input variable is constant; in this case, the
following two functions which output is word are available (INT_TO_BCD_WORD/UINT_TO_BCD_WORD).
UINT_TO_BCD_WORD is selected depending on constant type. Positive constant is determined as ‘unsigned’ while
negative one is determined as ‘signed’.

Chapter 4. SFC(Sequential Function Chart)

4-1

Chapter 4. SFC (Sequential Function Chart)

4.1 Introduction
▷ SFC is a structured language that extends an application program in the form of flow chart according to the

processing sequence, using a PLC language.

▷ SFC splits an application program into step and transition, and provides how to connect them each other. Each step

is related to action and each transition is related to transition condition.

▷ As SFC should contain the state information, only program and function block among program types are available to

apply this SFC.

▷ Type

S1

T1

S3

T2

S5

S6

S7

S4
T3

T4

S9

T9

T10

S11
T11

T12
THERE

T5

S10 S12

T6

T7

LIMIT1

THERE

N MOTER_ONS2

S8

N AFM_UP

SD GRAB_ON

T8

Initial step

action name
action

jump

selection
branch

transition name
transition

name

qualifier

step

 transition

label

Chapter 4. SFC(Sequential Function Chart)

4-2

4.2 SFC Structure

4.2.1 Step

▷ Step indicates a sequence control unit by connecting the action.

▷ When step is in an active state, the attached content of action executes.

▷ You have to first activate the initial step.

S1

T1

T2

S2

initial step transition condition
 (Transition Conditon)

step

▷ If a next transition condition of activated initial step (S1) is established, the currently activated step 1 (S1) is inactivated

and Step 2 (S2) connected to S1 becomes activated.

4.2.2 Transition

▷ Transition indicates the execution condition between steps.

▷ A transition condition must be described as a PLC language such as ST(Structured text) or LD.

▷ The result of a transition condition must always be a BOOL type and the variable name must be TRANS for any

transition.

▷ In case that the result of transition condition is 1, the current step is inactivated and the next step is activated.

▷ There must be a transition between steps.

S1

T1

T2

S2
TRAN1

The content of TRAN1

()

TRANS%IX0.0.3%IX0.0.1

%IX0.0.2

Chapter 4. SFC(Sequential Function Chart)

4-3

When TRANS is on, S1 is inactivated and S2 is activated.

TRANS is the internally declared variable.

A transition condition of all transition must be output in TRANS variable.

4.2.3 Action

▷ Each step is able to connect up to two actions.

▷ The step without action is regarded as a waiting action and it is required to wait until the next transition condition is 1.

▷ Action is composed of PLC language such as LD/SFC/ST and the action execute while the step is activated.

▷ Action qualifier is used to control action.

▷ When action becomes inactivated, the state after activating the contact output in action is 0.

 However, S, R, function and function block output retain their state prior to inactivation.

S1

T1
S ACTION2

ACTION1N

The content of ACTION1

()

%IX0.0.1

%IX0.0.2

%IX0.0.0

The content of ACTION2

()

%IX0.0.2

%IX0.0.3

%IX0.0.2

()
%IX0.0.3

- ACTION1 executes only when S1 is activated.

- ACTION2 executes until activated S1 meets R qualifier. It goes on executing even if S1 is inactivated.

- When action is deactivated, this action is Post Scanned and then passes to the next step.

Chapter 4. SFC(Sequential Function Chart)

4-4

Reference

Post Scan
When action is inactivated, this action is scanned again.

As it is scanned as if there is a contact (contact with the value of 0) in the early part of an action program, the program

output, which is composed of contacts, is 0.

Function, function block, S, R output and so on are not included.

POSTSCAN

A

B

%MX0

()C

()

%QX0.0.0%IX0.0.0

In this figure, as the contact of post scan is 0, C and %Q0.0.0 is 0.

4.2.4 Action Qualifier

▷ Whenever action is used, action qualifier follows.

▷ The action of step defines an executing point and time according to the assigned qualifier.

▷ Types of action qualifier are as follows.

1) N (Non-Stored)

Action executes only when the step is activates.

Active state

Step connected by N

Action

Chapter 4. SFC(Sequential Function Chart)

4-5

2) S (Set)

It continues the action after the step is activates (until the action is reset by R qualifier).

Q1S

R1

ActionStep connected by S

Step connected by R

RS

Action

Step connected by S

Step connected by R

3) R (Overriding Reset)

It terminates the execution of an action previously started with the S, SD, SL or DS qualifier.

 4) L (Time Limited)

It starts the action when the step becomes active and continues until the step goes inactive or a set time elapses.

ActionStep connected by L AND

QIN

PT

TON

ETT

Action

Step connected by L

T

Chapter 4. SFC(Sequential Function Chart)

4-6

5) D (Time Delayed)

Start a delay timer when the step activates; after the time delay the action starts (if step is still active) and continues until

inactivated.

ActionStep connected by D QIN

PT

TON

ETT

Action

Step connected by D T

6) P (Pulse)

It starts the action when the step is active and executes the action only once.

R_TRIG

ActionStep connected by P QCLK

Action

Step connected by P

1 scan

Chapter 4. SFC(Sequential Function Chart)

4-7

7) SD (Stored & Time Delayed)

It starts a delay timer when the step activates; after the time delay, the action starts and continues until reset (regardless

of step activation/inactivation). If the reset activates during the time delay, the action does not start.

QIN

PT ET

TON

ActionStep connected by SD

T

Q1S

R1

RS

Step connected by R

Action

Step connected by SD
T

Step connected by R

8) DS (Delayed & Stored)

It starts a delay timer when the step activates; after the time delay the action starts (if step is still active) and continues

until reset by R qualifier. If the step is inactivates or reset activates during the time delay, the action does not start.

Step connected by DS

T

Step connected by R

QIN

PT ET

TON

ActionQ1S

R1

RS

Action

Step connected by DS T

Step connected by R

Chapter 4. SFC(Sequential Function Chart)

4-8

9) SL (Stored & Timed Limited)

It starts the action when the step activates and continues for a set time or until the action is reset (regardless of step

activation/inactivation).

ActionAND

QIN

PT

TON

ETT

Step connected by SL Q1S

R1

RS

Step connected by R

T

Step connected by SL

Step connected by R

Action

Chapter 4. SFC(Sequential Function Chart)

4-9

4.3 Extension regulation

4.3.1 Serial connection

▷ steps are always divided by transitions without direct connections.

▷ A Step always divides two transitions without direct connections.

Correct
example

S1 S1

S2

S2
T1

T2

T1

T2

Wrong
example

▷ For the transition between steps connected by serial, the lower step activates if the upper step is active and the

transition condition connected to the next is 1.

4.3.2 Selection branch

▷ When a processor executes a selection branch, the processor finds the first path with a true transition in the sequence

the program scan and executes the steps and transitions in that path. If more than one path in a selection branch

becomes true at the same time, the processor chooses the left-most path. The following example shows a typical

scan sequence.

Example

S1

S3

S2
T1

T2

S4
T4

T6

S5
T5

T7

T3

* If the transition condition of T1 is 1, the order of activation is S1 -> S2 -> S3.

* If the transition condition of T4 is 1, the order of activation is S1 -> S4 -> S3.

Chapter 4. SFC(Sequential Function Chart)

4-10

* If the transition condition of T5 is 1, the order of activation is S1 -> S5 -> S3.

If the transition conditions are 1 at the same time, the processor chooses the left-most path.

* If the transition condition of T1 and T4 is 1 at the same time, the order of activation is S1 -> S2 -> S3..

* If the transition condition of T4 and T5 is 1 at the same time, the order of activation is S1 -> S4 -> S3.

4.3.3 Parallel branch (simultaneous branch)

▷ When connecting using a parallel branch, if the transition condition connected to the next is 1, all steps tied to this

transition activates. The extension of each branch is the same as serial connection. The steps in the state of

activation are as many as the number of branches.

▷ In case of combining in parallel branch, if the transition condition is 1, when the state of the last steps of each branch

activates, then the step connected to the next step activates.

Example

S5

S1

S2
T1

S6

T6

S8

S7

T2

S3

T3

S4

T5

T4

- If the transition condition of T1 is 1 when S1 is active, S2, S6 and S8 is activated and S1 is inactivated.

- If the transition condition of T4 is 1 when S4, S7 and S8 are activated, S5 is activated and S4, S7 and S8 are inactivated.

 * The order of activation

 S1-+->S2--->S3--->S4-+->S5

 +->S6--->S7-------+

 +->S8-------------+

Chapter 4. SFC(Sequential Function Chart)

4-11

4.3.4 Jump

▷ If the transition condition connected to the next step is 1, after the last step of SFC activates, then the initial step of

SFC activates.

Example

S2

T1

T2
S3

T3

S1

 The order of activation

 S1 S2 S3

▷ It is possible to extend to the place using a jump.

▷ Jump can only be placed at the end of SFC program or at the end of a selection branch.

A jump to the inside or outside of a parallel branch is not permissible; however the jump within a parallel branch is

permissible.

Example

1) Jump at the end of selection branch S2 activates after S5.

ABC

S3

T3

S2

T1

T2

S1

S4

T4

S5
T5

ABC

Chapter 4. SFC(Sequential Function Chart)

4-12

2) Jump within a parallel branch

LABLE1

S3

T3

S2

S1

S4

T4

S6

T7

LABEL1

S5

T6

T5

T1

S7

S8

S9

T8

T9

T2

3) You can not jump inside a parallel branch.

S3

S2

S1

S4

T4

LABEL1

T1

S5

S6

T5

T2

T3

LABEL1

Chapter 5. LD (Ladder Diagram)

5-1

Chapter 5. LD (Ladder Diagram)

5.1 Introduction
▷ LD program is the graphical representation of a PLC program using symbols such as a coil or contact used in relay

logic diagram.

▷ Configuration

ADD

EN0EN

OUTIN1

IN2

()

CUR_TIME

UPSIGN

DATA1

DATA2

DATA3

TON

QIN

ETPTSET_TIME

START

STOP%I0.0.0

DOWN
THERE

This is an example of LD program

THERE

Line1

Line2

Line3

Line4

Line5

Line
No.

Line0

Label

rung

bus line

coil

jump label vertical
linkHorizontal

linkcontact

function

rung
comment

Function
block

5.2 Bus
▷ Bus line as a power line is vertically placed on either sides of a LD graphic diagram.

No Symbol Name Description

1

Left bus line Its value is always 1 (BOOL).

2

Right bus line The value is not fixed.

Chapter 5. LD (Ladder Diagram)

5-2

5.3 Link
▷ The value (BOOL 1) of left bus line transmits to the right side by the ladder diagram. The line that transmits value is

called as 'power flow line' or 'connection line' which is connected to a contact or coil. Power flow line has always a

BOOL value and there is only one power flow line in one rung that is connected by lines.

▷ There are two types of a connection line of LD: horizontal connection line and vertical connection line.

No. Symbol Name Description

1 Horizontal connection line It transmits the left side value to the right side

2

Vertical connection line It is a logical OR of horizontal connection lines of its left

side

5.4 Contact
▷ 'Contact' transmits a value to the right horizontal connection line, which is the result of logical AND operation of : the

state of left horizontal connection line, Boolean input/output related to the current contact or memory variables. It does

not change the value of variable related to the contact. Standard contact symbols are as follows.

Static contact

No Symbol Name Description

1

Normally open contact

When the BOOL variable (marked with ***) is On, which
transmits the state of the left connection line to the right
connection line. Otherwise, the state of the right
connection line is Off.

2

Normally closed contact

When the BOOL variable (marked with ***) is Off, which
transmits the state of the left connection line to the right
connection line. Otherwise, the state of the right
connection line is Off.

State transition-sensing contact

No Symbol Name Description

3

P

Positive Transition-
Sensing Contact

When the BOOL variable (marked with ***), which was
off in the previous scan is On, it maintains On state
during one scan (current scan).

4

N

Negative Transition-
Sensing Contact

When the BOOL variable (marked with ***), which was
On in the previous scan is Off, it maintains On state
during just one scan (current scan).

Chapter 5. LD (Ladder Diagram)

5-3

State transition-sensing contact

No Symbol Name Description

5

 P

Positive Transition-
Sensing Normally Closed

Contact

When the BOOL variable (marked with ***), which was On
in the previous scan is Off, it maintains Off state during one
scan (current scan).

6

Negative Transition-
Sensing Normally Closed

Contact

When the BOOL variable (marked with ***), which was Off
in the previous scan is On, it maintains Off state during just
one scan (current scan).

7

Positive Transition
-Sensing

If the result of the operation before detection of positive
conversion was Off in the previous scan, it turns On in
the current scan, and only when the state of the left
connector is On, the state of the right connector turns On
during the current scan.

8

Negative Transition
-Sensing

If the operation result before the negative conversion
detection was On in the previous scan will be Off in the
current scan, and only when the left connector is On, the
right connector will be On during the current scan.

5.5 Coil
▷ The coil stores the state of the left connection line or the processing result of state transition in the associated BOOL

variable. Standard coil symbols are as follows.

▷ Coils are placed in the right extreme of LD, and its right is a right bus line.

Momentary Coils
No. Symbol Name Description

1

()

Coil Put the state of left connection line into the associated BOOL

variable (marked with ***).

2

()

Negated Coil

Put the negated value of the state of left connection line into the

associated BOOL variable (marked with ***).
That is, if the state of left connection line is off, the associated
BOOL variable is on and if the state of left connection line is on,
the associated BOOL variable is off.

Chapter 5. LD (Ladder Diagram)

5-4

Latched Coils

No. Symbol Name Description

3

(S)

Set (Latch) Coil
It sets the associated BOOL variable (marked with ***) to on
when the left link is in the on state and remains set until reset by
a Reset coil.

4

(R)

Reset (Unlatch) Coil
It sets the associated BOOL variable (marked with ***) to off
when the left link is in the on state and remains reset until set by
a Set coil.

State Transition-sensing Coils

No. Symbol Name Description

5

(P)

Positive Transition-
Sensing Coil

If the state of its left connection that was off in the previous scan
is on in the current scan, the associated BOOL variable (marked
with ***) is on during the current scan.

6

(N)

Negative Transition-
Sensing Coil

If the state of its left connection that was on in the previous scan
is off in the current scan, the associated BOOL variable (marked
with ***) is on during the current scan.

5.6 Calling of Function and Function Block

* The connection to a function or a function block is done by entering suitable data or variable to their input/output.

Example

REG1

SEL

EN0EN

ETGSTART

IN0VAL1

IN1VAL2

CTUD

QUCU

CDCD

CLK_U

CLK_D

CVRRESET

LDSWITCH

PVPLAN

FULL

STOP

DOWN

Function

Function
block

Chapter 5. LD (Ladder Diagram)

5-5

* To enable power flow inside function or function block, it must contain at least one BOOL-type input and BOOL-type

output. EN and ENO are BOOL-type input/output in a function while a data type of the first input and first output are

BOOL-type in a function block.

Example

LIMIT

EN0EN

OUTMN

IN

MX

Bool type input/output
of function

ABS

EN0EN

IN1 OUT

TOF

QIN

PT ET

T1

F_TRIG

QCLK

F1

EQ

EN0EN

OUTIN1

IN2

CTU

QCU

CVR

PV

C2

Bool type input/output of
function block

* Conventionally, the ladder logic connecting a Boolean input to a function is called EN and the corresponding output

Boolean is called ENO, or enable out. If the value of EN is 1, then the function executes, otherwise it is do not execute.

In all cases, the value of EN copies the output ENO.

* If an error occurs in the execution of a function, the function is responsible to set ENO to false (BOOL 0). EN is

connected to the power flow line but ENO does not have to be connected to it. However, when connecting the power

flow line to the function output instead of the ENO, the output data type must be a BOOL type.

* When connecting the power flow line to the function output, do not connect anything to the ENO output. All the inputs

of a function are assigned by entering its data at the left side of the function. The output of a function is stored at the

output variable on its right side.

* Assignment of input of a function block in a LD is the same as that of a function. The name of function block is the

‘instance’ name, which can be user-defined and must be unique to LD in which the function block appears.

* You do not have to assign output variables because they are in the instance. If a function block is connected to the

power flow line, it is always executes because there is neither EN nor ENO in it.

* Therefore, use Jump (-->>) to determine whether or not to execute a function block according to the logic result. When

connecting the power flow line to the function block, connect it to the input/output whose data type is BOOL.

Chapter 5. LD (Ladder Diagram)

5-6

Example

D0

N P

ABS

EN0EN

OUTIN1DOWN

CLK REG1 SWITCH

START CON1

EMERGE PLACE1

Line1

Line2

T2
TON

QIN

ETPTTEST

()

PLACE2

START

Line3

Line4

Line5

Line6

()

STOPCON2

Line7

Line8

PLACE1

PLACE2

* You can place a function or a function block in any place of LD. You can create a program by connecting the power

flow line to the output and then insert the contact to it.

Example

ADD

EN0EN

OUTIN1 N

P

CLK START VAL1

STOP VAL2

IN2

T4
TOF

QIN

ETPT

RESET

D0PLAN

DOWN

CON2 SWITCH

TEST

REG1

S1
SR

Q1S1

R

()

REG1 CON1

CON2

EMERGE

Chapter 5. LD (Ladder Diagram)

5-7

* Only one power line connects to a function or a function block.

Example

EQ

EN0EN

OUTIN1

IN2

D0

DOWN

REG1

STOP

EQ

EN0EN

OUTIN1

IN2

D0

DOWN

SWITCH

START

EQ

EN0EN

OUTIN1

IN2

D0

DOWN

START

EQ

EN0EN

OUTIN1

IN2DOWN

REG1

START

STOP

Correct

Correct

Wrong: only one
power flow line can
be connected

Chapter 5. LD (Ladder Diagram)

5-8

Chapter 6. Function and Function Block

6-1

Chapter 6. Function and Function Block

It’s a list of function and function block. For each function and function block, please refer to the next chapters (Ch .7/8

Basic/Application Functions and Ch 9/10 Basic/Application Function Blocks).

6.1 Functions

6.1.1 Type Conversion Function

It converts each input data type into an output data type.

Function Group Function Input data type Output data type Remarks

ARY_ASC_TO_*** ARY_ASC_TO_BYTE WORD(ASCII) BYTE -
ARY_ASC_TO_BCD WORD(ASCII) BYTE (BCD) -

ARY_BYTE_TO_*** ARY_BYTE_TO_ASC BYTE WORD(ASCII) -
ARY_BCD_TO_*** ARY_BCD_TO_ ASC BYTE (BCD) WORD(ASCII) -
ASC_TO_*** ASC_TO_BCD BYTE (BCD) USINT -

ASC_TO_BYTE WORD (BCD) UINT -
BCD_TO_*** BYTE_BCD_TO_SINT BYTE (BCD) SINT -

WORD_BCD_TO_INT WORD (BCD) INT -
DWORD_BCD_TO_DINT DWORD

(BCD)
DINT -

LWORD_BCD_TO_LINT LWORD
(BCD)

LINT -

BYTE_BCD_TO_USINT BYTE (BCD) USINT -
WORD_BCD_TO_UINT WORD (BCD) UINT -
DWORD_BCD_TO_UDINT DWORD

(BCD)
UDINT -

LWORD_BCD_TO_ULINT LWORD
(BCD)

ULINT -

BCD_TO_ASC BCD_TO_ASC BYTE (BCD) WORD -
BYTE_TO_ASC BYTE_TO_ASC BYTE ASC(BYTE) -
TRUNC TRUNC_REAL REAL DINT -

TRUNC_LREAL LREAL LINT -
REAL_TO_*** REAL_TO_SINT REAL SINT -

REAL_TO_INT REAL INT -
REAL_TO_DINT REAL DINT -
REAL_TO_LINT REAL LINT -
REAL_TO_USINT REAL USINT -
REAL_TO_UINT REAL UINT -
REAL_TO_UDINT REAL UDINT -
REAL_TO_ULINT REAL ULINT -
REAL_TO_DWORD REAL DWORD -
REAL_TO_LREAL REAL LREAL -
REAL_TO_STRING REAL STRING -

Chapter 6. Function and Function Block

6-2

Function Group Function Input data type Output data type Remarks

LREAL_TO_*** LREAL_TO_SINT LREAL SINT -
LREAL_TO_INT LREAL INT -
LREAL_TO_DINT LREAL DINT -
LREAL_TO_LINT LREAL LINT -
LREAL_TO_USINT LREAL USINT -

LREAL_TO_*** LREAL_TO_UINT LREAL UINT -
LREAL_TO_UDINT LREAL UDINT -
LREAL_TO_ULINT LREAL ULINT -
LREAL_TO_LWORD LREAL LWORD -
LREAL_TO_REAL LREAL REAL -
LREAL_TO_STRING LREAL STRING -

SINT_TO_*** SINT_TO_INT SINT INT -
SINT_TO_DINT SINT DINT -
SINT_TO_LINT SINT LINT -
SINT_TO_USINT SINT USINT -
SINT_TO_UINT SINT UINT -
SINT_TO_UDINT SINT UDINT -
SINT_TO_ULINT SINT ULINT -
SINT_TO_BOOL SINT BOOL -
SINT_TO_BYTE SINT BYTE -
SINT_TO_WORD SINT WORD -
SINT_TO_DWORD SINT DWORD -
SINT_TO_LWORD SINT LWORD -
SINT_TO_REAL SINT REAL -
SINT_TO_LREAL SINT LREAL -
SINT_TO_STRING SINT STRING -

INT_TO_*** INT_TO_SINT INT SINT -
INT_TO_DINT INT DINT -
INT_TO_LINT INT LINT -
INT_TO_USINT INT USINT -
INT_TO_UINT INT UINT -
INT_TO_UDINT INT UDINT -
INT_TO_ULINT INT ULINT -
INT_TO_BOOL INT BOOL -
INT_TO_BYTE INT BYTE -
INT_TO_WORD INT WORD -
INT_TO_DWORD INT DWORD -
INT_TO_LWORD INT LWORD -
INT_TO_REAL INT REAL -
INT_TO_LREAL INT LREAL -
INT_TO_STRING INT STRING -

DINT_TO_*** DINT_TO_SINT DINT SINT -
DINT_TO_INT DINT INT -
DINT_TO_LINT DINT LINT -

Chapter 6. Function and Function Block

6-3

Function Group Function Input data type Output data type Remarks

DINT_TO_USINT DINT USINT -
DINT_TO_UINT DINT UINT -
DINT_TO_UDINT DINT UDINT -
DINT_TO_ULINT DINT ULINT -
DINT_TO_BOOL DINT BOOL -
DINT_TO_BYTE DINT BYTE -
DINT_TO_WORD DINT WORD -

DINT_TO_*** DINT_TO_DWORD DINT DWORD -
DINT_TO_LWORD DINT LWORD -
DINT_TO_REAL DINT REAL -
DINT_TO_LREAL DINT LREAL -
DINT_TO_STRING DINT STRING -

LINT_TO_*** LINT_TO_SINT LINT SINT -
LINT_TO_INT LINT INT -
LINT_TO_DINT LINT DINT -
LINT_TO_USINT LINT USINT -
LINT_TO_UINT LINT UINT -
LINT_TO_UDINT LINT UDINT -
LINT_TO_ULINT LINT ULINT -
LINT_TO_BOOL LINT BOOL -
LINT_TO_BYTE LINT BYTE -
LINT_TO_WORD LINT WORD -
LINT_TO_DWORD LINT DWORD -
LINT_TO_LWORD LINT LWORD -
LINT_TO_REAL LINT REAL -
LINT_TO_LREAL LINT LREAL -
LINT_TO_STRING LINT STRING -

USINT_TO_*** USINT_TO_SINT USINT SINT -
USINT_TO_INT USINT INT -
USINT_TO_DINT USINT DINT -
USINT_TO_LINT USINT LINT -
USINT_TO_UINT USINT UINT -
USINT_TO_UDINT USINT UDINT -
USINT_TO_ULINT USINT ULINT -
USINT_TO_BOOL USINT BOOL -
USINT_TO_BYTE USINT BYTE -
USINT_TO_WORD USINT WORD -
USINT_TO_DWORD USINT DWORD -
USINT_TO_LWORD USINT LWORD -
USINT_TO_REAL USINT REAL -
USINT_TO_LREAL USINT LREAL -
USINT_TO_STRING USINT STRING -

UINT_TO_*** UINT_TO_SINT UINT SINT -
UINT_TO_INT UINT INT -

Chapter 6. Function and Function Block

6-4

Function Group Function Input data type Output data type Remarks

UINT_TO_DINT UINT DINT -
UINT_TO_LINT UINT LINT -
UINT_TO_USINT UINT USINT -
UINT_TO_UDINT UINT UDINT -
UINT_TO_ULINT UINT ULINT -
UINT_TO_BOOL UINT BOOL -
UINT_TO_BYTE UINT BYTE -
UINT_TO_WORD UINT WORD -
UINT_TO_DWORD UINT DWORD -

UINT_TO_*** UINT_TO_LWORD UINT LWORD -
UINT_TO_REAL UINT REAL -
UINT_TO_STRING UINT STRING -
UINT_TO_LREAL UINT LREAL -
UINT_TO_DATE UINT DATE -

UDINT_TO_*** UDINT_TO_SINT UDINT SINT -
UDINT_TO_INT UDINT INT -
UDINT_TO_DINT UDINT DINT -
UDINT_TO_LINT UDINT LINT -
UDINT_TO_USINT UDINT USINT -
UDINT_TO_UINT UDINT UINT -
UDINT_TO_ULINT UDINT ULINT -
UDINT_TO_BOOL UDINT BOOL -
UDINT_TO_BYTE UDINT BYTE -
UDINT_TO_WORD UDINT WORD -
UDINT_TO_DWORD UDINT DWORD -
UDINT_TO_LWORD UDINT LWORD -
UDINT_TO_REAL UDINT REAL -
UDINT_TO_LREAL UDINT LREAL -
UDINT_TO_TOD UDINT TOD -
UDINT_TO_TIME UDINT TIME -
UDINT_TO_STRING UDINT STRING -

ULINT_TO_*** ULINT_TO_SINT ULINT SINT -
ULINT_TO_INT ULINT INT -
ULINT_TO_DINT ULINT DINT -
ULINT_TO_LINT ULINT LINT -
ULINT_TO_USINT ULINT USINT -
ULINT_TO_UINT ULINT UINT -
ULINT_TO_UDINT ULINT UDINT -
ULINT_TO_BOOL ULINT BOOL -
ULINT_TO_BYTE ULINT BYTE -
ULINT_TO_WORD ULINT WORD -
ULINT_TO_DWORD ULINT DWORD -
ULINT_TO_LWORD ULINT LWORD -
ULINT_TO_REAL ULINT REAL -

Chapter 6. Function and Function Block

6-5

Function Group Function Input data type Output data type Remarks

ULINT_TO_LREAL ULINT LREAL -
ULINT_TO_STRING ULINT STRING -

BOOL_TO_*** BOOL_TO_SINT BOOL SINT -
BOOL_TO_INT BOOL INT -
BOOL_TO_DINT BOOL DINT -
BOOL_TO_LINT BOOL LINT -
BOOL_TO_USINT BOOL USINT -
BOOL_TO_UINT BOOL UINT -
BOOL_TO_UDINT BOOL UDINT -
BOOL_TO_ULINT BOOL ULINT -
BOOL_TO_BYTE BOOL BYTE -

BOOL_TO_*** BOOL_TO_WORD BOOL WORD -
BOOL_TO_DWORD BOOL DWORD -
BOOL_TO_LWORD BOOL LWORD -
BOOL_TO_STRING BOOL STRING -

BYTE_TO_*** BYTE_TO_SINT BYTE SINT -
BYTE_TO_INT BYTE INT -
BYTE_TO_DINT BYTE DINT -
BYTE_TO_LINT BYTE LINT -
BYTE_TO_USINT BYTE USINT -
BYTE_TO_UINT BYTE UINT -
BYTE_TO_UDINT BYTE UDINT -
BYTE_TO_ULINT BYTE ULINT -
BYTE_TO_BOOL BYTE BOOL -
BYTE_TO_WORD BYTE WORD -
BYTE_TO_DWORD BYTE DWORD -
BYTE_TO_LWORD BYTE LWORD -
BYTE_TO_STRING BYTE STRING -

WORD_TO_*** WORD_TO_SINT WORD SINT -
WORD_TO_INT WORD INT -
WORD_TO_DINT WORD DINT -
WORD_TO_LINT WORD LINT -
WORD_TO_USINT WORD USINT -
WORD_TO_UINT WORD UINT -
WORD_TO_UDINT WORD UDINT -
WORD_TO_ULINT WORD ULINT -
WORD_TO_BOOL WORD BOOL -
WORD_TO_BYTE WORD BYTE -
WORD_TO_DWORD WORD DWORD -
WORD_TO_LWORD WORD LWORD -
WORD_TO_DATE WORD DATE -
WORD_TO_STRING WORD STRING -

DWORD_TO_*** DWORD_TO_SINT DWORD SINT -
DWORD_TO_INT DWORD INT -

Chapter 6. Function and Function Block

6-6

Function Group Function Input data type Output data type Remarks

DWORD_TO_DINT DWORD DINT -
DWORD_TO_LINT DWORD LINT -
DWORD_TO_USINT DWORD USINT -
DWORD_TO_UINT DWORD UINT -
DWORD_TO_UDINT DWORD UDINT -
DWORD_TO_ULINT DWORD ULINT -
DWORD_TO_BOOL DWORD BOOL -
DWORD_TO_BYTE DWORD BYTE -
DWORD_TO_WORD DWORD WORD -
DWORD_TO_LWORD DWORD LWORD -
DWORD_TO_REAL DWORD REAL -
DWORD_TO_TIME DWORD TIME -
DWORD_TO_TOD DWORD TOD -

DWORD_TO_*** DWORD_TO_STRING DWORD STRING -
LWORD_TO_*** LWORD_TO_SINT LWORD SINT -

LWORD_TO_INT LWORD INT -
LWORD_TO_DINT LWORD DINT -
LWORD_TO_LINT LWORD LINT -
LWORD_TO_USINT LWORD USINT -
LWORD_TO_UINT LWORD UINT -
LWORD_TO_UDINT LWORD UDINT -
LWORD_TO_ULINT LWORD ULINT -
LWORD_TO_BOOL LWORD BOOL -
LWORD_TO_BYTE LWORD BYTE -
LWORD_TO_WORD LWORD WORD -
LWORD_TO_DWORD LWORD DWORD -
LWORD_TO_LREAL LWORD LREAL -
LWORD_TO_DT LWORD DT -
LWORD_TO_STRING LWORD STRING -

STRING_TO_*** STRING _TO_SINT STRING SINT -
STRING _TO_INT STRING INT -
STRING _TO_DINT STRING DINT -
STRING _TO_LINT STRING LINT -
STRING _TO_USINT STRING USINT -
STRING _TO_UINT STRING UINT -
STRING _TO_UDINT STRING UDINT -
STRING _TO_ULINT STRING ULINT -
STRING _TO_BOOL STRING BOOL -
STRING _TO_BYTE STRING BYTE -
STRING _TO_WORD STRING WORD -
STRING _TO_DWORD STRING DWORD -
STRING _TO_LWORD STRING LWORD -
STRING _TO_REAL STRING REAL -
STRING _TO_LREAL STRING LREAL -

Chapter 6. Function and Function Block

6-7

Function Group Function Input data type Output data type Remarks

STRING _TO_DT STRING DT -
STRING _TO_DATE STRING DATE -
STRING _TO_TOD STRING TOD -
STRING _TO_TIME STRING TIME -

TIME_TO_*** TIME_TO_UDINT TIME UDINT -
TIME_TO_DWORD TIME DWORD -
TIME_TO_STRING TIME STRING -

DATE_TO_*** DATE_TO_UINT DATE UINT -
DATE_TO_WORD DATE WORD -
DATE_TO_STRING DATE STRING -

TOD_TO_*** TOD_TO_UDINT TOD UDINT -

TOD_TO_DWORD TOD DWORD -

TOD_TO_STRING TOD STRING -

DT_TO_*** DT_TO_LWORD DT LWORD -

DT_TO_DATE DT DATE -

DT_TO_TOD DT TOD -

DT_TO_STRING DT STRING -

***_TO_BCD SINT_TO_BCD_BYTE SINT BYTE (BCD) -
INT_TO_BCD_WORD INT WORD (BCD) -

DINT_TO_BCD_DWORD DINT
DWORD

(BCD)
-

LINT_TO_BCD_LWORD LINT
LWORD
(BCD)

-

USINT_TO_BCD_BYTE USINT BYTE (BCD) -
UINT_TO_BCD_WORD UINT WORD (BCD) -

UDINT_TO_BCD_DWORD UDINT
DWORD
(BCD)

-

ULINT_TO_BCD_LWORD ULINT
LWORD
(BCD)

-

6.1.2 Numerical operation function

1) Numerical operation function with one Input
No. Function Function Remarks

General Function
1 ABS Absolute value operation -
2 SQRT Square root operation -

Logarithm
3 LN Natural logarithm operation -
4 LOG Common logarithm Base to 10 operation -
5 EXP Natural exponential operation -

Chapter 6. Function and Function Block

6-8

Trigonometric function
6 SIN Sine operation -
7 COS Cosine operation -
8 TAN Tangent operation -
9 ASIN Arc sine operation -
10 ACOS Arc Cosine operation -
11 ATAN Arc Tangent operation -

Angle function
12 RAD_REAL

Convert degree into radian
-
 13 RAD_LREAL

14 DEG_REAL
Convert radian into degree

-
 15 DEG_LREAL

2) Basic arithmetic function

6.1.3 Bit array function

1) Bit-shift function

No. Function Description Remarks
Operation function whose input number (n) can be extended up to 8.

1 ADD Addition (OUT <= IN1 + IN2 + ... + INn) -
2 MUL Multiplication (OUT <= IN1 * IN2 * ... * INn) -

Operation function of which input number is fixed.
3 SUB Subtraction (OUT <= IN1 - IN2) -
4 DIV Division (OUT <= IN1 / IN2) -
5 MOD Calculate remainder (OUT <= IN1 Modulo IN2) -
6 EXPT Exponential operation (OUT <= IN1IN2) -
7 MOVE Copy data (OUT <= IN) -

Input data exchange
8 XCHG_*** Exchanges two input data -

No. Function Description Remarks

1 SHL Shift input to the left of N bit(the right is filled with 0) -

2 SHR Shift input to the right of N bit (the left is filled with 0) -

3 SHIFT_C_*** Shift input to the configured direction as much as N bit (carry) -

4 ROL Rotate input to the left of N bit -

5 ROR Rotate input to the right of N bit -

6 ROTATE_C_*** Rotate input to the direction as much as N bit (carry) -

Chapter 6. Function and Function Block

6-9

2) Bit operation function

No. Function Description (n can be extended up to 8) Remarks

1 AND Logical AND (OUT <= IN1 AND IN2 AND ... AND INn) -

2 OR Logical OR (OUT <= IN1 OR IN2 OR ... OR INn) -

3 XOR Exclusive OR (OUT <= IN1 XOR IN2 XOR ... XOR INn) -

4 NOT Reverse logic (OUT <= NOT IN1) -

5 XNR Exclusive logic AND (OUT <= IN1 XNR IN2 XNR ... XNR INn) -

6.1.4 Selection function

No. Function Description(n can be extended up to 8) Remarks

1 SEL Selects from two inputs (IN0 or IN1) -

2 MAX Produces the maximum value among input IN1,...INn -

3 MIN Produces the minimum value among input IN1,...INn -

4 LIMIT Limits upper and lower boundaries -

5 MUX Outputs the Kth input among input IN1,…INn -

6.1.5 Data exchange function

No. Function Description Remarks

1 SWAP_BYTE Swaps upper NIBBLE for lower NIBBLE data of BYTE. -

SWAP_WORD Swaps upper BYTE for lower BYTE data of WORD. -

SWAP_DWORD Swaps upper WORD for lower WORD data DWORD. -

SWAP_LWORD Swaps upper DWORD for lower DWORD data of LWORD. -

2 ARY_SWAP_BYTE Swaps upper/lower NIBBLE of BYTE elements in array. -

ARY_SWAP_WORD Swaps upper/lower BYTE of WORD elements in array. -

ARY_SWAP_DWORD Swaps upper/lower WORD of DWORD elements in array. -

ARY_SWAP_LWORD Swaps upper/lower DWORD of LWORD elements in array. -

6.1.6 Comparison function

No. Function Description (n can be extended up to 8) Remarks

1
GT

‘Greater than’ comparison

OUT <= (IN1>IN2) & (IN2>IN3) & ... & (INn-1 > INn)
-

2
GE

‘Greater than or equal to’ comparison

OUT <= (IN1>=IN2) & (IN2>=IN3) & ... & (INn-1 >= INn)
-

3 EQ ‘Equal to’ comparison -

Chapter 6. Function and Function Block

6-10

OUT <= (IN1=IN2) & (IN2=IN3) & ... & (INn-1 = INn)

4
LE

'Less than or equal to' comparison

OUT <= (IN1<=IN2) & (IN2<=IN3) & ... & (INn-1 <= INn)
-

5
LT

‘Less than’ comparison

OUT <= (IN1<IN2) & (IN2<IN3) & ... & (INn-1 < INn)
-

6
NE

‘Not equal to’ comparison

OUT <= (IN1<>IN2) & (IN2<>IN3) & ... & (INn-1 <> INn)
-

6.1.7 Character string function

No. Function Description Remarks

1 LEN Find a length of a character string -

2 LEFT Take a left side of a string (size of L) and output it -

3 RIGHT Take a right side of a string (size of L) and output it -

4 MID Take a middle side of a string (size of L from the Pth character) -

5 CONCAT Concatenate the input character string in order -

6 INSERT Insert the second string after the Pth character of the first string -

7 DELETE Delete a string (size of L from the Pth character) -

8 REPLACE Replace a size of L from the Pth character of the first string by the

second string
-

9 FIND Find a starting point of the first string which has a same pattern

of the second string.
-

6.1.8 Date and time of day function

No. Function Description Remarks

1 ADD_TIME Add time (time/time of day/date and time addition) -

2 SUB_TIME Subtract time (time/time of day/date and time subtraction) -

SUB_DATE Calculate time by subtracting date from date -

SUB_TOD Calculate time by subtracting TOD from TOD -

SUB_DT Calculate time by subtracting DT from DT -

3 MUL_TIME Multiply number to time -

4 DIV_TIME Divide time by number -

5 CONCAT_TIME Concatenate date to make TOD -

Chapter 6. Function and Function Block

6-11

6.1.9 System control function

No. Function Description Remarks

1 DI Invalidates interrupt (not to permit task program to start) -

2 EI Permits running for a task program -

3 STOP Stop running by a task program -

4 ESTOP Emergency running stop by a program -

5 DIREC_IN Update input data -

6 DIREC_O Updates output data -

7 WDT_RST Initialize a timer of watchdog -

8 MCS Master Control -

9 MCSCLR Master Control Clear -

10 FALS Self check(error display) -

11 OUTOFF Output off -

6.1.10 File function

No. Function Description Remarks

1 RSET Setting file register block number -

2 EBCMP Block comparison -

3 EMOV Reading data from the preset flash area -

4 EERRST Flash memory related error flag clear -

6.1.11 Data manipulation function

No. Function Description Remarks

1 MEQ_*** Compare whether two inputs are equal after masking -

2 DIS_*** Data distribution -

3 UNI_*** Unite data -

4 BIT_BYTE Combine 8 bits into one BYTE -

5 BYTE_BIT Divide one BYTE into 8 bits -

6 BYTE_WORD Combine two bytes into one WORD -

7 WORD_BYTE Divide one WORD into two bytes -

8 WORD_DWORD Combine two WORD data into DWORD -

9 DWORD_WORD Divide DWORD into 2 WORD data -

Chapter 6. Function and Function Block

6-12

10 DWORD_LWORD Combine two DWORD data into LWORD -

11 LWORD_DWORD Divide LWORD into two DWORD data -

12 GET_CHAR Get one character from a character string -

13 PUT_CHAR Puts a character in a string -

14 STRING_BYTE Convert a string into a byte array -

15 BYTE_STRING Convert a byte array into a string -

6.1.12 Stack operation function

No. Function Description Remarks

1 FIFO_*** First In First Out -

2 LIFO_*** Last In First Out -

6.2 MK (MASTER-K) function

No. Function Description(n can be extended up to 8) Remarks

1 ENCO_B,W,D,L Output a position of on bit by number -

2 DECO_B,W,D,L Turn a selected bit on -

3 BSUM_B,W,D,L Output a number of on bit -

4 SEG_WORD Convert BCD/HEX into 7-segment code -

5 BMOV_B,W,D,L Move part of a bit string -

6 INC_B,W,D,L Increase IN data -

7 DEC_B,W,D,L Decrease IN data -

6.3 Array operation function

No. Function Description Remarks

1 ARY_MOVE Copy array-typed data (OUT <= IN) -

2 ARY_CMP_*** Array comparison -

3 ARY_SCH_*** Array search -

4 ARY_FLL_*** Filling an array with data -

5 ARY_AVE_*** Find an average of an array -

6 ARY_SFT_C_*** Array bit shift left with carry -

7 ARY_ROT_C_*** Bit rotation of array with carry -

8 SHIFT_A_*** Shift array elements -

Chapter 6. Function and Function Block

6-13

9 ROTATE_A_*** Rotates array elements -

10 ARY_CMP_EQ Equivalent comparison of the two Array Elements -

11 ARY_CMP_NE Not equal comparison of the two Array Elements -

6.4 Basic function block

6.4.1 Bistable function block

No. Function Block Description Remarks

1 SR Set preference bistable -

2 RS Reset preference bistable -

3 SEMA Semaphore -

6.4.2 - detection function block

No. Function Block Description Remarks

1 R_TRIG Rising - detector -

2 F_TRIG Falling - detector -

3 FF Reverse output if input condition rises -

6.4.3 Counter

No. Function Block Description Remarks

1 CTU_*** Up Counter

INT,DINT,LINT,UINT,UDINT,ULINT

-

2 CTD_*** Down Counter

INT,DINT,LINT,UINT,UDINT,ULINT

-

3 CTUD_*** Up Down Counter

INT,DINT,LINT,UINT,UDINT,ULINT

-

4 CTR Ring Counter -

6.4.4 Timer

No. Function Block Description Remarks

1 TP Pulse Timer -

2 TON On-Delay Timer -

Chapter 6. Function and Function Block

6-14

3 TOF Off-Delay Timer -

4 TMR Integrating Timer -

5 TP_RST TP with reset -

6 TRTG Retriggerable Timer -

7 TOF_RST TOF with reset -

8 TON_UINT TON with integer setting -

9 TOF_UINT TOF with integer setting -

10 TP_UINT TP with integer setting -

11 TMR_UINT TMR with integer setting -

12 TMR_FLK Blink timer -

13 TRTG_UINT Integer setting retriggerable timer -

6.4.5 File function block

No. Function Block Description Remarks

1 EBREAD Read R area data from flash area -

1 EBWRITE Write R area data to flash area -

6.4.6 Other function block

No. Function Block Description Remarks

1 SCON Step Controller -

2 DUTY Scan setting on/off -

3 RTC_SET Write time data -

4 SPA Solar Position Algorithm

6.4.7 Communication function block

No. Function Block Description Remarks

1 P2PSN Station no. setting -

2 P2PRD Read area setting -

3 P2PWR Write area setting -

4 SEND_UDATA User defined data send -

5 RCV_UDATA User defined data receive -

6 SEND_DTR Communication ready signal send -

7 SEND_RTS State signal of receive buffer send -

8 GET_IP Read local ethernet information -

9 SET_IP Local ethernet information setting -

Chapter 6. Function and Function Block

6-15

6.4.8 Special function block

No. Function Block Description Remarks

1 GET Read special module data -

2 PUT Write special module data -

3 ARY_GET Read special module data(array) -

4 ARY_PUT Write special module data(array) -

5 GETE Read special module data(Access upper word) -

6 PUTE Write special module data(Access upper word) -

7 ARY_GETE Read special module data(array, Access upper word) -

8 ARY_PUTE Write special module data(array, Access upper word) -

6.4.9 Motion control function block

No. Function Block Description Remarks

1 GETM Read motion control module data -

2 PUTM Write motion control module data -

3 ARY_GETM Read motion control module data(array) -

4 ARY_PUTM Write motion control module data(array) -

6.4.10 Positioning function block (APM)

No. Function Block Description Remarks

1 APM_ORG Return to original point -

2 APM_FLT Floating original point setting -

3 APM_DST Direct run -

4 APM_IST Indirect run -

5 APM_LIN Linear interpolation run -

6 APM_CIN Circular interpolation run -

7 APM_SST Simultaneous run -

8 APM_VTP Speed/position control conversion -

9 APM_PTV Position/speed control conversion -

10 APM_STP Decelerating stop -

11 APM_SKP Skip run -

12 APM_SSP Position synchronization -

13 APM_SSS Speed synchronization -

14 APM_SSSP Positioning speed synchronization

Chapter 6. Function and Function Block

6-16

No. Function Block Description Remarks

15 APM_POR Position override -

16 APM_SOR Speed override -

17 APM_PSO Positioning speed override -

18 APM_NMV Continuous run -

19 APM_INC Inching run -

20 APM_RTP Return run to the previous position of manual operation -

21 APM_SNS Run step no. change -

22 APM_SRS Repeat step no. change -

23 APM_MOF M code cancel -

24 APM_PRS Present position preset -

25 APM_ZONE Zone output allowed/prohibited -

26 APM_EPRE Encoder value preset -

27 APM_TEA Singular teaching(ROM, RAM) -

28 APM_ATEA Plural teaching(ROM, RAM) -

29 APM_SBP Basic parameter setting -

30 APM_SEP Extension parameter setting -

31 APM_SHP Original point return parameter setting -

32 APM_SMP Manual operation parameter setting -

33 APM_SIP Input signal parameter setting -

34 APM_SCP Common parameter setting -

35 APM_SMD Operation data setting -

36 APM_EMG Emergency stop -

37 APM_RST Error reset/output prohibition cancel -

38 APM_PST Point run -

39 APM_WRT Saving parameter/run data -

40 APM_CRD Reading run info -

41 APM_SRD Reading run info -

42 APM_ENCRD Reading encoder value -

43 APM_JOG Jog run -

44 APM_MPG Manual pulse generator(MPG) run -

45 APM_RCP Repeating current position section

46 APM_VRD Read Variable Data -

47 APM_VWR Write Variable Data -

48 APM_VTPP Positioning speed/position conversion control -

Chapter 6. Function and Function Block

6-17

6.4.11 Positioning function block (XPM)

No. Function Block Description Remarks

1 XPM_ORG Return to original point -

2 XPM_FLT Floating original point setting -

3 XPM_DST Direct run -

4 XPM_IST Indirect run -

5 XPM_SST Simultaneous run -

6 XPM_VTP Speed/position control conversion -

7 XPM_VTPP Position specified speed/position control conversion

8 XPM_PTV Position/speed control conversion -

9 XPM_PTT Position/torque control conversion XGF-PN8A/B

10 XPM_STP Decelerating stop -

11 XPM_SKP Skip run -

12 XPM_SSP Position synchronization -

13 XPM_SSS Speed synchronization -

14 XPM_SSSP Position specified speed synchronization

15 XPM_POR Position override -

16 XPM_SOR Speed override -

B

17
XPM_PSO Positioning speed override

-

18 XPM_NMV Continuous run -

19 XPM_INC Inching run -

20 XPM_RTP Return run to the previous position of manual operation -

21 XPM_SNS Run step no. change -

22 XPM_SRS Repeat step no. change -

23 XPM_MOF M code cancel -

24 XPM_PRS Present position preset -

25 XPM_EPRE Encoder value preset -

26 XPM_ATEA Plural teaching(ROM, RAM) -

27 XPM_SBP Basic parameter setting -

28 XPM_SEP Extension parameter setting -

29 XPM_SHP Original point return parameter setting XPM

30 XPM_SMP Manual operation parameter setting -

Chapter 6. Function and Function Block

6-18

No. Function Block Description Remarks

31 XPM_SIP Input signal parameter setting XPM

32 XPM_SCP Common parameter setting -

33 XPM_SMD Operation data setting -

34 XPM_EMG Emergency stop -

35 XPM_RST Error reset/output prohibition cancel -

36 XPM_HRST Error history reset

37 XPM_PST Point run -

38 XPM_WRT Saving parameter/run data -

39 XPM_CRD Reading operation information -

40 XPM_SRD Reading operation state -

41 XPM_ENCRD Reading encoder value -

42 XPM_SVERD Reading servo error information XGF-PN8A/B

43 XPM_JOG Jog run -

44 XPM_CAM CAM run -

45 XPM_CAMD Main axis option de specified CAM run -

46 XPM_ELIN Ellipse interpolation -

47 XPM_VRD Read variable data -

48 XPM_VWR Write variable data -

49 XPM_ECON Connect servo communication XGF-PN8A/B

50 XPM_DCON Disconnect servo communication XGF-PN8A/B

51 XPM_SVON Servo on XGF-PN8A/B

52 XPM_SVOFF Servo off XGF-PN8A/B

53 XPM_SRST Reset servo error XGF-PN8A/B

54 XPM_SHRST Reset servo error history XGF-PN8A/B

55 XPM_RSTR Restart -

56 XPM_POE Setting position output allowed / prohibited XPM

57 XPM_TRQ Torque control XGF-PN8A/B

58 XPM_SVIRD Servo external input information read XGF-PN8B

59 XPM_SVPRD Servo parameter read XGF-PN8B

60 XPM_SVPWR Servo parameter write XGF-PN8B

61 XPM_SVSAVE Servo parameter save XGF-PN8B

62 XPM_PTT Position/torque switching control XGF-PN8A/B

Chapter 6. Function and Function Block

6-19

No. Function Block Description Remarks

63 XPM_LRD Latch position data read XGF-PN8A/B

64 XPM_LCLR Latch reset XGF-PN8A/B

65 XPM_LSET Latch set XGF-PN8B

66 XPM_STC Torque synchronization XGF-PN8A/B

67 XPM_PHASING Phase Compensation XGF-PN8A/B

68 XPM_SSSD 32bit Speed Synchronization XGF-PN8A/B

69 XPM_SSSPD 32bit Speed Synchronization with Position XGF-PN8A/B

70 XPM_SETOVR Velocity/Acceration/Decceleration Override XGF-PN8A/B

71 XPM_CAMA Absolute Position CAM Run XGF-PN8A/B

6.5 Expanded function

No. Function Block Description Remarks

1 FOR
Repeat a block of FOR ~ NEXT n times

-

2 NEXT -

3 BREAK Escape a block of FOR ~ NEXT -

4 CALL Call a SBRT routine -

5 SBRT Assign a routine to be called by the CALL function -

6 RET RETURN -

7 JMP Jump to a place of LABLE -

8 INIT_DONE Terminate an initial task -

9 END Terminate a program -

6.6 Motion Function Block

NO. Function Block Description Remarks
Single Axis Motion Command

1 MC_Power Servo On/Off -
2 MC_Home Perform the search home -
3 MC_Stop Stop immediately -
4 MC_Halt Stop -
5 MC_MoveAbsolute Absolute positioning operation -
6 MC_MoveRelative Relative positioning operation -
7 MC_MoveAdditive Additive positioning operation -
8 MC_MoveVelocity Specified velocity operation -

9 MC_MoveContinuousAbsolute
Absolute position operation ending with specified velocity
operation

-

Chapter 6. Function and Function Block

6-20

NO. Function Block Description Remarks

10 MC_MoveContinuousRelative
Relative position operation ending with specified velocity
operation

-

11 MC_TorqueControl Torque control -
12 MC_SetPosition Setting the current position -
13 MC_SetOverride Velocity/Acceleration override -
14 MC_ReadParameter Read Parameter -
15 MC_WriteParameter Write Parameter -
16 MC_Reset Reset axis error -
17 MC_TouchProbe Touch probe -
18 MC_AbortTrigger Abort trigger events -
19 MC_MoveSuperImposed SuperImposed operation -
20 MC_HaltSuperImposed SuperImposed operation halt -

Multiple Axes Motion Command
21 MC_CamIn Camming run -
22 MC_CamOut Camming stop -
23 MC_GearIn Electrical gearing run -
24 MC_GearOut Electrical gearing disengage -
25 MC_GearInPos Electrical gearing by specifying the position -
26 MC_Phasing Phase compensation -

Group Motion Command
27 MC_AddAxisToGroup Adds one axis to a group in a structure AxesGroup -
28 MC_RemoveAxisFromGroup Removes one axis to a group in a structure AxesGroup -
29 MC_UngroupAllAxes Removes all axes from the group AxesGroup -

30 MC_GroupEnable
Changes the state for a group from GroupDisabled to
GroupEnable

-

31 MC_GroupDisable Changes the state for a group to GroupDisabled -
32 MC_GroupHome The AxesGroup to perform the search home sequence -
33 MC_GroupSetPosition Sets the Position of all axes in a group without moving -
34 MC_GroupStop Stop a Group immediately -
35 MC_GroupHalt Stop a Group -
36 MC_GroupReset Reset a group error -
37 MC_MoveLinearAbsolute Absolute positioning linear interpolation operation -
38 MC_MoveLinearRelative Relative positioning linear interpolation operation -
39 MC_MoveCircularAbsolute Absolute positioning circular interpolation operation -
40 MC_MoveCircularRelative Relative positioning circular interpolation operation -
41 LS_Connect Connect servo drives -
42 LS_Disconnect Disconnect servo drives -
43 LS_ReadSDO Read SDO -
44 LS_WriteSDO Write SDO -
45 LS_SaveSDO Save SDO -
46 LS_EncoderPreset Encoder preset -
47 LS_Jog JOG operation -
48 LS_ReadCamData Read CAM data -
49 LS_WriteCamData Write CAM data -

Chapter 6. Function and Function Block

6-21

NO. Function Block Description Remarks
50 LS_ReadEsc Read ESC -
51 LS_WriteEsc Write ESC -
52 LS_CamSkip Skip CAM -
53 LS_VarCamIn Variable CAM operation -
54 LS_VarGearIn Variable gear operation -
55 LS_VarGearInPos Variable positioning gear operation -
56 LS_ReadCAM tableSlavePos Read the slave location of the CAM table -
57 LS_InverterWriteVel Write inverter speed -
58 LS_InverterReadVel Read inverter speed -
59 LS_InverterControl Write inverter control word -
60 LS_InverterStatus1 Read inverter status 1 -
61 LS_InverterStatus2 Read inverter status 1 -
62 LS_SyncMoveVelocity Speed control operation (csv mode) -
63 LS_ReadCamTableMasterPos Read the Master Location of the CAM table -
64 LS_OnOffCam Switch CAM table for on, off or skip operation -
65 LS_RotaryKnifeCamGen Generate rotary cutter CAM profile -
66 LS_CrossSealCamGen Generate cross sealer CAM profile -
67 LS_OnOffCamEx Extended Switch CAM table for on, off or skip operation

Coordinate System Command
68 MC_SetKinTransform Machine information setting -
69 MC_SetCartesianTransform PCS setting -
70 LS_SetWorkSpace Work space setting -

71 LS_MoveLinearTimeAbsolute
Time- linear interpolation operation for abolute position of
coordinate system

-

72 LS_MoveLinearTimeRelative
Time- linear interpolation operation for relative position of
coordinate system

-

73 MC_MoveCircularAbsolute2D
Circular interpolation operation for absolute position of
coordinate system

-

74 MC_MoveCircularRelative2D
Circular interpolation operation for relative position of
coordinate system

-

75 MC_TrackConveyorBelt Synchronization setting of the conveyor belt -
76 MC_TrackRotary table Synchronization setting of the rotary table -
77 LS_RobotJOG JOG operation of the coordinate system -
78 LS_SetMovePath Set path operation data -
79 LS_ResetMovePath Delete path operation data -
80 LS_GetMovePath Read path operation data -
81 LS_RunMovePath Perform path operation -

NC Control Commands
82 NC_LoadProgram Specify NC program -
83 NC_BlockControl Specify Block operation -
84 NC_Reset reset -
85 NC_Emergency Emergency stop -
86 NC_CycleStart Start automatic operation -
87 NC_FeedHold Feed Hold -

Chapter 6. Function and Function Block

6-22

NO. Function Block Description Remarks
88 NC_Home Homing -
89 NC_RapidTraverseOverride Rapid traverse override -
90 NC_CuttingFeedOverride Cutting feed override -
91 NC_SpindleOverride Spindle override -
92 NC_M codeComplete M Code operation completed -
93 NC_ScodeComplete S Code operation completed -
94 NC_TcodeComplete T Code operation completed -
95 NC_ReadParameter Read NC parameters -
96 NC_WriteParameter Write NC parameters -
97 NC_RetraceMove Reverse operation
98 NC_BlockSkip Block skip
99 NC_DryRun Dry run
100 NC_ToolMode Tool escape/return operation
101 NC_ReadToolMode Check tool operation mode
102 NC_MirrorImage Mirror image
103 NC_SpindleControl Spindle operation control
104 NC_BlockOptionalSkip Optional block skip
105 NC_ManualToolComp Adjust amount manually
106 NC_ChgSpindleGear Gear selection signal

File Commands
107 FILE_OPEN Open file in SD memory card
108 FILE_CLOSE Close file in SD memory card
109 FILE_WRITE Write files to SD memory card
110 FILE_READ Reading files in SD memory card
111 FILE_SEEK Move SD memory card inside

Others
112 PID PID Operation -
113 LINAC Linear Acceration Command 1 -
114 SLINAC Linear Acceration Command 2 -

Chapter 7. Basic Functions

7-1

Chapter 7. Basic Functions

1. This chapter describes basic functions.
2. Before using basic functions it is recommended to understand 3.4.1 Function and to apply to function library on a

program for easy writing a program.

Chapter 7. Basic Functions

7-2

1.1. ABS

ABS
Absolute value operation

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

ANY_NUM

ABS

ENOEN

IN OUT

BOOLBOOL

ANY_NUM

Input EN: executes the function in case of 1

 IN: input value of absolute value operation

 Output ENO: 1

 OUT: absolute value

 IN, OUT should be the same data type.

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
OUT ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

■ Function

(1) Output the absolute value of IN as ‘OUT’.
OUT = IN

(2) X’s absolute value, │X│;
A. If X≥0, │X│= X,
B. If X＜0, │X│= -X.

■ Flag

Flag Description

_ERR If IN value is (-)min value, _ERR and _LER flags are set.
ex) if data type is SINT and IN and value is -128, an error is activated.

Chapter 7. Basic Functions

7-3

■ Program Example

1. LD

EN

IN

ENO

OUT

ABS

Value ABS_Value

%IX0.0.0

2. ST

ABS_Value := ABS(EN:=%IX0.0.0, IN:=Value);

(1) If the transition condition (%IX0.0.0) is on, ABS function executes.
(2) If VALUE = -7, ABS_VALUE = -7 = 7.

If VALUE = 200, ABS_VALUE = 200 = 200.
(3) The negative number of INT type is represented as the 2's compliment form (refer to 3.2.4. Data type structure)

Chapter 7. Basic Functions

7-4

1.2. ACOS

ACOS
Arc Cosine operation

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1

 IN: input value of Arc Cosine operation

 Output ENO: outputs EN value as it is

 OUT: Arc Cosine (radian)

 IN, OUT must be the same data type.

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○
OUT ○ ○

■ Function

 It converts input IN into its Arc Cosine value and produces output OUT. The output range is between 0 and .

 OUT = ACOS (IN)

■ Flag

Flag Description

_ERR Unless an IN value is between -1.0 and 1.0, _ERR, _LER flags are set.

Chapter 7. Basic Functions

7-5

■ Program Example

1) LD

EN

IN

ENO

OUT

ACOS

INPUT

%IX0.1.3

RESULT

 2) ST

RESULT := ACOS(EN:=%IX0.1.3, IN:=INPUT);

(1) If the transition condition (%IX0.1.3) is on, Arc Cosine operation function, ACOS executes

(2) If INPUT is 0.8660... (3 / 2), RESULT will be 0.5235... (/6 rad = 30).

Chapter 7. Basic Functions

7-6

1.3. ADD

ADD
Addition

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1

 IN1: value to be add

 IN2: value to add

 Input variable number can be extended up to 8

 Output ENO: without an error, it is 1

 OUT: added value

 IN1, IN2, ..., OUT must be the same data type.

ANY type variable

Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN1 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
IN2 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

OUT ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

■ Function

1. It adds input variables up (IN1, IN2, ..., and INn, n: number of inputs) and produces output ,OUT.

 OUT = IN1 + IN2 + ... + INn

■ Flag

Flag Description

_ERR When the output value is out of its data type, _ERR, _LER flags are set.

☆ If REAL (or LREAL) type operation exceeds the max. or min. value of REAL (or LREAL) in the middle of operation

because it performs operation sequentially from IN1 to IN8, _ERR, _LER flag are set and the result is unlimited or

abnormal value.

(1.#INF000000000000e+000, 1.#SNAN00000000000e+000, 1.#QNAN00000000000e+000).

Chapter 7. Basic Functions

7-7

■ Program Example

1) LD

 2) ST

OUT_VAL := ADD(EN:=%MX0, IN1:= VALUE1, IN2:= VALUE2, IN3:= VALUE3);

(1) If the transition condition (%MX0) is on, ADD function executes
(2) If input variable VALUE1 = 300, VALUE2 = 200, and VALUE3 = 100, output variable OUT_VAL = 300 + 200 + 100

= 600

Chapter 7. Basic Functions

7-8

1.4. ADD_TIME

ADD_TIME
Time addition

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1

 IN1: reference time, time of date

 IN2: time to add

 Output ENO: without an error, it is 1

 OUT: added result of TOD or time

 IN1, IN2, and OUT must be of the same data type:

If IN1 type is TIME_OF_DAY, OUT type is

 also TIME_OF_DAY.

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN1 ○ ○ ○
OUT ○ ○ ○

■ Function

1) If IN1 is TIME, added TIME is an output.
2) IN1 is TIME_OF_DAY, it adds TIME to reference TIME_OF_DAY and produces output TIME_OF_DAY.
3) If IN1 is DATE_AND_TIME, the output data type is DT (Date and Time of Day) adding the time to the standard date

and time of day.

■ Flag

Flag Description

_ERR

If an output value is out of range of related data type, _ERR, _LER flag are set. An error occurs:

1) When the result of adding the time and the time is out of range of TIME data type :

T#49D17H2M47S295MS

2) The result of adding TOD (Time of Day) and the time exceeds 24h;

3) The result of adding the date and DT (Date and the Time of Day) exceeds the year, 2163.

Chapter 7. Basic Functions

7-9

■ Program Example
1) LD

 2) ST

END_TIME := ADD_TIME(EN:= %IX0.1.0, IN1:= START_TIME, IN2:= WORK_TIME);

(1) If the transition condition (%IX0.1.0) is on, ADD_TIME function is executes.
(2) If START_TIME is TOD#08:30:00 and WORK_TIME is T#2H10M20S500MS, END_TIME is TOD#10:40:20.5.

Chapter 7. Basic Functions

7-10

1.5. AND

AND
Logical AND (Logical multiplication)

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: executes the function in case of 1

 IN1: input 1

 IN2: input 2

 Input variables can be extended up to 8.

 Output ENO: outputs EN value as it is

 OUT: AND result

 IN1, IN2, and OUT must be of the same data type.

ANY type variable

Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN1 ○ ○ ○ ○ ○
IN2 ○ ○ ○ ○ ○

OUT ○ ○ ○ ○ ○

■ Function

 It performs a logical AND operation on the input variables by bit and produces output ,OUT.

 IN1 1111 0000

 &

 IN2 1010 1010

 OUT 1010 0000

Chapter 7. Basic Functions

7-11

■ Program Example

1. LD

 2. ST

 ST doesn’t support AND.

 In case of AND2_BYTE

%QB0.0.0 := AND2_BYTE(EN:=%IX0.1.1, IN1:= %MB10, IN2:= ABC);

(1) If the transition condition (%IX0.1.1) is on, the AND function executes.
(2) If INI = %MB10 and IN2 = ABC, the result of AND is shown in OUT (%QB0.0.0).

Chapter 7. Basic Functions

7-12

1.6. ASIN

ASIN
Arc Sine operation

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

ANY_REAL

ASIN

ENOEN

IN OUT

BOOLBOOL

ANY_REAL

Input EN: executes the function in case of 1

 IN: input value of Arc Sine operation

 Output ENO: outputs EN value as it is

 OUT: radian output value after Arc Sine operation

 IN and OUT must be of the same data type.

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○
OUT ○ ○

■ Function

 It produces an output (Arc Sine value) of IN. The output value is between -/2 and /2.

 OUT = ASIN (IN)

■ Error

Flag Description

_ERR If an input value exceeds the range from -1.0 to 1.0, _ERR and _LER flags are set.

Chapter 7. Basic Functions

7-13

■ Program Example

1. LD

 2. ST

RESULT := ASIN(EN:=%IX0.1.3, IN1:= INPUT);

(1) If the transition condition (%IX0.1.3) is on, ASIN function executes.

(2) If INPUT variable is 0.8660.... (3 /2), the RESULT will be 1.0471.... (/3 radian = 60).

Chapter 7. Basic Functions

7-14

1.7. ATAN

ATAN
Arc Tangent operation

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: executes the function in case of 1

 IN: Input value of Arc Tangent operation

 Output ENO: outputs EN value as it is

 OUT: radian output value after Arc Tangent operation

 IN, OUT must be of the same data type.

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○
OUT ○ ○

■ Function

It produces an output (Arc Tangent value) of IN value. The output value is between -/2 and /2.

 OUT = ATAN (IN)

■ Program Example

 1. LD

 2. ST

RESULT := ATAN(EN:=%IX0.1.3, IN1:= INPUT);

(1) If the transition condition (%IX0.1.3) is on, ATAN function executes.

(2) If INPUT = 1.0, then output RESULT will be 0.7853... (π/4 rad = 45°).

Chapter 7. Basic Functions

7-15

1.8. BCD_TO_***

BCD_TO_***
Converts BCD data into an integer number

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

BOOL

BCD_TO_***

ENOEN

IN OUT

BOOL

*ANY_BIT ANY_INT

Input EN: executes the function in case of 1

 IN: ANY_BIT (BCD)

 Output ENO: outputs EN value as it is

 OUT: type-converted data

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○ ○ ○
OUT ○ ○ ○ ○ ○ ○ ○ ○

*ANY_BIT : exclude BOOL from ANY_BIT type.

■ Function

It converts input IN type and produces output ,OUT.

Function Input type Output type Description

BYTE_BCD_TO_SINT BYTE SINT

It converts BCD data into an output data type.

It coverts only when the input date type is a BCD

value.

If an input data type is WORD, only the part of its

data (0 ∼16#9999) is normally converted.

WORD_BCD_TO_INT WORD INT

DWORD_BCD_TO_DINT DWORD DINT

LWORD_BCD_TO_LINT LWORD LINT

BYTE_BCD_TO_USINT BYTE USINT

WORD_BCD_TO_UINT WORD UINT

DWORD_BCD_TO_UDINT DWORD UDINT

LWORD_BCD_TO_ULINT LWORD ULINT

Chapter 7. Basic Functions

7-16

■ Flag

Flag Description

_ERR If IN is not a BCD data type, then the output will be 0 and _ERR, _LER flags are set.

■ Program Example

 1. LD

 2. ST

 ST language doesn’t support BCD_TO_***

 In case of BYTE_BCD_TO_SINT

OUT_VAL := BYTE_BCD_TO_SINT(EN:=%MX0, IN:= BCD_VAL);

(1) If the transition condition (%MX0) is on, BCD_TO_*** function executes.
(2) If BCD_VAL (BYTE) = 16#22 (2#0010_ 0010), then the output variable OUT_VAL (SINT) = 22 (2#0001_ 0110).

0 0 1 0 0 0 1 0

0 0 0 1 0 1 1 0

INPUT (IN1) :BCD_VAL (BYTE) = 16#22

OUTPUT (OUT): OUT_VAL (SINT) = 22

(BCD_TO_SINT)

Chapter 7. Basic Functions

7-17

1.9. BOOL_TO_***

BOOL_TO_***
BOOL type conversion

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: executes the function in case of 1

 IN: bit to convert (1 bit)

 Output ENO: outputs EN value as it is

 OUT: type-converted data

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

OUT ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

*ANY_BIT: exclude BOOL from ANY_BIT type.

■ Function

It converts input IN type and produces output ,OUT.

Function Output type Description

 BOOL_TO_SINT SINT

 If the input value (BOOL) is 2#0, it produces the integer number ‘0’

and if it is 2#1, it produces the integer number ‘1’ according to the

output data type.

 BOOL_TO_INT INT

 BOOL_TO_DINT DINT

 BOOL_TO_LINT LINT

 BOOL_TO_USINT USINT

 BOOL_TO_UINT UINT

 BOOL_TO_UDINT UDINT

 BOOL_TO_ULINT ULINT

 BOOL_TO_BYTE BYTE

 It converts BOOL into the output data type whose upper bits are

filled with 0.

 BOOL_TO_WORD WORD

BOOL_TO_DWORD DWORD

 BOOL_TO_LWORD LWORD

 BOOL_TO_STRING STRING It converts BOOL into a STRING type, which is ‘0’ or ‘1’.

Chapter 7. Basic Functions

7-18

■ Program Example

1. LD

 2. ST

 ST language doesn’t support BOOL_TO_***

 In case of BOOL_TO_BYTE

OUT_VAL := BOOL_TO_BYTE(EN:=%MX0, IN:= BOOL_VAL);

(1) If the transition condition (%MX0) is on, BOOL_TO_*** function executes.
(2) If input BOOL_VAL (BOOL) = 2#1, then output, OUT_VAL (BYTE) = 2#0000_ 0001.

Chapter 7. Basic Functions

7-19

1.10. BTYE_TO_***

BYTE_TO_***
BYTE type conversion

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: executes the function in case of 1

 IN: bit String to convert (8 bits)

 Output ENO: outputs EN value as it is

 OUT: type-converted data

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

OUT ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

*ANY_BIT: exclude BOOL from ANY_BIT type.

■ Function

It converts input IN type and produces output ,OUT.

Function Output type Description

 BYTE _TO_SINT SINT Converts into SINT type without changing its internal bit array.

 BYTE _TO_INT INT Converts into INT type filling the upper bits with 0.

 BYTE _TO_DINT DINT Converts into DINT type filling the upper bits with 0.

 BYTE _TO_LINT LINT Converts into LINT type filling the upper bits with 0.

 BYTE _TO_USINT USINT Converts into USINT type without changing its internal bit array.

 BYTE _TO_UINT UINT Converts into UINT type filling the upper bits with 0.

 BYTE _TO_UDINT UDINT Converts into UDINT type filling the upper bits with 0.

 BYTE _TO_ULINT ULINT Converts into ULINT type filling the upper bits with 0.

 BYTE _TO_BOOL BOOL Takes the lower 1 bit and converts it into BOOL type.

 BYTE _TO_WORD WORD Converts into WORD type filling the upper bits with 0.

 BYTE _TO_DWORD DWORD Converts into DWORD type filling the upper bits with 0.

 BYTE _TO_LWORD LWORD Converts into LWORD type filling the upper bits with 0.

 BYTE _TO_STRING STRING Converts the input type value into STRING.

Chapter 7. Basic Functions

7-20

■ Program Example

1. LD

2. ST

 ST language doesn’t support BYTE_TO_***

 In case of BYTE_TO_SINT

OUT_VAL := BYTE_TO_SINT(EN:=%MX10, IN:= IN_VAL);

(1) If the transition condition (%MX10) is on, BYTE_TO_*** function executes.
(2) If IN_VAL (BYTE) = 2#0001_1000, OUT_VAL (SINT) = 24 (2#0011_0000).

Chapter 7. Basic Functions

7-21

1.11. CONCAT

CONCAT
Concatenates a String

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1

 IN1: input String

 IN2: input String

 Input variable number can be extended up to 8.

Output ENO: without an error, it is 1.

 OUT: output String

■ Function

It concatenates the input String IN1, IN2, IN3, …, INn (n: number of inputs) in order and produces output String OUT.

■ Flag

Flag Description

_ERR If the sum of character number of each input String is greater than 31, then the output CONCAT

is the concatenate String of each input String (up to 31 letters), and _ERR, _LER flags are set.

■ Program Example

 1. LD

EN

IN1

ENO

OUT

CONCAT

IN_TEXT1

%IX0.2.1

OUT_TEXT

IN2IN_TEXT2

Chapter 7. Basic Functions

7-22

 2. ST

OUT_TEXT := CONCAT(EN:=%IX0.2.1, IN1:= IN_TEXT1, IN2:= IN_TEXT2);

(1) If the transition condition (%IX0.2.1) is on, CONCAT function executes.
(2) If input variable IN_TEXT1 = ‘ABCD’ and IN_TEXT2 = ‘DEF’, then OUT_TEXT = ‘ABCDDEF’.

Chapter 7. Basic Functions

7-23

1.12. CONCAT_TIME

CONCAT_TIME
Concatenates date and time of day

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: executes the function in case of 1

 IN1: date data input

 IN2: Time of day data input

 Output ENO: outputs EN value as it is

 OUT: DT (Date and Time of Day) output

■ Function

It concatenates IN1 (date) and IN2 (time of day) and produces output, OUT (DT).

■ Program Example

 1. LD

EN

IN1

ENO

OUT

CONCAT_TIME

START_DATE

%MX1

START_DT

IN2START_TIME

 2. ST

START_DT := CONCAT_TIME(EN:=%MX1, IN1:= START_DATE, IN2:= START_TIME);

(1) If the transition condition (%MX1) is on, CONCAT_TIME function executes.
(2) If START_DATE = D#1995-12-06 and START_TIME = TOD#08:30:00, then, output START_DT = DT#1995-12-

06-08:30:00.

Chapter 7. Basic Functions

7-24

1.13. COS

COS
Cosine operation

Availability XGI, XGR, XEC, XMC

Flags

Function Description

ANY_REAL

COS

ENOEN

IN OUT

BOOLBOOL

ANY_REAL

Input EN: executes the function in case of 1

 IN: radian input value of Cosine operation

 Output ENO: outputs EN value as it is

 OUT: result value of Cosine operation

 IN and OUT must be the same data type.

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○
OUT ○ ○

■ Function

It produces IN’s Cosine operation value.

 OUT = COS (IN)

■ Program Example

 1. LD

EN

IN

ENO

OUT

COS

INPUT

%IX0.1.3

RESULT

Chapter 7. Basic Functions

7-25

 2. ST

RESULT := COS(EN:=%IX0.1.3, IN:= INPUT);

(1) If the transition condition (%IX0.1.3) is on, COS function executes.

(2) If input INPUT = 0.5235 (/6 rad = 30), output RESULT = 0.8660 ... (2/3).

COS (/6) = 2/3 = 0.866

Chapter 7. Basic Functions

7-26

1.14. DATE_T0_***

DATE_TO_***
Date type conversion

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: executes the function in case of 1

 IN: date data to convert

 Output ENO: outputs EN value as it is

 OUT: type-converted data

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○ ○

■ Function

It converts an input IN type and produces output, OUT.

Function Output type Description

 DATE_TO_UINT UINT Converts DATE into UINT type.

 DATE_TO_WORD WORD Converts DATE into WORD type.

 DATE_TO_STRING STRING Converts DATE into STRING type.

Chapter 7. Basic Functions

7-27

■ Program Example

1. LD

2. ST

ST language doesn’t support DATE_TO_****

In case of DATE_TO_STRING

OUT_VAL := DATE_TO_STRING(EN:=%MX0, IN:= IN_VAL);

(1) If the transition condition (%MX0) is on, DATE_TO_*** function executes.
(2) If IN_VAL (DATE) = D#1995-12-01, OUT_VAL (STRING) = D#1995-12-01.

Chapter 7. Basic Functions

7-28

1.15. DELETE

DELETE
Delete a string

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1

 IN: input String

 L: length of String to delete

 P: position of String to delete

 Output ENO: without an error, it is 1

 OUT: output String

■ Function

After deleting a String (L) from the P character of IN, produces output, OUT.

■ Flag

Flag Description

_ERR
(1) If P  0 or L < 0, or if P > character number of IN,

(2) If L+P > IN(length of STR),

_ERR and _LER flags are set.

Chapter 7. Basic Functions

7-29

■ Program Example

1. LD

EN

IN

ENO

OUT

DELETE

IN_TEXT

%IX0.0.0

OUT_TEXT

LLENGTH

PPOSITION

2. ST

 OUT_TEXT := DELETE(EN:= %IX0.0.0, IN:= IN_TEXT, L:= LENGTH, P:= POSITION);

(1) If the transition condition (%IX0.0.0) is on, DELETE function executes.
(2) If input variable IN_TEXT = ‘ABCDEF’, LENGTH = 3, and POSITION = 3, then OUT_TEXT (STRING) will be ‘ABF’.

Chapter 7. Basic Functions

7-30

1.16. DINT_TO_***

DINT_TO_***
DINT type conversion

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1

 IN: double integer value to convert

 Output ENO: without an error, it is 1.

 OUT: type-converted data

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

OUT ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

*ANY: exclude DINT, TIME and DATE from ANY type.

■ Function

 It converts Input IN type and produces output, OUT.

Function Output type Description

DINT_TO_SINT SINT
If input is -128 127, normal conversion. ∼

Except this, an error occurs.

DINT_TO_INT INT
If input is -32,768 32∼ ,767, normal conversion.

Except this, an error occurs.

DINT_TO_LINT LINT Converts normally into LINT type.

DINT_TO_USINT USINT
If input is 0 255, normal conversion. ∼

Otherwise an error occurs.

DINT_TO_UINT UINT
If input is 0 65∼ ,535, normal conversion.

Otherwise an error occurs.

DINT_TO_UDINT UDINT
If input is 0 2∼ ,147,483,647, normal conversion.

Otherwise an error occurs.

DINT_TO_ULINT ULINT
If input is 0 2∼ ,147,483,647, normal conversion.

Otherwise an error occurs.

DINT_TO_BOOL BOOL Takes the low 1 bit and converts into BOOL type.

DINT_TO_BYTE BYTE Takes the low 8 bit and converts into BYTE type.

Chapter 7. Basic Functions

7-31

Function Output type Description

DINT_TO_WORD WORD Takes the low 16 bit and converts into WORD type.

DINT_TO_DWORD DWORD Converts into DWORD type without changing the internal bit array.

DINT_TO_LWORD LWORD Converts into LWORD type filling the upper bytes with 0.

DINT_TO_REAL REAL
Converts DINT into REAL type.

During conversion, an error caused by the precision may occur.

DINT_TO_LREAL LREAL
Converts DINT into LREAL type.

During conversion, an error caused by the precision may occur.

DINT_TO_STRING STRING Converts the input value into STRING type.

■ Flag

Flag Description

_ERR
If a conversion error occurs, _ERR, _LER flags are set.

When an error occurs, it takes as many lower bits as the bit number of the output type and produces

an output without changing the internal bit array.

■ Program Example

1. LD

2. ST

 ST language doesn’t support DINT_TO_***

 In case of DINT_TO_SINT

SINT_VAL := DINT_TO_SINT(EN:= %MX1, IN:= DINT_VAL);

(1) If the transition condition (%MX1) is on, DINT_TO_*** function executes.
(2) If INI = DINT_VAL (DINT) = -77, SINT_VAL (SINT) = -77.

Chapter 7. Basic Functions

7-32

1.17. DIV

DIV
Division

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1

 IN1: the value to be divided (dividend)

 IN2: the value to divide (divisor)

 Output ENO: without an error, it is 1.

 OUT: the divided result (quotient)

The variable connected to IN1, IN2 and OUT must be of the

same data type.

ANY type variable

Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN1 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
IN2 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

OUT ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

■ Function

It divides IN1by IN2 and produces an output omitting decimal fraction from the quotient.

OUT = IN1/IN2

IN1 IN2 OUT Remarks

7

7

-7

-7

2

-2

2

-2

3

-3

-3

3

Decimal fraction omitted

7 0 × Error

■ Flag

Flag Description

_ERR
If the value to divide (divisor) is ‘0’, and the results exceeds the maximum value of each type, _ERR,
_LER flags are set.

Chapter 7. Basic Functions

7-33

■ Program Example

1. LD

EN

IN1

ENO

OUT

DIV

VALUE1

%IX0.0.0

OUT_VAL

IN2VALUE2

2. ST

OUT_VAL := DIV(EN:= %IX0.0.0, IN1:= VALUE1, IN2:= VALUE2);

(1) If the transition condition (%IX0.0.0) is on, DIV function executes.

(2) If input VALUE1 = 300 and VALUE2 = 100, then output, OUT_VAL = 300/100 = 3.

Chapter 7. Basic Functions

7-34

1.18. DIV_TIME

DIV_TIME
Time division

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

TIME

DIV_TIME

ENOEN

IN1

IN2

OUT

BOOLBOOL

ANY_NUM

TIME

Input EN: executes the function in case of 1

 IN1: Time to divide

 IN2: The value to divide

 Output ENO: without an error, it is 1.

 OUT: divided result time

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN2 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

■ Function

1. It divides IN1 (time) by IN2 (number) and produces output OUT (divided time).

■ Flag

Flag Description

_ERR
If a divisor (IN2) is 0 or less than 0, _ERR and _LER flags are set.

If a negative number is entered into IN2, _ERR and _LER flags are on and the outputs is 0.

Chapter 7. Basic Functions

7-35

■ Program Example

This is the program that calculates the time required to produce one product in some product line if the working time of

day is 12hr 24min 24sec and product quantity of a day is 12 in a product line.

1. LD

EN

IN1

ENO

OUT

DIV_TIME

TOTAL_TIME

%IX0.1.0

TIME_
 PER_PRO

IN2PRODUCT
_COUNT

2. ST

TIME_PER_PRO := DIV_TIME(EN:= %IX0.1.0, IN1:= TOTAL_TIME, IN2:= PRODUCT_COUNT);

(1) If the transition condition (%IX0.1.0) is on, DIV_TIME function executes.

(2) If it divides TOTAL_TIME (T#12H24M24S) by PRODUCT_COUNT (12), the time required to produce one product

TIME_PER_PRO (T#1H2M2S) is an output. That is, it takes 1hr: 2min :2sec to produce one product.

Chapter 7. Basic Functions

7-36

1.19. DT_TO_***

DT_TO_***
DT type conversion

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1

 IN: date and time of day data to convert

 Output ENO: outputs EN value as it is

 OUT: type-converted data

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

OUT ○ ○ ○ ○

■ Function

It converts Input IN type and produces output, OUT.

Function Output type Description

DT_TO_LWORD LWORD
 Converts DT into LWORD type.

(The inverse conversion is available as there is no internal data change).

DT_TO_DATE DATE Converts DT into DATE type.

DT_TO_TOD TOD Converts DT into TOD type.

DT_TO_STRING STRING Converts DT into STRING type.

Chapter 7. Basic Functions

7-37

■ Program Example

1. LD

EN

IN

ENO

OUT

DT_TO_***

IN_VAL

%MX20

OUT_VAL

2. ST

 ST language doesn’t support DT_TO_***

 In case of DT_TO_DATE

OUT_VAL := DT_TO_DATE(EN:= %MX20, IN1:= IN_VAL);

(1) If the transition condition (%MX20) is on, DT_TO_*** function executes.

(2) If input IN_VAL (DT) = DT#1995-12-01-12:00:00, output ,OUT_VAL (DATE) = D#1995-12-01

Chapter 7. Basic Functions

7-38

1.20. DWORD_TO_***

DWORD_TO_***
DWORD type conversion

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1

 IN: bit String to convert (32bit)

 Output ENO: outputs EN value as it is

 OUT: type-converted data

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

OUT ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

*ANY: exclude DWORD, LREAL and DATE from ANY type.

■ Function

It converts Input IN type and produces output. OUT.

Function Output type Description

 DWORD_TO_SINT SINT Takes the lower 8 bits and converts into SINT type.

 DWORD_TO_INT INT Takes the lower 16 bits and converts into INT type.

 DWORD_TO_DINT DINT Converts into DINT type without changing the internal bit array.

 DWORD_TO_LINT LINT Converts into LINT type filling the upper bits with 0

 DWORD_TO_USINT USINT Takes the lower 8 bits and converts into USINT type.

 DWORD_TO_UINT UINT Takes the lower 16 bits and converts into UINT type.

 DWORD_TO_UDINT UDINT Converts into UDINT type without changing the internal bit array.

 DWORD_TO_ULINT ULINT Converts into ULINT type filling the upper bits with 0.

 DWORD_TO_BOOL BOOL Takes the lower 1 bit and converts into BOOL type.

 DWORD_TO_BYTE BYTE Takes the lower 8 bits and converts into BYTE type.

 DWORD_TO_WORD WORD Takes the lower 16 bits and converts into WORD type.

DWORD_TO_LWORD LWORD Converts into LWORD type filling the upper bits with 0.

 DWORD_TO_REAL REAL Converts into REAL type without changing the internal bit array.

 DWORD_TO_TIME TIME Converts into TIME type without changing the internal bit array.

Chapter 7. Basic Functions

7-39

Function Output type Description

 DWORD_TO_TOD TOD

Converts into TOD type without changing the internal bit array.

However, with a value out of TOD range (TOD#23:59:59.999), _ERR,

_LER flags are set and it is alternately converted within the range of

TOD.

DWORD_TO_STRING STRING Changes input value into decimal and converts into STRING type.

■ Program Example

1. LD

2. ST

 ST language doesn’t support DWORD_TO_***

 In case of DWORD_TO_TOD

OUT_VAL := DWORD_TO_***(EN:= %MX0, IN1:= IN_VAL);

(1) If the transition condition (%MX0) is on, DWIRD_TO_TOD function executes.

(2) If output IN_VAL (DWORD) = 16#3E8 (1000), output , OUT_VAL (TOD) = TOD#1S.

(3) Calculates TIME, TOD by converting decimal into MS unit. That is, 1000 is 1000ms = 1s.

(Refer to 3.2.4. Data Type Structure)

Chapter 7. Basic Functions

7-40

1.21. EQ

EQ
‘Equal to’ comparison

Availability XGI, XGR, XEC, XMC

Flags

Function Description

BOOL

EQ

ENOEN

IN1

IN2

OUT

BOOLBOOL

ANY

ANY

Input EN: executes the function in case of 1

 IN1: the value to be compared

 IN2: the value to compare

 Input variable number can be extended up to 8.

 IN1, IN2, ... must be the same type.

 Output ENO: outputs EN value as it is

 OUT: comparison result value

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN1 ○
IN2 ○

■ Function

1. If IN1 = IN2 = IN3 ... = INn (n : number of inputs), output , OUT is 1.
2. In other cases, OUT is 0.

■ Program Example

1. LD

Chapter 7. Basic Functions

7-41

 2. ST

%QX0.0.1 := EQ(EN:= %IX0.0.1, IN1:= VALUE1, IN2:= VALUE2, IN3:= VALUE3);

(1) If the transition condition (%IX0.0.1) is on, EQ function executes.
(2) If VALUE1 = 300, VALUE2 = 300, VALUE3 = 300 (comparison result VALUE1 = VALUE2 = VALUE3),

output %QX0.0.1 = 1.

Chapter 7. Basic Functions

7-42

1.22. EXP

EXP
EXP operation

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1

 IN: input value of exponent operation

 Output ENO: outputs EN value as it is

 OUT: result value of exponent operation

 IN, OUT must be of the same data type.

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○
OUT ○ ○

■ Function

It calculates the natural exponent with exponent IN and produces output, OUT.

 OUT = e
 IN

■ Error

Flag Description

_ERR If output is out of the range of a type, _ERR and _LER flags are set.

Chapter 7. Basic Functions

7-43

■ Program Example

1. LD

2. ST

RESULT := EXP(EN:= %IX0.1.3, IN1:= INPUT);

(1) If the transition condition (%IX0.1.3) is on, EXP function executes.

(2) If INPUT is 2.0, RESULT is 7.3890….

RESULT = e
 INPUT

INPUT = 2.0, RESULT = 7.3890...

Chapter 7. Basic Functions

7-44

1.23. EXPT

EXPT
Exponential operation

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

ANY_REAL

EXPT

ENOEN

IN1 OUT

BOOLBOOL

ANY_REAL

IN2ANY_REAL

Input EN: executes the function in case of 1

 IN1: real number

 IN2: exponent

 Output ENO: outputs EN value as it is

 OUT: result value

 IN1 and OUT must be of the same data type.

ANY type variable

Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN1 ○ ○
IN2 ○ ○

OUT ○ ○

■ Function

 It calculates IN1 with exponent IN2 and produces output, OUT.

 OUT = IN1
 IN2

■ Error

Flag Description

_ERR If an output is out of range of related data type, _ERR and _LER flags are set.

Chapter 7. Basic Functions

7-45

■ Program Example

1. LD

2. ST

RESULT := EXPT(EN:= %IX0.1.2, IN1:= INPUT1, IN2:= INPUT2);

(1) If the transition condition (%IX0.1.3) is on, ‘EXPT’ exponential function executes.

(2) If input INPUT1= 1.5, INPUT2 = 3, output RESULT = 1.53 = 1.5 ×1.5 ×1.5 = 3.375.

 3.375 = 1.5
 3

Chapter 7. Basic Functions

7-46

1.24. FIND

FIND
Find a string

Availability XGI, XGR, XEC, XMC

Flags

Function Description

FIND

ENOEN

IN1

IN2

OUT

BOOLBOOL

STR

STR

INT

Input EN: executes the function in case of 1

 IN1: input String

 IN2: String to find

 Output ENO: outputs EN value as it is

 OUT: location of String to be found

■ Function

It finds the location of String IN2 from input String IN1. If the location is found, it shows a position of a first character of
String IN2 from String IN1. Otherwise, output is 0.

■ Program Example

1. LD

EN

IN1

ENO

OUT

FIND

IN1_TEXT1

%IX0.1.1

POSITION

IN2IN2_TEXT2

Chapter 7. Basic Functions

7-47

2. ST

POSITION := FIND(EN:= %IX0.1.2, IN1:= IN1_TEXT1, IN2:= IN2_TEXT2);

(1) If the transition condition (%IX0.1.1) is on, FIND function executes

(2) If input String IN_TEXT1=‘ABCEF’ and IN_TEXT2=‘BC’, then output variable POSITION = 2.

(3) The first location of IN_TEXT2 (‘BC’) from input String IN_TEXT1 (‘ABCEF’) is 2nd.

INPUT (IN1) : IN_TEXT1 (STRING) = 'ABCEF'

OUTPUT (OUT) : POSITION (INT) = 2

(FIND)

(IN2) : IN_TEXT2(STRING) = 'BC'

Chapter 7. Basic Functions

7-48

1.25. GE

GE
‘Greater than or equal to’ comparison

Availability XGI, XGR, XEC, XMC

Flags

Function Description

ANY

GE

ENOEN

IN1

IN2

OUT

BOOLBOOL

ANY BOOL

Input EN: executes the function in case of 1

 IN1: the value to be compared

 IN2: the value to compare

 Input variable number can be extended up to 8.

 IN1, IN2, ... must be of the same data type.

 Output ENO: outputs EN value as it is

 OUT: comparison result value

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN1 ○
IN2 ○

■ Function

If IN1  IN2  IN3...  INn (n: number of inputs), an output is 1.
Otherwise it is 0.

■ Program Example

 1. LD

 2. ST

%QX0.0.1 := GE(EN:= %MX77, IN1:= VALUE1, IN2:= VALUE2, IN3:= VALUE3);

Chapter 7. Basic Functions

7-49

(1) If the transition condition (%MX77) is on, GE function executes.

(2) If input variable VALUE1 = 300, VALUE3 = 200, comparison result is VALUE1  VALUE2  VALUE3. The

output %QX0.01 = 1.

Chapter 7. Basic Functions

7-50

1.26. GT

GT
‘Greater than’ comparison

Availability XGI, XGR, XEC, XMC

Flags

Function Description

ANY

GT

ENOEN

IN1

IN2

OUT

BOOLBOOL

ANY BOOL

Input EN: executes the function in case of 1

 IN1: the value to be compared

 IN2: the value to compare

 Input variable number can be extended up to 8.

 IN1, IN2, ... must be of the same data type.

 Output ENO: outputs EN value as it is

 OUT: comparison result value

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN1 ○
IN2 ○

■ Function

1. If IN1 > IN2 > IN3... > INn (n: number of inputs), an output is 1.
2. Otherwise it is 0.

■ Program Example

 1. LD

2. ST

 %QX0.0.1 := GT(EN:= %MX0, IN1:= VALUE1, IN2:= VALUE2, IN3:= VALUE3);

(1) If the transition condition (%MX0) is on, GT function executes.

(2) If input variable VALUE1 = 300, VALUE2 = 200, and VALUE3 = 100, comparison result is VALUE1 > VALUE2 >

VALUE3. The output %QX0.0.1 = 1.

EN

IN1

ENO

OUT

GT

VALUE1

%MX0

QX0.0.1

IN2VALUE2

IN3VALUE3

Chapter 7. Basic Functions

7-51

1.27. INSERT

INSERT
Inserts a String

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

INSERT

ENOEN

IN1

IN2

OUT

BOOLBOOL

STR STR

PINT

STR

Input EN: executes the function in case of 1

 IN1: String to be inserted

 IN2: String to insert

 P: position to insert a String

 Output ENO: without an error, it is 1.

 OUT: output String

■ Function

It inserts String IN2 after the P character of IN1 and produces output,OUT.

■ Flag

Flag Description

_ERR
If P  0, ‘character number of variable IN1’ < P, or if the character number of result exceeds 31 (just 32
characters are produced), then _ERR, _LER flags are set.

■ Program Example

 1. LD

EN

IN1

ENO

OUT

INSERT

IN_TEXT1

%MX0

OUT_TEXT

IN2IN_TEXT2

PPOSITION

Chapter 7. Basic Functions

7-52

2. ST

OUT_TEXT := INSERT(EN:= %MX0, IN1:= IN_TEXT1, IN2:= IN_TEXT2, P:= POSITION);

(1) If the transition condition (%M0) is on, INSERT function executes.

(2) If input variable IN_TEXT1 = ‘ABCD’, IN_TEXT2 = ‘XY’, and POSITON = 2, output variable OUT_TEXT =

‘ABXYCD’.

Chapter 7. Basic Functions

7-53

1.28. INT_TO_***

INT_TO_***
INT type conversion

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

*ANY

INT_TO_***

ENOEN

IN OUT

BOOLBOOL

INT

Input EN: executes the function in case of 1

 IN: integer value to convert

 Output ENO: without an error, it is 1.

 OUT: type-converted data

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

OUT ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
 *ANY: exclude INT, TIME, DATE, TOD and DT from ANY type.

■ Function

It converts input IN type and produces output, OUT.

Function Output Type Description

 INT_TO_SINT SINT If input is -128 ∼ 127, normal conversion. Otherwise an error occurs.

 INT_TO_DINT DINT Converts into DINT type normally.

 INT_TO_LINT LINT Converts into LINT type normally.

 INT_TO_USINT USINT If input is 0 ∼ 255, normal conversion. Otherwise an error occurs.

 INT_TO_UINT UINT If input is 0 32767, normal conversion. ∼ Otherwise an error occurs.

 INT_TO_UDINT UDINT If input is 0 ∼ 32767, normal conversion. Otherwise an error occurs.

h INT_TO_ULINT ULINT If input is 0 ∼ 32767, normal conversion. Otherwise an error occurs.

 INT_TO_BOOL BOOL Takes the lower 1 bit and converts into BOOL type.

 INT_TO_BYTE BYTE Takes the lower 8 bits and converts into BYTE type.

 INT_TO_WORD WORD Converts into WORD type without changing the internal bit array.

 INT_TO_DWORD DWORD Converts into DWORD type filling the upper bits with 0.

 INT_TO_LWORD LWORD Converts into LWORD type filling the upper bits with 0.

 INT_TO_REAL REAL Converts INT into REAL type normally.

 INT_TO_LREAL LREAL Converts INT into LREAL type normally.

INT_TO_STRING STRING Converts INT into STRING type normally.

Chapter 7. Basic Functions

7-54

■ Flag

Flag Description

_ERR
If a conversion error occurs, _ERR _LER flags are set.
If an error occurs, take as many lower bits as the bit number of the output type and produces an
output without changing the internal bit array.

■ Program Example

 1. LD

2. ST

 ST language doesn’t support INT_TO_***

 In case of INT_TO_WORD

OUT_WORD := INT_TO_WORD(EN:= %MX0, IN1:= IN_VAL);

(1) If the input condition (%MX0) is on, INT_TO_*** function executes.

(2) If input variable IN_VAL (INT) = 512 (16#200), output variable OUT_WORD (WORD) = 16#200.

Chapter 7. Basic Functions

7-55

1.29. LE

LE
'Less than or equal to' comparison

Availability XGI, XGR, XEC, XMC

Flags

Function Description

ANY

LE

ENOEN

IN1

IN2

OUT

BOOLBOOL

ANY BOOL

Input EN: executes the function in case of 1

 IN1: the value to be compared

 IN2: the value to compare

 Input variable number can be extended up to 8.

 IN1, IN2, ...must be of the same data type.

 Output ENO: outputs EN value as it is

 OUT: comparison result value

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN1 ○
IN2 ○

■ Function

1. If IN1  IN2  IN3...  INn (n: number of inputs), output OUT is 1.
2. Otherwise it is 0.

■ Program Example

 1. LD

EN

IN1

ENO

OUT

LE

VALUE1

%MX0

%QX0.0.1

IN2VALUE2

IN3VALUE3

Chapter 7. Basic Functions

7-56

 2. ST

%QX0.0.1 := LE(EN:= %MX0, IN1:= VALUE1, IN2:= VALUE2, IN3:= VALUE3);

(1) If the transition condition (%MX0) is on, LE function executes.

(2) If input variable VALUE1 = 100, VALUE2 = 200, and VALUE3 = 200, output %QX0.0.1 = 1

(VALUE1  VALUE2  VALUE3).

Chapter 7. Basic Functions

7-57

1.30. LEFT

LEFT
Takes the left side of a String

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1

 IN: input String

 L: length of a String

 Output ENO: without an error, it is 1.

 OUT: output String

■ Function

It takes a left String (L) of IN and produces output, OUT.

■ Flag

Flag Description

_ERR If L < 0, _ERR and _LER flags are set.

■ Program Example

 1. LD

EN

IN

ENO

OUT

LEFT

IN1_TEXT

%MX0

OUT_TEXT

LLENGTH

Chapter 7. Basic Functions

7-58

2. ST

OUT_TEXT:= LEFT(EN:= %MX0, IN:= IN1_TEXT, L:= LENGTH);

(1) If the transition condition (%MX0) is on, function LEFT function executes.

(2) If input variable IN_TEXT = ‘ABCDEFG’ and LENGTH = 3, output String OUT_TEXT = ‘ABC’.

Chapter 7. Basic Functions

7-59

1.31. LEN

LEN
Finds a length of a String

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: executes the function in case of 1

 IN: input String

 Output ENO: outputs EN value as it is

 OUT: the length of a String

■ Function

It produces a length (character number) of the input String (IN).

■ Program Example

1. LD

EN

IN

ENO

OUT

LEN

IN_TEXT

%MX0

LENGTH

2. ST

 LENGTH := LEN(EN:= %MX0, IN1:= IN_TEXT);

(1) If the transition condition (%MX0) is on, LEN function executes.

(2) If input variable IN_TEXT = ‘ABCD’, output variable LENGTH = 4.

Chapter 7. Basic Functions

7-60

1.32. LIMIT

LIMIT
Limits upper and lower boundaries

Availability XGI, XGR, XEC, XMC

Flags

Function Description

ANY

LIMIT
ENOEN

MN OUT

BOOLBOOL

IN

MX

ANY

ANY

ANY

Input EN: executes the function in case of 1

 MN: minimum value

 IN: the value to be limited

 MX: maximum value

 Output ENO: outputs EN value as it is

 OUT: value in the range

 MN, IN, MX, OUT must be of the same data type.

ANY type variable

Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

MN ○
IN ○
MX ○

OUT ○

■ Function

a) If input IN value is between MN and MX, the IN is an output. That is, if MN  IN  MX, OUT = IN.
b) If input IN value is less than MN, MN is an output. That is, if IN < MN, OUT = MN.
c) If input IN value is greater than MX, MX is an output. That is, if IN > MX, OUT = MX.

■ Program Example

 1. LD

EN

MN

ENO

OUT

LIMIT

LIMIT_LOW

%MX0

OUT_VAL

ININ_VALUE

MXLIMIT_HIGH

Chapter 7. Basic Functions

7-61

2. ST

OUT_VAL := LIMIT(EN:= %MX0, MX:= LIMIT_LOW, IN:= IN_VALUE, MX:= LIMIT_HIGH);

(1) If the transition condition (%MX0) is on, LIMIT function executes.

(2) Output variable OUT_VAL for lower limit input LIMIT_LOW, upper limit input (LIMIT_HIGH) and limited value input

IN_VALUE is as follows.

LIMIT_LOW IN_VALUE LIMIT_HIGH OUT_VAL

1000 2000 3000 2000

1000 500 3000 1000

1000 4000 3000 3000

Chapter 7. Basic Functions

7-62

1.33. LINT_TO_***

LINT_TO_***
LINT type conversion

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1

 IN: long integer value to convert

 Output ENO: without an error, it is 1

 OUT: type converted data

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

OUT ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
*ANY: exclude LINT, TIME, DATE, TOD, and DT from ANY type.

■ Function

It converts input IN type and produces output, OUT.

Function Output type Description

LINT_TO_SINT SINT If input is -128 127, normal conversion. Otherwise an error occurs.∼

LINT_TO_INT INT If input is –32,768 32,767, normal conversion. Otherwise an error occurs.∼

LINT_TO_DINT DINT If input is -231 2∼ 31-1, normal conversion. Otherwise an error occurs.

LINT_TO_USINT USINT If input is 0 255, normal conversion. Other∼ wise an error occurs.

LINT_TO_UINT UINT If input is 0 65,535, normal conversion. Otherwise an error occurs.∼

LINT_TO_UDINT UDINT If input is 0 2∼ 32-1, normal conversion. Otherwise an error occurs.

LINT_TO_ULINT ULINT If input is 0 2∼ 63-1, normal conversion. Otherwise an error occurs.

LINT_TO_BOOL BOOL Takes the lower 1 bit and converts into BOOL type.

LINT_TO_BYTE BYTE Takes the lower 8 bits and converts into BYTE type.

LINT_TO_WORD WORD Takes the lower 16 bits and converts into WORD type.

LINT_TO_DWORD DWORD Takes the lower 32 bits and converts into DWORD type.

LINT_TO_LWORD LWORD Converts into LWORD type without changing the internal bit array.

LINT_TO_REAL REAL
Converts LINT into REAL type.

During the conversion, an error caused by the precision may occur.

Chapter 7. Basic Functions

7-63

Function Output type Description

LINT_TO_LREAL LREAL
Converts LINT into LREAL type.

During the conversion, an error caused by the precision may occur.

LINT_TO_STRING STRING Converts the input value into STRING type.

■ Flag

Flag Description

_ERR If a conversion error occurs, _ERR and _LER flags are set. If an error occurs, lower bits equal to the

bit number of the output type are taken to produces an output without changing the Internal bit array.

■ Program Example

1. LD

2. ST

ST language doesn’t support LINT_TO_***

In case of LINT_TO_DINT

OUT_VAL := LINT_TO_DINT(EN:= %IX0.0.0, IN:= IN_VAL);

(1) If the input condition (%IX0.0.0) is on, LINT_TO_*** function executes.

(2) If input variable IN_VAL (LINT) = 123,456,789, output variable OUT_VAL (DINT) = 123,456,789.

Chapter 7. Basic Functions

7-64

Chapter 7. Basic Functions

7-65

1.34. LN

LN
Natural logarithm operation

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1

 IN: input value of natural logarithm operation

 Output ENO: outputs EN value as it is

 OUT: natural logarithm value

 IN, OUT must be of the same data type

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○
OUT ○ ○

■ Function

 It finds a natural logarithm value of IN and produces output, OUT.

 OUT = ln (IN)

■ Error

Flag Description

_ERR If an input is 0 or a negative number, _ERR and _LER flags are set.

Chapter 7. Basic Functions

7-66

■ Program Example

1. LD

2. ST

RESULT := LN(EN:= %UX0.1.3, IN1:= INPUT);

(1) If the transition condition (%IX0.1.3) is on, LN function executes.

(2) If input variable INPUT is 2.0, output variable RESULT is 0.6931

ln(2.0) = 0.6931...

Chapter 7. Basic Functions

7-67

1.35. LOG

LOG
Base 10 Logarithm operation

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1

 IN: input value of common logarithm operation

 Output END: outputs EN value as it is

 OUT: the value of common logarithm operation

 IN, OUT must be of the same data type.

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○
OUT ○ ○

■ Function

It finds the value of Base 10 Logarithm of IN and produces output, OUT.

 OUT = log10 (IN) = log (IN)

■ Error

Flag Description

_ERR If input value IN is 0 or a negative number, _ ERR and _LER flags are set.

Chapter 7. Basic Functions

7-68

■ Program Example

1. LD

2. ST

RESULT := LOG(EN:= %IX0.1.3, IN:= INPUT);

(1) If the transition condition (%IX0.1.3) is on, LOG function executes.

(2) If input variable INPUT is 2.0, output variable RESULT is 0.3010 ..…

Log10 (2.0) = 0.3010...

Chapter 7. Basic Functions

7-69

1.36. LREAL_TO_***

 LREAL_TO_***
LREAL type conversion

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1

 IN: LREAL value to convert

 Output ENO: without an error, it is 1.

 OUT: type converted data

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

OUT ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

■ Function

It converts input IN type and produces output, OUT.

Function Output type Operation

LREAL_TO_SINT SINT
If integer number of input is -128 127, normal c∼ onversion.

Otherwise an error occurs (decimal round off).

LREAL_TO_INT INT
If integer number of input is -32,768 32∼ ,767, normal conversion.

Otherwise an error occurs (decimal round off).

LREAL_TO_DINT DINT
If integer number of input is -231 2∼ 31-1, normal conversion.

Otherwise an error occurs (decimal round off).

LREAL_TO_LINT LINT
If integer number of input is -263 2∼ 63-1, normal conversion.

Otherwise an error occurs (decimal round off).

LREAL_TO_USINT USINT
If integer number of input is 0 255, normal convers∼ ion.

Otherwise an error occurs (decimal round off).

LREAL_TO_UINT UINT
If integer number of input is 0 65,535, normal conversion. ∼

Otherwise an error occurs (decimal round off).

LREAL_TO_UDINT UDINT
If integer number of input is 0 2∼ 32-1, normal conversion.

Otherwise an error occurs (decimal round off).

Chapter 7. Basic Functions

7-70

Function Output type Operation

LREAL_TO_ULINT ULINT
If integer number of input is 0 2∼ 64-1, normal conversion.

Otherwise an error occurs (decimal round-off).

LREAL_TO_LWORD LWORD Converts into LWORD type without changing the internal bit array.

LREAL_TO_REAL REAL
Converts LREAL into REAL type normally.

During the conversion, an error caused by the precision may occur.

LREAL_TO_STRING STRING Converts LREAL into STRING type normally.

■ Flag

Flag Description

_ERR If an overflow occurs because an input value is greater than the value available for the output type,

_ERR and _LER flags are set. If an error occurs, an output is 0.

■ Program Example

1. LD

2. ST

ST language doesn’t support LREAL_TO_***

In case of LREAL_TO_REAL

REAL_VAL := LREAL_TO_REAL(EN:= %MX0, IN:= LREAL_VAL);

(1) If the input condition (%MX0) is on, LREAL_TO_*** function executes.
(2) If input variable LREAL_VAL (LREAL) = -1.34E-12, output variable REAL_VAL (REAL) = -1.34E-12.

Chapter 7. Basic Functions

7-71

1.37. LT

 LT
‘Less than’ comparison

Availability XGI, XGR, XEC, XMC

Flags

Function Description

ANY

LT

ENOEN

IN1

IN2

OUT

BOOLBOOL

ANY BOOL

Input EN: executes the function in case of 1

 IN1: the value to be compared

 IN2: the value to compare

 Input variable number can be extended up to 8

 IN1, IN2, ...must be of the same data type

 Output ENO: outputs EN value as it is

 OUT: comparison result value

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN1 ○
IN2 ○

■ Function

1. If IN1 < IN2 < IN3... < INn (n: number of inputs), output value OUT is 1.
2. Otherwise output, OUT is 0.

■ Program Example

 1. LD

EN

IN1

ENO

OUT

LT

VALUE1

%MX0

QX0.0.0

IN2VALUE2

IN3VALUE3

Chapter 7. Basic Functions

7-72

2. ST

%QX0.0.0 := LT(EN:= %MX0, IN1:= VALUE1, IN2:= VALUE2, IN3:= VALUE3);

(1) If the transition condition (%MX0) is on, LT function executes.

(2) If input variable VALUE1 = 100, VALUE2 = 200, and VALUE3 = 300, output %Q0.0.0 = 1 because of VALUE1 <

VALUE 2 < VALUE 3 as a result of the comparison.

Chapter 7. Basic Functions

7-73

1.38. LWORD_TO_***

LWORD_TO_***
LWORD type conversion

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: executes the function in case of 1

IN: bit String to convert (64bit)

Output ENO: outputs EN value as it is

 OUT: type-converted data

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

OUT ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
*ANY: exclude LWORD, REAL, TIME, DATE and TOD from ANY type.

■ Function

It converts input IN type and produces output, OUT.

Function Output type Description

LWORD_TO_SINT SINT Takes the lower 8 bits and converts into SINT type.

LWORD_TO_INT INT Takes the lower 16bits and converts into INT type.

LWORD_TO_DINT DINT Takes the lower 32bits and converts into DINT type.

LWORD_TO_LINT LINT Converts into LINT type without changing the internal bit array.

LWORD_TO_USINT USINT Takes the lower 8 bits and converts into USINT type.

LWORD_TO_UINT UINT Takes the lower 16 bits and converts into UINT type.

LWORD_TO_UDINT UDINT Takes the lower 32bits and converts into UDINT type.

LWORD_TO_ULINT ULINT Converts into ULINT type without changing the internal bit array.

LWORD_TO_BOOL BOOL Takes the lower 1 bit and converts into BOOL type.

LWORD_TO_BYTE BYTE Takes the lower 8 bits and converts into BYTE type.

LWORD_TO_WORD WORD Takes the lower 16 bits and converts into WORD type.

LWORD_TO_DWORD DWORD Takes the lower 32 bits and converts into DWORD type.

LWORD_TO_LREAL LREAL Converts LWORD into LREAL type.

LWORD_TO_DT DT Converts into DT type without changing the internal bit array. However,

Chapter 7. Basic Functions

7-74

Function Output type Description

with a value out of DT range (DT#2163-12-31-23:59:59:999), _ERR, _LER

flags are set and it is alternately converted within the range of DT.

LWORD_TO_STRING STRING Converts input value into STRING type.

■ Program Example

1. LD

2. ST

ST language doesn’t support LWORD_TO_***

In case of LWORD_TO_LINT

OUT_VAL := LWROD_TO_LINT(EN:= %MX0, IN:= IN_VAL);

(1) If the input condition (%MX0) is on, LWORD_TO_*** function executes.

(2) If input variable IN_VAL (LWORD) = 16#FFFF_FFFF_FFFF_FFFF, output variable OUT_VAL (LINT) is -1

(16#FFFF_FFFF_FFFF_FFFF).

Chapter 7. Basic Functions

7-75

1.39. MAX

MAX
Maximum value

Availability XGI, XGR, XEC, XMC

Flags

Function Description

MAX

ENOEN

IN1 OUT

BOOLBOOL

ANY ANY

IN2ANY

Input EN: executes the function in case of 1

 IN1: the value to be compared

 IN2: the value to compare

 Input variable number can be extended up to 8.

 Output ENO: outputs EN value as it is

 OUT: maximum value among input

 IN1, IN2,…, OUT must be of the same data type

ANY type Variable

Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN1 ○
IN2 ○

OUT ○

■ Function

It produces the maximum value among input IN1, IN2,..., INn (n: number of inputs).

■ Program Example

1. LD

EN

IN1

ENO

OUT

MAX

VALUE1

%MX0

OUT_VALUE

IN2VALUE2

Chapter 7. Basic Functions

7-76

2. ST

OUT_VALUE := MAX(EN:= %MX0, IN1:= VALUE1, IN2:= VALUE2);

(1) If the transition condition (%MX0) is on, MAX function executes.

(2) As the result of comparing input variable (VALUE1 = 100 and VALUE2 = 200), maximum value is 200.

Output OUT_VAL is 200.

0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0

(MAX)

OUTPUT (OUT): OUT_VALUE (INT) = 200(16#00C8)

INPUT (IN1) : VALUE1 (INT) = 100(16#0064)

(IN2) : VALUE2(INT) = 200(16#00C8)

Chapter 7. Basic Functions

7-77

1.40. MID

 MID
Takes the middle part of a String

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

STR

MID
ENOEN

IN OUT

BOOLBOOL

STR

L

P

INT

INT

Input EN: executes the function in case of 1

 IN: input String

 L: the length of String to output

 P: starting location of String to output

 Output ENO: without an error, it is 1.

 OUT: output String

■ Function

It produces a String (L) of IN from the P character.

■ Flag

Flag Description

_ERR If (character number of variable IN) < P, P <= 0 or L < 0, then _ERR and _LER flags are set.

■ Program Example

1. LD

EN

IN

ENO

OUT

MID

IN_TEXT

%IX0.0.0

OUT_TEXT

LLENGTH

PPOSITION

Chapter 7. Basic Functions

7-78

2. ST

OUT_TEXT := MID(EN:= %IX0.0.0, IN:= IN_TEXT, L:= LENGTH, P:= POSITION);

(1) If the transition condition (%IX0.0.0) is on, MID function executes.

(2) If input String IN_TEXT = ‘ABCDEFG’, the length of String LENGTH = 3, and starting location of character starting

POSITION = 2, output variable OUT_TEXT = ‘BCD’.

Chapter 7. Basic Functions

7-79

1.41. MIN

MIN
Minimum value

Availability XGI, XGR, XEC, XMC

Flags

Function Description

MIN

ENOEN

IN1

IN2

OUT

BOOLBOOL

ANY

ANY

ANY

Input EN: executes the function in case of 1

 IN1: value to be compared

 IN2: value to compare

Input variable number can be extended up to 8

 Output ENO: outputs EN value as it is

 OUT: minimum value among input values

 IN1, IN2, ..., OUT must be of all the same data type.

ANY type variable

Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN1 ○
IN2 ○

OUT ○

■ Function

Produces the minimum value among input IN1, IN2, ... , INn (n: number of inputs).

■ Program Example
1. LD

EN

IN1

ENO

OUT

MIN

VALUE1

%MX100

OUT_VALUE

IN2VALUE2

Chapter 7. Basic Functions

7-80

2. ST

OUT_VALUE := MIN(EN:= %MX100, IN1:= VALUE1, IN2:= VALUE2);

(1) If the transition condition (%MX100) is on, MIN function executes.

(2) The output is OUT_VALUE = 100 because its minimum value is 100 as the result of comparing VALUE1 = 100 to

VALUE2 = 200.

Chapter 7. Basic Functions

7-81

1.42. MOD

MOD
Dividing result (remainder)

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: executes the function in case of 1

 IN1: dividend

 IN2: divisor

 Output ENO: outputs EN value as it is

 OUT: dividing result (remainder)

 IN1, IN2, ..., OUT must be of all the same data type.

ANY type variable

Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN1 ○ ○ ○ ○ ○ ○ ○ ○
IN2 ○ ○ ○ ○ ○ ○ ○ ○

OUT ○ ○ ○ ○ ○ ○ ○ ○

■ Function

1. Divides IN1 by IN2 and outputs its remainder as OUT.

OUT = IN1 - (IN1/IN2) × IN2 (If IN2 = 0, OUT = 0)

IN1 IN2 OUT
 7
 7
-7
-7
 7

 2
-2
 2
-2
 0

 1
 1
-1
-1
 0

Chapter 7. Basic Functions

7-82

■ Program Example

1. LD

2. ST

OUT_VAL := MOD(EN:= %MX100, IN1:= VALUE1, IN2:= VALUE2);

(1) If the transition condition (%MX100) is on, MOD function executes.
(2) If the dividend VALUE1 = 37 and the divisor VALUE2 = 10, the remainder value OUT_VAL is 7 as a result of

dividing 37 by 10.

Chapter 7. Basic Functions

7-83

1.43. MOVE

MOVE
Data movement (Copy data)

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

BOOL

ANY

MOVE

ENOEN

IN OUT

BOOL

ANY

Input EN: executes the function in case of 1

 IN: value to be moved

 Output ENO: outputs EN value as it is

 OUT: moved value

 Variables connected to IN and OUT are of the same type.

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○
OUT ○

■ Function

Moves an IN value to OUT.

■ Flag

Flag Description

_ERR If IN and OUT array data type’s size are different each other, data move is not operated and ENO value

is 0, _ERR and _LER flags are set.

Chapter 7. Basic Functions

7-84

■ Program Example

This is a program that transfers the 8-contact inputs %I0.0.0 %I0.0.7 to the variable D and then moves them to ∼

output %Q0.4.0 %Q0.4.7∼ .

1. LD

EN

IN

ENO

OUT

MOVE

%IB0.0.0 D

%MX100

EN

IN

ENO

OUT

MOVE

D %QB0.4.0

2. ST

D := MOVE(EN:= %MX100, IN:= %IB0.0.0);

%QB0.4.0 := MOVE(EN:= %MX100, IN:= D);

(1) If the transition condition (%MX100) is on, MOVE function executes.

(2) It moves 8-contact input module data to the variable D by the first MOVE function and moves them

to %Q0.4.0 %Q0.4.7∼ by the second one.

Chapter 7. Basic Functions

7-85

1.44. MUL

MUL
Multiplication

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

MUL

ENOEN

IN1

IN2

OUT

BOOLBOOL

ANY_NUM

ANY_NUM ANY_NUM

Input EN: executes the function in case of 1

 IN1: multiplicand

 IN2: multiplier

 Input is available to extend up to 8.

 Output ENO: without an error, it is 1

 OUT: multiplied value

 Variables connected to IN1, IN2, ..., OUT are all of the same

data type.

ANY type variable

Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN1 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
IN2 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

OUT ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

■ Function

Multiplies an IN1, IN2,..., INn (n: number of inputs) and outputs the result as OUT.

OUT = IN1 × IN2 × ... × INn

■ Flag

Flag Description

_ERR If an output value is beyond the range of its data-type, _ERR and _LER flags are set.

☆ If REAL, LREAL type operation exceeds the maximum or minimum value in the middle of the operation because it

performs the operation sequentially from IN1 to IN8, _ERR, _LER flag are set and the result is an unlimited or

abnormal value.

(1.#INF000000000000e+000, 1.#SNAN00000000000e+000, 1.#QNAN00000000000e+000).

Chapter 7. Basic Functions

7-86

■ Program Example

1. LD

EN

IN1

ENO

OUT

MUL

VALUE1

%MX0

OUT_VAL

IN2VALUE2

IN3VALUE3

2. ST

OUT_VAL := MUL(EN:= %MX0, IN1:= VALUE1, IN2:= VALUE2, IN3:= VALUE3);

(1) If the transition condition (%MX0) is on, MUL function executes.

(2) If input variables of MUL function, VALUE1 = 30, VALUE2 = 20, VALUE3 = 10, then the output variable OUT_VAL

= 30 ×20 ×10 = 6000.

Chapter 7. Basic Functions

7-87

1.45. MUL_TIME

 MUL_TIME
Time multiplication

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

MUL_TIME

ENOEN

IN1

IN2

OUT

BOOLBOOL

ANY_NUM

TIME TIME

Input EN: executes the function in case of 1

 IN1: time to be multiplied

 IN2: multiplying value

 Output ENO: without an error, it is 1

 OUT: multiplied result

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN2 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

■ Function

Multiplies the IN1 (time) by IN2 (number) and outputs the result time as OUT.

■ Flag

Flag Description

_ERR
If an output value is out of its TIME-data range, _ERR and _LER flags are set. If a negative value is

entered to IN2, _ERR and _LER flags are on and IN2 is converted to hexadecimal, producing the

multiplication result.

Chapter 7. Basic Functions

7-88

■ Program Example

This is the program that sets the required working time: the average estimated time per unit product is 20min 2sec and

the number of product to produce a day is 20 in one product line.

1. LD

EN

IN1

ENO

OUT

MUL_TIME

UINT_TIME

%MX0

 TOTAL_
TIME

IN2PRODUCT_
COUNT

2. ST

TOTAL_TIME := MUL_TIME(EN:= %MX0, IN1:= UINT_TIME, IN2:= PRODUCT_COUNT);

(1) Write input variable (IN1: the estimated time per unit product) UNIT_TIME: T#20M2S.

(2) Write input variable (IN2: quantity of production) PRODUCT_COUNT: 20.

(3) Write TOTAL_TIME to the output variable (OUT: total required working time).

(4) If the transition condition (%MX0) is on, T#6H40M40S is produced in output TOTAL_TIME.

Chapter 7. Basic Functions

7-89

1.46. MUX

 MUX
Selection from multiple inputs

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

ANY

MUX

ENOEN

K OUT

BOOLBOOL

INT

ANY

ANY

IN0

IN1

Input EN: executes the function in case of 1

 K: selection

 IN0: the value to be selected

 IN1: the value to be selected

 Input variable number can be extended up to 7(IN0,

IN1, …, IN6)

 Output ENO: without an error, it is 1.

 OUT: the selected value

 IN0, IN1, ..., OUT must be of the same data type.

ANY type variable

Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN0 ○
IN1 ○

OUT ○

■ Function

1. Selects one among several inputs (IN0, IN1, …, INn) with K value and produces it.
2. If K = 0, IN0 is an output; if K = 1, IN1 is an output; if K = n, INn is an output.

■ Flag

Flag Description

_ERR If K is greater than or equal to ‘n’ which is the number of input variable INn, then IN0 is an output and

_ERR, _LER flags are set. If K is negative, _ERR and _LER flags are set

Chapter 7. Basic Functions

7-90

■ Program Example

1. LD

2. ST

OUT_VAL := MUX(EN:= %MX0, K:= S, IN0:= VALUE0, IN1:= VALUE1, IN2:= VALUE2);

(1) If the transition condition (%MX0) is on, MUX function executes.

(2) Input variable is selected by selection variable S and is moved to OUT.

Chapter 7. Basic Functions

7-91

1.47. NE

NE
‘Not equal to’ comparison

Availability XGI, XGR, XEC, XMC

Flags

Function Description

NE
ENOEN

IN1

IN2

OUT

BOOLBOOL

ANY

ANY BOOL

Input EN: executes the function in case of 1

 IN1: The value to be compared

 IN2: The value to be compared

 IN1, IN2 must be of the same data type.

 Output ENO: outputs EN value as it is

 OUT: the compared result value

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN1 ○
IN2 ○

■ Function

1. If IN1 is not equal to IN2, output, OUT is 1.
2. If IN1 is equal to IN2, output, OUT is 0.

■ Program Example

1. LD

EN

IN1

ENO

OUT

NE

VALUE1

%IX0.0.0

%QX0.0.1

IN2VALUE2

2. ST

%QX0.0.1 := NE(EN:= %IX0.0.0, IN1:= VALUE1, IN2:= VALUE2);

(1) If the transition condition (%IX0.0.0) is on, NE function executes.

(2) If input variable VALUE1 = 300, VALUE2 = 200 (the compared result VALUE1 and VALUE2 are different), output

result value is %QX0.0.1 = 1.

Chapter 7. Basic Functions

7-92

(IN2) : VALUE2(INT) = 200(16#0C8)

INPUT (IN1) : VALUE1 (INT) = 300(16#012C) 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0

OUTPUT (OUT) : %QX0.0.1 (BOOL) = 1(16#1) 1

Chapter 7. Basic Functions

7-93

1.48. NE

NOT
Reverse Logic (Logic inversion)

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: executes the function in case of 1

 IN: the value to be logically inverted

 Output ENO: outputs EN value as it is

 OUT: the inversed (NOT) value

 IN, OUT must be of the same data type.

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○ ○ ○ ○
OUT ○ ○ ○ ○ ○

■ Function

It inverts the IN (by bit) and produces output, OUT.

 IN 1100 1010

 OUT 0011 0101

■ Program Example

1. LD

EN

IN

ENO

OUT

NOT

%MB10

%MX0

%QB0.0.0

2. ST

%QB0.0.0 := NOT_BYTE(EN:= %MX0, IN1:=MB10);

(1) If the transition condition (%MX0) is on, NOT function executes.

(2) If NOT function executes, input data value of %MB10 is inversed and is written in %QB0.0.0.

Chapter 7. Basic Functions

7-94

Chapter 7. Basic Functions

7-95

OR
Logic Sum

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: executes the function in case of 1

 IN1: input 1

 IN2: input 2

 Input variables extend up to 8.

 Output ENO: outputs EN value as it is

 OUT: OR result

 IN1, IN2, OUT must be of all the same data type.

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○ ○ ○ ○
OUT ○ ○ ○ ○ ○

■ Function

It performs a logical OR on the input variables by bit and produces output, OUT.

IN1 1111 0000

OR

IN2 1010 1010

OUT 1111 1010

Chapter 7. Basic Functions

7-96

■ Program Example

1. LD

EN

IN1

ENO

OUT

OR

%MB10

%MX0

%QB0.0.0

IN2ABC

 2. ST

%QB0.0.0 := OR2_BYTE(EN:=%MX0, IN1:=%MB10, IN2:=ABC);

(1) If the transition condition (%MX0) is on, function OR executes.

(2) The result of a logic sum (OR) for %MB10 = 2#1100_1100 and ABC = 2#1111_0000 is produced in %QB0.0.0 =

2#1111_1100

Chapter 7. Basic Functions

7-97

 REAL_TO_***
REAL type conversion

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1

 IN: the REAL value to be converted

 Output ENO: without an error, it is 1.

 OUT: type-converted data

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

OUT ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

■ Function

It converts the IN type and outputs it as OUT.

Function Output Type Description

REAL_TO_SINT SINT
If integer part of input is -128 127, normal conversion.∼ Otherwise an

error occurs. (Decimals round-off)

REAL_TO_INT INT
If integer part of input is -32,768 32∼ ,767, normal conversion.

Otherwise an error occurs. (Decimals round-off)

REAL_TO_DINT DINT
If integer part of input is -231 2∼ 31-1, normal conversion. Otherwise an

error occurs. (Decimals round-off)

REAL_TO_LINT LINT
If integer part of input is -263 2∼ 63-1, normal conversion. Otherwise an

error occurs. (Decimals round-off)

REAL_TO_USINT USINT
If integer part of input is 0 255, normal conversion. Otherwise an erro∼ r

occurs. (Decimals round-off)

REAL_TO_UINT UINT
If integer part of input is 0 65,535, normal conversion. Otherwise an ∼

error occurs. (Decimals round-off)

REAL_TO_UDINT UDINT
If integer part of input is 0 2∼ 32-1, normal conversion. Otherwise an error

occurs. (Decimals round-off)

REAL_TO_ULINT ULINT
If integer part of input is 0 2∼ 64-1, normal conversion. Otherwise an error

occurs. (Decimals round-off)

REAL_TO_DWORD DWORD Converts into DWORD type without changing the internal bit array.

Chapter 7. Basic Functions

7-98

Function Output Type Description

REAL_TO_LREAL LREAL Converts REAL into LREAL type normally.

REAL_TO_STRING STRING Converts REAL into STRING type normally.

■ Flag

Flag Description

_ERR If overflow occurs (input value is greater than the value to be stored in output type), _ERR, _LER flags

are set. If an error occurs, the output is 0.

■ Program Example
 1. LD

2. ST

ST language doesn’t support REAL_TO_***

In case of REAL_TO_DINT

DINT_VAR := REAL_TO_DINT(EN:=%MX0, IN:=REAL_VAR);

(1) If the transition condition (%MX0) is on, function REAL_TO_*** executes.

(2) If REAL_VAL (REAL type) = 1.234E4, DINT_VAL (DINT) = 12,340.

Chapter 7. Basic Functions

7-99

 REPLACE
String replacement

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1

 IN1: character string to be replaced

 IN2: character string to replace

 L: the length of character string to be replaced

 P: position of character string to be replaced

 Output ENO: without an error, it is 1

 OUT: output character string

■ Function

1. Its function is to remove the L-length charter from IN1 (starting from P) and put IN2 in the removed position as
output OUT.

■ Flag

Flag Description

_ERR _ERR, _LER flags are set if P  0 or L < 0, P > (input character number of IN1) or character number of

result > 30

■ Program Example
 1. LD

EN

IN1

ENO

OUT

REPLACE

IN_TEXT1

%MX0

OUT_TEXT

IN2IN_TEXT2

LLENGTH

POSITION P

Chapter 7. Basic Functions

1
7-100

2. ST

OUT_TEXT := REPLACE(EN:=%MX0, IN1:=IN_TEXT1, IN2:= IN_TEXT2, L:=LENGTH, P:=POSITION);

(1) If the transition condition (%MX0) is on, function REPLACE (character string replacement) executes.

(2) If input variable of character string to be replaced IN_TEXT1 = `ABCDEF ,̀ input variable of character string to

replace is IN_TEXT2 = `X ,̀ input variable of character string length to be replaced LENGTH = 3 and input variable

of character string position designation to be replaced is POSITION = 2, then ‘BCD’ of IN_TEXT1 is replaced with

‘X’ of IN_TEXT2 and output variable OUT_TEXT is ‘AXEF’.

Chapter 7. Basic Functions

1
7-101

1.49. RIGHT

 RIGHT
To take the right of character string

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: If EN is 1, function executes

 IN: input character string

 L: length of character string

 Output ENO: without an error, it is 1

 OUT: output character string

■ Function

It takes a right L-length character string of IN and produces output, OUT.

■ Flag

Flag Description

_ERR If L < 0, _ERR and _LER flags are set.

■ Program Example

1. LD

EN

IN

ENO

OUT

RIGHT

IN_TEXT

%IX0.0.0

OUT_TEXT

LLENGTH

Chapter 7. Basic Functions

1
7-102

2. ST

OUT_TEXT := RIGHT(EN:=%IX0.0.0, IN:=IN_TEXT, L:=LENGTH);

(1) If the transition condition (%IX0.0.0) is on, function RIGHT (to take the right of character string) executes.

(2) If character string declared as input variable IN_TEXT = `ABCDEFG ̀and the length of character string to output is

LENGTH = 3, output character string variable is OUT_TEXT = ̀ EFG .̀

Chapter 7. Basic Functions

3
7-103

ROL
Rotate to Left

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: executes the function in case of 1

 IN: the value to be rotated

 N: bit number to rotate

 Output ENO: outputs EN value as it is

 OUT: the rotated value

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○ ○ ○
OUT ○ ○ ○ ○

*ANY_BIT: exclude BOOL from ANY_BIT.

■ Function

It rotates input IN to the left as many as N bit number.

Chapter 7. Basic Functions

1
7-104

■ Program Example

This is the program that rotates the value of input data (2#1100_1100_1100_1100:16#CCCC) to the left by 3 bits if
input %IX0.0.0 is on.

 1. LD

EN

IN

ENO

OUT

ROL

IN_VALUE

%IX0.0.0

OUT_VALUE

N3

 2. ST

OUT_VALUE := ROL(EN:=%IX0.0.0, IN:=IN_VALUE, N:=3);

(1) Set input variable IN_VALUE to rotate.

(2) Set the value to be rotated.

(3) Set output variable to output the rotated data value as OUT_VALUE.

(4) If the transition condition (%IX0.0.0) is on, function ROL executes and a data bit set as input variable is rotated to the

left by 3 bits and produces output, OUT_VALUE..

Chapter 7. Basic Functions

5
7-105

1.50. ROR

ROR
Rotate to right

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: executes the function in case of 1

 IN: the value to be rotated

 N: bit number to rotate

 Output ENO: outputs EN value as it is

 OUT: the rotated value

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○ ○ ○
OUT ○ ○ ○ ○

*ANY_BIT: exclude BOOL from ANY type.

■ Function

It rotates input IN to the right as many as N bit number.

Chapter 7. Basic Functions

1
7-106

■ Program Example

This is the program that rotates input data value (2#1110_0011_0011_0001: 16#E331) to the right by 3 bits if
input %I0.0.0 is on.

1. LD

EN

IN

ENO

OUT

ROR

IN_VALUE

%IX0.0.0

OUT_VALUE

N3

2. ST

OUT_VALUE := ROR(EN:=%IX0.0.0, IN:=IN_VALUE, N:=3);

(1) Set input variable of a data value to rotate as IN_VALUE.

(2) Insert bit number 3 into bit number input N.

(3) If the transition condition (%IX0.0.0) is on, function ROR (rotate Right) executes and data bit set as input variable is

rotated to the right by 3 bits and produces output ,OUT_VALUE.

Chapter 7. Basic Functions

7
7-107

1.51. SEL

SEL
Selection from two inputs

Availability XGI, XGR, XEC, XMC

Flags

Function Description

ANY

SEL

ENOEN

G OUT

BOOLBOOL

BOOL

IN0

IN1

ANY

ANY

Input EN: executes the function in case of 1

 G: selection

 IN0: the value to be selected

 IN1: the value to be selected

 Output ENO: outputs EN value as it is

 OUT: the selected value

 IN1, IN2, OUT must be of all the same type.

ANY type variable

Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN0 ○
IN1 ○

OUT ○

■ Function

If G is 0, IN0 is an output and if G is 1, IN1 is an output.

■ Program Example

If the input (%MX0) is on, this program selects an input between the two (VALUE1, VALUE2) and outputs the value as
described in S.

 1. LD

EN

G

ENO

OUT

SEL

S

%MX0

%QW0.0.0

IN0VALUE1

IN1VALUE2

Chapter 7. Basic Functions

1
7-108

2. ST

%QW0.0.0 := SEL(EN:=%MX0, G:=S, IN0:=VALUE1, IN1:=VALUE2);

(1) If the transition condition (%MX0) is on, function SEL executes.

 (2) If S = 1 and VALUE1 = 16#1110, VALUE2 = 16#FF00, then output variable %QW0.0.0 = 16#FF00.

(SEL)

INPUT (G) : S = 1

OUTPUT (OUT) : %QW0.0.0 (WORD) = 16#FF00

(IN0) : VALUE1(WORD) = 16#1110
(IN1) : VALUE2(WORD) = 16#FF00

Chapter 7. Basic Functions

9
7-109

1.52. SHL

SHL
Shift Left

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: If EN is 1, function is executes.

 IN: bit string to be shifted

 N: bit number to be shifted

 Output ENO: outputs EN value as it is

 OUT: the shifted value

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○ ○ ○
OUT ○ ○ ○ ○

*ANY_BIT: exclude BOOL from ANY_BIT.

■ Function

1. It shifts input IN to the left as many as N bit number.
2. N number bit on the rightmost of input IN is filled with 0.

Chapter 7. Basic Functions

1
7-110

■ Program Example

This is the program that shifts input data value (2#1100_1100_1100_1100:16#CCCC) to the left by 3 bits if
input %IX0.0.0 is on

 1. LD

EN

IN

ENO

OUT

SHL

IN_VALUE

%IX0.0.0

OUT_VALUE

N3

 2. ST

OUT_VALLUE := SHL(EN:=%IX0.0.0, IN:=IN_VALUE, N:=3);

(1) Set the input variable IN_VALUE (2#1100_1100_1100_1100: 16#CCCC).

(2) Insert bit number 3 into N.

(3) If the transition condition (%IX0.0.0) is on, function SHL (shift Left) executes and data bit set as input variable

shifts to the left by 3 bits and produces output, OUT_VALUE.

Chapter 7. Basic Functions

1
7-111

1.53. SHR

SHR
Shift Right

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: executes the function in case of 1

 IN: bit string to be shifted

 N: bit number to be shifted

 Output ENO: outputs EN value as it is

 OUT: the shifted value

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○ ○ ○
OUT ○ ○ ○ ○

*ANY_BIT: exclude BOOL from ANY_BIT.

■ Function

1. It shifts input IN to the right as many as N bit number.
2. N number bit on the leftmost of input IN is filled with 0.

Chapter 7. Basic Functions

1
7-112

■ Program Example

 1. LD

2. ST

OUT_VALUE := SHR(EN:=%MX0, IN:=IN_VALUE, N:=3);

(1) If the transition condition (%MX0) is on, function SHL (Shift Left) executes.

(2) Data bit set as input variable shift to the right by 3 bits and produces outputs, OUT_VALUE.

1 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1

0 0 0 1 1 1 0 0 0 1 1 0 0 1 1 0

(N) : 3 (ROR
)

INPUT (IN) : IN_VALUE (WORD) = 16#E331

OUTPUT (OUT) : OUT_VALUE (WORD) = 16#1C66

Chapter 7. Basic Functions

3
7-113

1.54. SIN

SIN
Sine operation

Availability XGI, XGR, XEC, XMC

Flags

Function Description

BOOL

ANY_REAL

SIN

ENOEN

IN OUT

BOOL

ANY_REAL

Input EN: executes the function in case of 1

 IN: input value of Sine operation (radian)

 Output ENO: outputs EN value as it is

OUT: Sine operation result value

 IN, OUT must be of the same data type.

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○
OUT ○ ○

■ Function

Finds the Sine operation value of IN and produces output, OUT.

OUT = SIN (IN)

■ Program Example

 1. LD

EN

IN

ENO

OUT

SIN

INPUT

%IX0.0.0

RESULT

Chapter 7. Basic Functions

1
7-114

2. ST

RESULT := SIN(EN:=IX0.0.0, IN:=INPUT);

(1) If the transition condition (%IX0.0.0) is on, function SIN (Sine operation) executes.

(2) If the value of input variable INPUT is 1.0471 .. . (/3 rad = 60), RESULT declared as output variable is 0.8660

(3 /2). SIN(/3) = 3 /2 = 0.8660

Chapter 7. Basic Functions

5
7-115

 SINT_TO_***
SINT type conversion

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1

 IN: short Integer value

 Output ENO: without an error, it is 1.

 OUT: type-converted data

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

OUT ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
*ANY: exclude SINT, TIME, DATE, TOD and DT from ANY type.

■ Function

It converts the IN type and outputs it as OUT.

Function Output type Description

SINT_TO_INT INT Converts into INT type normally.

SINT_TO_DINT DINT Converts into DINT type normally.

SINT_TO_LINT LINT Converts into LINT type normally.

SINT_TO_USINT USINT If input is 0 127, normal conversion. Otherwise an error occurs.∼

SINT_TO_UINT UINT If input is 0 127, normal conversion. Otherwise an error occurs.∼

SINT_TO_UDINT UDINT If input is 0 127, normal conversion. Otherwise an error occurs.∼

SINT_TO_ULINT ULINT If input is 0 127, normal conversion. Otherwise an error occurs.∼

SINT_TO_BOOL BOOL Takes the lower 1 bit and converts into BOOL type.

SINT_TO_BYTE BYTE Converts into BYTE type without changing the internal bit array.

SINT_TO_WORD WORD Converts into WORD type filling the upper bits with 0.

SINT_TO_DWORD DWORD Converts into DWORD type filling the upper bits with 0.

SINT_TO_LWORD LWORD Converts into LWORD type filling the upper bits with 0.

SINT_TO_REAL REAL Converts SINT into REAL type normally.

SINT_TO_LREAL LREAL Converts SINT into LREAL type normally.

SINT_TO_STRING STRING Converts SINT into STRING type normally.

Chapter 7. Basic Functions

1
7-116

■ Flag

Flag Description

_ERR If a conversion error occurs, _ERR and _LER flags are set. If an error occurs, take the lower bits

as many as bit number of output type and output it without changing the internal bit array.

■ Program Example

1. LD

EN

IN

ENO

OUT

SINT_TO_***

IN_VAL

%MX0

OUT_VAL

 2. ST

ST language doesn’t support SINT_TO_***

In case of SINT_TO_BYTE

OUT_VAL := SINT_TO_BYTE(EN:=%MX0, IN:=IN_VAL);

(1) If the input condition (%MX0) is on, function SINT_TO_*** executes.

(2) If input variable IN_VAL (SINT type) = 64 (2#0100_0000), output variable OUT_VAL (BYTE type) = 16#40

(2#0100_0000).

Chapter 7. Basic Functions

7
7-117

1.55. SQRT

 SQRT
Square root operation

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

BOOL

ANY_REAL

SQRT

ENOEN

IN OUT

BOOL

ANY_REAL

Input EN: executes the function in case of 1

 IN: input value of square root operation

 Output ENO: without an error, it is 1.

 OUT: square root value

 IN, OUT must be of the same data type.

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○
OUT ○ ○

■ Function

It finds the square root value of IN and output it as OUT.

OUT = IN

■ Flag

Flag Description

_ERR If the value of IN is a negative number, _ERR and _LER flag are set.

■ Program Example

1. LD

EN

IN

ENO

OUT

SQRT

INPUT

%MX0

RESULT

Chapter 7. Basic Functions

1
7-118

2. ST

RESULT := SQRT(EN:=%MX0, IN:=INPUT);

(1) If the transition condition (%MX0) is on, function SQRT (square root operation) executes.

(2) If the value of input variable declared as INPUT is 9.0, RESULT declared as output variable is 3.0.

 0.9 = 3.0

Chapter 7. Basic Functions

9
7-119

1.56. STRING_TO_***

 STRING_TO_***
STRING type conversion

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: If EN is 1, function converts.

 IN: character string

 Output ENO: without an error, it is 1.

 OUT: type-converted data

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

*ANY: exclude STRING from ANY type.

■ Function

1. Converts the IN type and outputs it as OUT.

Function Output type Description

STRING_TO_SINT SINT Converts STRING into SINT type.

STRING_TO_INT INT Converts STRING into INT type.

STRING_TO_DINT DINT Converts STRING into DINT type.

STRING_TO_LINT LINT Converts STRING into LINT type.

STRING_TO_USINT USINT Converts STRING into USINT type.

STRING_TO_UINT UINT Converts STRING into UINT type.

STRING_TO_UDINT UDINT Converts STRING into UDINT type.

STRING_TO_ULINT ULINT Converts STRING into ULINT type.

STRING_TO_BOOL BOOL Converts STRING into BOOL type.

STRING_TO_BYTE BYTE Converts STRING into BYTE type.

STRING_TO_WORD WORD Converts STRING into WORD type.

STRING_TO_DWORD DWORD Converts STRING into DWORD type.

STRING_TO_LWORD LWORD Converts STRING into LWORD type.

STRING_TO_REAL REAL Converts STRING into REAL type.

STRING_TO_LREAL LREAL Converts STRING into LREAL type.

STRING_TO_DT DT Converts STRING into DT type.

STRING_TO_DATE DATE Converts STRING into DATE type.

Chapter 7. Basic Functions

1
7-120

Function Output type Description

STRING_TO_TOD TOD Converts STRING into TOD type.

STRING_TO_TIME TIME Converts STRING into TIME type.

■ Flag

Flag Description

_ERR If input character type does not match with output data type, _ERR and _LER flags are set.

■ Program Example

1. LD

EN

IN

ENO

OUT

STRING_TO
_***

IN_VAL

%MX0

OUT_VAL

2. ST

ST language doesn’t support STRING_TO_***

In case of STRING_TO_REAL

OUT_VAL := STRING_TO_REAL(EN:=%MX0, IN:=IN_VAL);

(1) If the input condition (%MX0) is on, function STRING_TO_*** executes.

(2) If input variable IN_VAL (STRING) = ‘-1.34E12’, output variable OUT_VAL (REAL) = -1.34E12.

Chapter 7. Basic Functions

1
7-121

1.57. SUB

 SUB
Subtraction

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

SUB

ENOEN

IN1

IN2

OUT

BOOLBOOL

ANY_NUM

ANY_NUM

ANY_NUM

Input EN: executes the function in case of 1

 IN1: the value to be subtracted

 IN2: the value to subtract

 Output ENO: without an error, it is 1.

 OUT: the subtracted result value

 The variables connected to IN1, IN2 and OUT must be of all

the same data type.

ANY type variable

Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN1 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
IN2 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

OUT ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

■ Function

It subtracts IN2 from IN1 and outputs it as OUT.

OUT = IN1 ― IN2

■ Flag

Flag Description

_ERR If output value is out of range of related data type, _ERR and _LER flags are set.

☆ If LREAL type operation exceeds the maximum or minimum value in the middle of operation because it performs

operation serially from IN1 to IN8, _ERR,_LER flag is set and the result is an unlimited or abnormal value.

(1.#INF000000000000e+000, 1.#SNAN00000000000e+000, 1.#QNAN00000000000e+000)

Chapter 7. Basic Functions

1
7-122

■ Program Example

 1. LD

EN

IN1

ENO

OUT

SUB

VALUE1

%MX0

OUT_VAL

IN2VALUE2

2. ST

OUT_VAL := SUB(EN:=%MX0, IN1:=VALUE1, IN2:=VALUE2);

(1) If the transition condition (%MX0) is on, function SUB executes.

(2) If input variables VALUE1 = 300, VALUE2 = 200, OUT_VAL is 100 after the operation.

Chapter 7. Basic Functions

3
7-123

1.58. SUB_DATE

SUB_DATE
Date subtraction

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

SUB_DATE

ENOEN

IN1

IN2

OUT

BOOLBOOL

DATE

DATE

TIME

Input EN: executes the function in case of 1

 IN1: standard date

 IN2: the date to subtract

 Output ENO: without an error, it is 1.

 OUT: produces the difference between two dates as

time data.

■ Function

It subtracts IN2 (specific date) from IN1 (standard date) and outputs the difference between two dates as OUT.

■ Flag

Flag Description

_ERR
If output value is out of range (TIME data type), _ERR and _LER flags are set.

An error occurs: 1) when date difference exceeds the range of TIME data type

(T#49D17H2M47S295MS); 2) the result of date operation is a negative number.

■ Program Example

1. LD

EN

IN1

ENO

OUT

SUB_DATE

CURRENT_DATE

%IX0.0.0

WORK_DAY

IN2START_DATE

Chapter 7. Basic Functions

1
7-124

2. ST

WORK_DAY := SUB_DATE(EN:=%IX0.0.0, IN1:=CURRENT_DATE, IN2:=START_DATE);

(1) If the transition condition (%IX0.0.0) is on, function SUB_DATE executes.

(2) If input variable CURRENT_DATE is D#1995-12-15 and START_DATE is D#1995-11-1, the working days declared

as output variable WORK_DAY is T#44D.

Chapter 7. Basic Functions

5
7-125

1.59. SUB_DT

 SUB_DT
Date and Time subtraction

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

SUB_DT

ENOEN

IN1

IN2
OUT

BOOLBOOL

DATE_AND_TIME TIME

DATE_AND_TIME

Input EN: executes the function in case of 1

 IN: standard date and time of day

 IN2: date and time of day to subtract

 Output ENO: without an error, it is 1.

 OUT: the subtracted result time

■ Function

It subtracts IN2 (specific date and time of day) from IN1 (standard date and time of day) and outputs the time difference as
OUT.

■ Flag

Flag Description

_ERR If output value is out of range of TIME data type, _ERR and _LER flags are set.

If the result of date and time of day subtraction operation is a negative number, an error occurs.

■ Program Example

 1. LD

EN

IN1

ENO

OUT

SUB_DT

CURRENT_DT

%MX0

WORK_TIME

IN2START_DT

Chapter 7. Basic Functions

1
7-126

2. ST

WORK_TIME := SUB_DT(EN:=%MX0, IN1:=CURRNET_DT, IN2:=START_DT);

(1) If the transition condition (%MX0) is on, function SUB_DT (Time and Date subtraction) executes.
(2) If the current date and time of day CURRENT_DT is DT#1995-12-15-14:30:00 and the starting date and the time of

day to work START_DT is DT#1995-12-13-12:00:00, the continuous working time declared as output variable
WORK_TIME is T#2D2H30M.

Chapter 7. Basic Functions

7
7-127

1.60. SUB_TIME

SUB_TIME
Time subtraction

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1

 IN1: standard time of day

 IN2: the time to subtract

 Output ENO: without an error, it is 1.

 OUT: the subtracted result time or time of day

OUT data type is the same as the input IN1 type.

 That is, if IN1 type is TIME, OUT type must be TIME.

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN1 ○ ○ ○
OUT ○ ○ ○

■ Function

1. If IN1 is TIME, it subtracts the time from the standard time and produces OUT (time difference).
2. If IN1 is TIME_OF_DAY, it subtracts the time from the standard time of day and outputs the time of a day as OUT.
3. If IN1 is DATE_AND_TIME, it subtracts the time from the standard date and the time of day and produces the

date and the time of day as OUT.

■ Flag

Flag Description

_ERR
If the output value is out of range of related data type, _ERR and _LER flags are set.

If the result subtracting the time from the standard time is a negative number or the result subtracting

the time from the time of day is a negative number, an error occurs.

Chapter 7. Basic Functions

1
7-128

■ Program Example

 1. LD

EN

IN1

ENO

OUT

SUB_TIME

TARGET_TIME

%IX0.0.0

TIME_TO_GO

IN2ELABSED_TIME

2. ST

TIME_TO_GO := SUB_TIME(EN:=%IX0.0.0, IN1:=TARGET_TIME, IN2:=ELABSED_TIME);

(1) If the transition condition (%IX0.0.0) is on, function SUB_TIME (time subtraction) executes.

(2) If total working time declared as input variable TARGET_TIME is T#2H30M, the elapsed time ELAPSED_TIME is

T#1H10M30S300MS, the remaining working time declared as output variable TIME_TO_GO is T#1H19M29S700MS.

INPUT (IN1) : TARGET_TIME (TIME) = T#2H30M

(IN2) : ELAPSED_TIME(TIME) = T#1H10M30S300MS

OUTPUT (OUT) : TIME_TO_GO (TIME) = T#1H19M29S700MS

(SUB_DATE)

Chapter 7. Basic Functions

9
7-129

1.61. SUB_TOD

 SUB_TOD
TOD Subtraction

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

SUB_TOD

ENOEN

IN1

IN2

OUT

BOOLBOOL

TIME_OF_DAY TIME

TIME_OF_DAY

Input EN: executes the function in case of 1

 IN1: standard time of day

 IN2: the time of day to subtract

 Output ENO: without an error, it is 1

 OUT: the subtracted result time

■ Function

It subtracts the IN2 (specific time of day) from IN1 (standard time of day) and outputs the time difference as OUT.

■ Flag

Flag Description

_ERR If the result subtracting the time of day from the time of day is a negative number, an error occurs.

■ Program Example

1. LD

EN

IN1

ENO

OUT

SUB_TOD

END_TIME

%IX0.0.0

WORK_TIME

IN2START_TIME

Chapter 7. Basic Functions

1
7-130

2. ST

WORK_TIME := SUB_TOD(EN:=%IX0.0.0, IN1:=END_TIME, IN2:=START_TIME);

(1) If the transition condition (%IX0.0.0) is on, function SUB_TOD (time of day subtraction) executes.
(2) If END_TIME declared as input variable is TOD#14:20:30.500 and the starting time to work, START_TIME is

TOD#12:00:00, the required time to work, WORK_TIME declared as output variable is T#2H20M30S500MS.

Chapter 7. Basic Functions

1
7-131

1.62. TAN

TAN
Tangent Operation

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: executes the function in case of 1

 IN: tangent input value (radian)

 Output ENO: outputs EN value as it is

 OUT: the result value of Tangent operation

 IN, OUT must be of the same data type

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○
OUT ○ ○

■ Function

It performs Tangent operation of IN and produces output, OUT.

OUT = TAN(IN)

■ Program Example

 1. LD

EN

IN

ENO

OUT

TAN

INPUT

%MX0

RESULT

Chapter 7. Basic Functions

1
7-132

2. ST

RESULT := TAN(EN:=%MX0, IN:=INPUT);

(1) If the transition condition (%MX0) is on, function TAN (Tangent operation) executes.
(2) If the value of input variable declared as INPUT is 0.7853... (/4 rad = 45), RESULT declared as output variable is

1.0000.

TAN(/4) = 1

INPUT (IN) : INPUT (REAL) = 0.7853

OUTPUT (OUT) : RESULT (REAL) = 9.99803722E-01

(TAN)

1.63. TIME_TO_

Chapter 7. Basic Functions

3
7-133

1.64. ***

TIME_TO_***
TIME type conversion

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: executes the function in case of 1

 IN: time data to be converted

 Output ENO: outputs EN value as it is

 OUT: type-converted data

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

OUT ○ ○ ○

■ Function

It converts the IN type and produces OUT.

Function Output type Description

TIME_TO_UDINT UDINT
Converts TIME into UDINT type. It converts only data type without

changing the data (internal bit array state).

TIME_TO_DWORD DWORD
Converts TIME into DWORD type. It converts only data type without

changing the data (internal bit array state).

TIME_TO_STRING STRING Converts TIME into STRING type.

Chapter 7. Basic Functions

1
7-134

■ Program Example

 1. LD

2. ST

ST language doesn’t support TIME_TO_***

In case of TIME_TO_UDINT

OUT_VAL := TIME_TO_UDINT(EN:=%MX0, IN:=IN_VAL);

(1) If the transition condition (%MX0) is on, function TIME_TO_*** executes.

(2) If input variable IN_VAL (TIME) = T#120MS, output variable OUT_VAL (UDINT) = 120.

Chapter 7. Basic Functions

5
7-135

1.65. TOD_TO_***

TOD_TO_***
TOD type conversion

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: executes the function in case of 1

 IN: time of a day data to be converted

 Output ENO: outputs EN value as it is

 OUT: type-converted data

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

OUT ○ ○ ○

■ Function

It converts the IN type and outputs it as OUT.

Function
Output

type
Description

TOD_TO_UDINT UDINT
Converts TOD into UDINT type.

Converts only data type without changing a data (internal bit array state).

TOD_TO_DWORD DWORD
Converts TOD into DWORD type.

Converts only data type without changing a data (internal bit array state).

TOD_TO_STRING STRING Converts TOD into STRING type.

Chapter 7. Basic Functions

1
7-136

■ Program Example

1. LD

2. ST

ST language doesn’t support TIME_TO_***

In case of TIME_TO_UDINT

OUT_VAL := TOD_TO_STRING(EN:=%MX0, IN:=IN_VAL);

(1) If the transition condition (%MX0) is on, function TOD_TO_*** executes.

(2) If input variable IN_VAL (TOD) = TOD#12:00:00, output variable OUT_VAL (STRING) = ‘TOD#12:00:00’.

Chapter 7. Basic Functions

7
7-137

1.66. TRUNC

 TRUNC

Round off the decimal fraction of IN and converts into

integer number

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1

 IN: REAL value to be converted

 Output ENO: without an error, it is 1.
 OUT: the Integer converted value

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○
OUT ○ ○

■ Function

Function Input type Output type Description

TRUNC
REAL DINT Round off the decimal fraction of input IN and outputs the

Integer value as OUT. LREAL LINT

■ Flag

Flag Description

_ERR
_ERR, _LER flags is set: 1) if the converted value is greater than maximum value of data type

connected to OUT; 2) if the variable connected to OUT is an Unsigned Integer and the converted

output value is a negative number, the output is 0.

Chapter 7. Basic Functions

1
7-138

■ Program Example

1. LD

EN

IN

ENO

OUT

TRUNC

REAL_VALUE

%MX0

INT_VALUE

2. ST

INT_VALUE:=TRUNC(EN:=%MX0, IN:=REAL_VALUE);

(1) If the transition condition (%MX0) is on, function TRUNC executes.

(2) If input variable REAL_VALUE (REAL) = 1.6, output variable INT_VALUE (INT) = 1. If REAL_VALUE(REAL) = -1.6,

INT_VALUE(INT) = -1.

Chapter 7. Basic Functions

9
7-139

 UDINT_TO_***
UDINT type conversion

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1
 IN: Unsigned Double Integer value to be converted

 Output ENO: outputs EN value as it is

 OUT: type-converted data

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

OUT ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
*ANY: exclude UDINT, DATE and DT from ANY type.

■ Function

It converts the IN type and outputs it as OUT.

Function
Output

type
Description

UDINT_TO_SINT SINT If input is 0~127, normal conversion. Otherwise an error occurs.

UDINT_TO_INT INT If input is 0~32,767, normal conversion. Otherwise an error occurs.

UDINT_TO_DINT DINT
 If input is 0~2,147,483,647, normal conversion. Otherwise an error

occurs.

UDINT_TO_LINT LINT Converts UDINT into LINT type normally.

UDINT_TO_USINT USINT If input is 0~255, normal conversion. Otherwise an error occurs.

UDINT_TO_UINT UINT If input is 0~65,535, normal conversion. Otherwise an error occurs.

UDINT_TO_ULINT ULINT Converts UDINT into ULINT type normally.

UDINT_TO_BOOL BOOL Takes the lower 1 bit and converts into BOOL type.

UDINT_TO_BYTE BYTE Takes the lower 8 bits and converts into BYTE type.

UDINT_TO_WORD WORD Takes the lower 16 bits and converts into WORD type.

UDINT_TO_DWORD DWORD Converts into DWORD type without changing the internal bit array.

UDINT_TO_LWORD LWORD Converts into LWORD type filling the upper bits with 0.

UDINT_TO_REAL REAL
 Converts UDINT into REAL type.

During the conversion, an error caused by the precision may occur.

Chapter 7. Basic Functions

1
7-140

Function
Output

type
Description

UDINT_TO_LREAL LREAL
 Converts UDINT into LREAL type.

 During the conversion, an error caused by the precision may occur.

UDINT_TO_TOD TOD

 Converts into TOD type without changing the internal bit array. However,

with a value out of TOD range (TOD#23:59:59.999), _ERR, _LER flags

are set and it is alternately converted within the range of TOD.

UDINT_TO_TIME TIME Converts into TIME type without changing the internal bit array.

UDINT_TO_STRING STRING Converts UDINT into STRING type.

■ Flag

Flag Description

_ERR
If a conversion error occurs, _ERR and _LER flags are set. If an error occurs, take the lower bits
as many as a bit number of an output data type and produces the output without changing the
internal bit array.

■ Program Example

 1. LD

2. ST

ST language doesn’t support UDINT_TO_***

In case of UDINT_TO_TIME

OUT_VAL := UDINT_TO_TIME(EN:=%MX0, IN:=IN_VAL);

(1) If the input condition (%MX0) is on, function UDINT_TO_*** will be executed.

(2) If input variable IN_VAL (UDINT) = 123, output variable OUT_VAL (TIME) = T#123MS.

Chapter 7. Basic Functions

1
7-141

1.67. UINT_TO_***

 UINT_TO_***
UINT type conversion

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1

 IN: Unsigned Integer value to be converted

 Output ENO: outputs EN value as it is

 OUT: type-converted data

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

OUT ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
*ANY: exclude UINT, TIME, TOD and DT from ANY type.

■ Function

It converts the IN type and outputs it as OUT.

Function Output type Description

UINT_TO_SINT SINT If input is 0~127, normal conversion. Otherwise an error occurs.
UINT_TO_INT INT If input is 0~32,767, normal conversion. Otherwise an error occurs.

UINT_TO_DINT DINT Converts UINT into UDINT type normally.
UINT_TO_LINT LINT Converts UINT into ULINT type normally.

UINT_TO_USINT USINT If input is 0~255, normal conversion. Otherwise an error occurs.
UINT_TO_UDINT UDINT Converts UINT into UDINT type normally.
UINT_TO_ULINT ULINT Converts UINT into ULINT type.
UINT_TO_BOOL BOOL Takes the lower 1 bit and converts into BOOL type.
UINT_TO_BYTE BYTE Takes the lower 8 bits and converts into BYTE type.
UINT_TO_WORD WORD Converts into WORD type without changing the internal bit array.

UINT_TO_DWORD DWORD Converts into DWORD type filling the upper bits with 0.
UINT_TO_LWORD LWORD Converts into LWORD type filling the upper bits with 0.
UINT_TO_REAL REAL Converts UINT into REAL type.
UINT_TO_LREAL LREAL Converts UINT into LREAL type.
UINT_TO_DATE DATE Converts into DATE type without changing the internal bit array.

UINT_TO_STRING STRING Converts UINT into STRING type.

Chapter 7. Basic Functions

1
7-142

■ Flag

Flag Description

_ERR
If a conversion error occurs, _ERR and _LER flags are set. If error occurs, it takes as many
lower bits as a bit number of output type and produces an output without changing its internal bit
array.

■ Program Example

 1. LD

2. ST

ST language doesn’t support UINT_TO_***

In case of UINT_TO_WORD

OUT_VAL := UINT_TO_WORD(EN:=%MX0, IN:=IN_VAL);

(1) If the input condition (%MX0) is on, function UINT_TO_*** executes.

(2) If input variable IN_VAL (UINT) = 255 (2#0000_0000_1111_1111), output variable OUT_VAL (WORD) =

2#0000_0000_1111_1111.

Chapter 7. Basic Functions

3
7-143

1.68. ULINT_TO_***

 ULINT_TO_***
ULINT type conversion

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1

 IN: Unsigned Long Integer value to be converted

 Output ENO: outputs EN value as it is

 OUT: type-converted data

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

OUT ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
*ANY: exclude UINT, TIME, TOD and DT from ANY type.

■ Function

It converts the IN type and outputs it as OUT.

Function Output type Description

ULINT_TO_SINT SINT If input is 0~127, normal conversion. Otherwise an error occurs.

ULINT_TO_INT INT If input is 0~32,767, normal conversion. Otherwise an error occurs.

ULINT_TO_DINT DINT If input is 0~231-1, normal conversion. Otherwise an error occurs.

ULINT_TO_LINT LINT If input is 0~263-1, normal conversion. Otherwise an error occurs.

ULINT_TO_USINT USINT If input is 0~255, normal conversion. Otherwise an error occurs.

ULINT_TO_UINT UINT If input is 0~65,535, normal conversion. Otherwise an error occurs.

ULINT_TO_UDINT UDINT If input is 0~232-1, normal conversion. Otherwise an error occurs.

ULINT_TO_BOOL BOOL Takes the lower 1 bit and converts into BOOL type.

ULINT_TO_BYTE BYTE Takes the lower 8 bits and converts into BYTE type.

ULINT_TO_WORD WORD Takes the lower 16 bits and converts into WORD type.

ULINT_TO_DWORD DWORD Takes the lower 32 bits and converts into DWORD type.

ULINT_TO_LWORD LWORD Converts into LWORD type without changing the internal bit array.

ULINT_TO_REAL REAL
 Converts ULINT into REAL type.
 During the conversion, an error caused by the precision may occur.

ULINT_TO_LREAL LREAL
 Converts ULINT into LREAL type.

 During the conversion, an error caused by the precision may occur.

Chapter 7. Basic Functions

1
7-144

Function Output type Description

ULINT_TO_STRING STRING Converts ULINT into STRING type.

■ Flag

Flag Description

_ERR If a conversion error occurs, _ERR and _LER flags are set. If error occurs, it takes as many lower

bits as a bit number of output type and produces an output without changing its internal bit array

■ Program Example

 1. LD

2. ST

ST language doesn’t support ULINT_TO_***

In case of ULINT_TO_LINT

OUT_VAL := ULINT_TO_LINT(EN:=%MX0, IN:=IN_VAL);

(1) If the input condition (%MX0) is on, function ULINT_TO_*** executes.

(2) If input variable IN_VAL (ULINT) = 123,567,899, then output variable OUT_VAL (LINT) = 123,567,899.

Chapter 7. Basic Functions

5
7-145

1.69. USINT_TO_***

USINT_TO_***
USINT type conversion

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1

 IN: To convert Unsigned Short Integer value.

 Output ENO: outputs EN value as it is

 OUT: type-converted data

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

OUT ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
*ANY: exclude USINT, TIME, DATE, TOD and DT from ANY type.

■ Function

It converts the IN type and outputs it as OUT.

Function Output type Description

USINT_TO_SINT SINT If input is 0~127, normal conversion. Otherwise an error occurs.

USINT_TO_INT INT Converts USINT into INT type normally.

USINT_TO_DINT DINT Converts USINT into DINT type normally.

USINT_TO_LINT LINT Converts USINT into LINT type normally.

USINT_TO_UINT UINT Converts USINT into UINT type normally.

USINT_TO_UDINT UDINT Converts USINT into UDINT type normally.

USINT_TO_ULINT ULINT Converts USINT into ULINT type normally.

USINT_TO_BOOL BOOL Takes the lower 1 bit and converts into BOOL type.

USINT_TO_BYTE BYTE Converts into BYTE type without changing the internal bit array.

USINT_TO_WORD WORD Converts into WORD type filling the upper bits with 0.

USINT_TO_DWORD DWORD Converts into DWORD type filling the upper bits with 0.

USINT_TO_LWORD LWORD Converts into LWORD type filling the upper bits with 0.

USINT_TO_REAL REAL Converts USINT into REAL type.

USINT_TO_LREAL LREAL Converts USINT into LREAL type.

USINT_TO_STRING STRING Converts USINT into STRING type.

Chapter 7. Basic Functions

1
7-146

■ Flag

Flag Description

_ERR If a conversion error occurs, _ERR and _LER flags are set. If error occurs, it takes as many lower

bits as a bit number of output type and produces an output without changing its internal bit array.

■ Program Example

1. LD

2. ST

ST language doesn’t support USINT_TO_***

In case of USINT_TO_SINT

OUT_VAL := USINT_TO_SINT(EN:=%MX0, IN:=IN_VAL);

(1) If the input condition (%MX0) is on, function ULINT_TO_*** executes.

(2) If input variable IN_VAL (USINT) = 123, output variable OUT_VAL (SINT) = 123.

Chapter 7. Basic Functions

7
7-147

1.70. WDT_RST

WDT_RST
Initialize Watch_Dog timer

Availability XGI, XGR, XEC, XMC

Flags

Function Description

BOOL

BOOL

WDT_RST

ENOEN

REQ OUT

BOOL

BOOL

Input EN: executes the function in case of 1

 REQ: requires to initialize watchdog timer

 Output ENO: outputs EN value as it is

OUT: After Watch_Dog timer initialization, output is 1

■ Function

1. It resets Watch-Dog Timer among the programs.
2. Available to use in case that scan time exceeds Watch-Dog Time set by the condition in the program.
3. If scan time exceeds the scan Watch_Dog Time, change the scan time with the setting value of scan Watch_Dog

Timer.
4. Care must be taken so that either the time from 0 line of program to WDT_RST function T1 or the time from

WDT_RST function to the time by the end of program T2 does not exceed the setting value of scan Watch_Dog
Timer.

5. WDT_RST function is available to use several times during 1 scan.

Chapter 7. Basic Functions

1
7-148

■ Program Example

This is the program that the time to execute the program becomes 300ms according to the transition condition in the

program of which scan Watch_Dog timer is set as 200ms.

1. LD

2. ST

WDT_OK := WDT_RST(EN:=%MX0, REQ:=%MX0);

(1) If the transition condition (%MX0) is on, function WDT-RST executes.

(2) If WDT-RST function executes, it is available to set the program that extends the scan time to 300ms according to

the transition condition of program within the scan Watch_Dog Time (200ms).

Chapter 7. Basic Functions

9
7-149

1.71. WORD_TO_***

WORD_TO_***
WORD type conversion

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: executes the function in case of 1

 IN: Bit string to be converted (16 bit)

 Output ENO: outputs EN value as it is

 OUT: type-converted data

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

OUT ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
*ANY: exclude WORD, REAL, LREAL, TIME, TOD and DT from ANY type.

■ Function

It converts the IN type and outputs it as OUT.

Function Output type Description

WORD _TO_SINT SINT Takes the lower 8 bits and converts into SINT type.

WORD _TO_INT INT Converts into INT type without changing the internal bit array.

WORD _TO_DINT DINT Converts into DINT type filling the upper bits with 0.

WORD _TO_LINT LINT Converts into LINT type filling the upper bits with 0.

WORD _TO_USINT USINT Takes the lower 8 bits and converts into SINT type.

WORD _TO_UINT UINT Converts into INT type without changing the internal bit array.

WORD _TO_UDINT UDINT Converts into DINT type filling the upper bits with 0.

WORD _TO_ULINT ULINT Converts into LINT type filling the upper bits with 0.

WORD _TO_BOOL BOOL Takes the lower 1 bit and converts into BOOL type.

WORD _TO_BYTE BYTE Takes the lower 8 bits and converts into SINT type.

WORD _TO_DWORD DWORD Converts into DWORD type filling the upper bits with 0.

WORD _TO_LWORD LWORD Converts into LWORD type filling the upper bits with 0.

WORD _TO_DATE DATE Converts into DATE type without changing the internal bit array.

WORD _TO_STRING STRING Converts WORD into STRING type.

Chapter 7. Basic Functions

1
7-150

■ Program Example

 1. LD

EN

IN

ENO

OUT

WORD_TO_***

IN_VAL

%MX0

OUT_VAL

2. ST

ST language doesn’t support WORD_TO_***

In case of WORD_TO_INT

OUT_VAL := WORD_TO_INT(EN:=%MX0, IN:=IN_VAL);

(1) If the input condition (%MX0) is on, function WORD-TO-*** executes.

(2) If input variable IN_VAL (WORD) = 2#0001_0001_0001_0001, output variable OUT_VAL (INT) = 4,096 + 256 + 16

+ 1 = 4,369

Chapter 7. Basic Functions

1
7-151

1.72. XOR

XOR
Exclusive OR

Availability XGI, XGR, XEC, XMC

Flags

Function Description

XOR
ENOEN

IN1

IN2

OUT

BOOLBOOL

ANY_BIT

ANY_BIT ANY_BIT

Input EN: executes the function in case of 1

 IN1: the value to be XOR

 IN2: the value to be XOR

 Input variable number can be extended up to 8.

 Output ENO: outputs EN value as it is

 OUT: the result of XOR operation

 IN1, IN2, OUT must be of all the same data type.

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○ ○ ○ ○
OUT ○ ○ ○ ○ ○

■ Function

1. Do XOR operation for IN1 and IN2 per bit and to produces OUT.

 IN1 1111 0000

 XOR

 IN2 1010 1010

 OUT 0101 1010

Chapter 7. Basic Functions

1
7-152

■ Program Example

1. LD

EN

IN1

ENO

OUT

XOR

%MB10

%MX0

%QB0.0.0

IN2ABC

2. ST

ST language doesn’t support XOR

In case of XOR2_BYTE

%QB0.0.0 := XOR2_BYTE(EN:=%MX0, IN1:=%MB10, IN2:=ABC);

(1) If the transition condition (%MX0) is on, function XOR executes.

(2) If input variable %MB10 = 1100_1100, ABC = 1111_0000, the result of XOR operation for two inputs is %QB0.0.0 =

0011_1100.

Chapter 7. Basic Functions

3
7-153

***_TO_BCD

***_TO_BCD
Converting ANY Type to BCD type

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: execute the function in case of 1

 IN: enter ANY_BIT with BCD type data

Output ENO: outputs EN value as it is

 OUT: type converted data

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○ ○ ○ ○ ○ ○ ○
OUT ○ ○ ○ ○

 *ANY_BIT: exclude BOOL type from ANY_BIT.

■ Function

It converts the IN type and outputs it as OUT

Function Input type Output type Description

SINT_TO_BCD_BYTE SINT BYTE

Converting ANY type to BCD type.

 Normally converted as long as it is BCD value.

 (if input data type is WORD, the values, 0 16#9999∼

are normally converted)

INT_TO_BCD_WORD INT WORD

DINT_TO_BCD_DWORD DINT DWORD

LINT_TO_BCD_LWORD LINT LWORD

USINT_TO_BCD_BYTE USINT BYTE

UINT_TO_BCD_WORD UINT WORD

UDINT_TO_BCD_DWORD UDINT DWORD

ULINT_TO_BCD_LWORD ULINT LWORD

■ Flag

Flag Description

_ERR If IN is not the data within BCD range, output is 0; _ERR and _LER flags are set.

Chapter 7. Basic Functions

1
7-154

■ Program Example

1. LD

2. ST

ST language doesn’t support ***_TO_BCD

In case of SINT_TO_BCD_BYTE

BCD_VAL := SINT_TO_BCD_BYTE(EN:=%MX0, IN:=IN_VAL);

(1) If the execution condition (%MX0) is on, SINT_TO_BCD function executes.
(2) If IN_VAL (SINT type) = 16#22(2#0001_0110), BCD_VAL (BYTE type) = 16#22 (2#0010_0010) declared as a

function’s output variable is produced.

0 0 0 1 0 1 1 0

0 0 1 0 0 0 1 0

INPUT (IN) :IN_VAL (SINT) = 22

OUTPUT (OUT): BCD_VAL (BYTE) = 16#22

SINT_TO_BCD_BYTE

Chapter 7. Basic Functions

5
7-155

1.73. GROUP_FIND

GROUP_FIND Availability Flags

Find a string in the group
XGI-CPUUN(V1.61)

XG5000 V4.51
_ERR, _LER

Function Description

GROUP_FIND

ENOEN

IN1

BOOLBOOL

BYTE

IN2STR

SIZEUINT

OFFSETUINT

UINTOUT

Input EN : executes the function in case of 1

 IN1 : start address of find target

 IN2 : string to find

SIZE : size of find target(IN1)

OFFSET : the position to start searching for a string

Output ENO : without an error, it is 1

 OUT : location of String to be found

■ Function

1. It searches the character of IN2 from the address specified as IN1 plus OFFSET and stores the first matching
starting position in OUT.

2. SIZE indicates the length to be searched from the start address of the search target IN1.
Ex1) When IN1 is %MB11 and SIZE is 10, it searches from %MB11 to %MB20.
Ex2) When IN1 is %MB11, SIZE is 10, OFFSET is 5, it searches from %MB16 to %MB25.

3. An error occurs in the following cases.
- When the value of SIZE is 0
- When OFFSET is larger than SIZE length

(If the size is 10, the value of OFFSET must be 0 or more and 9 or less.)
- When there is no matching string
- When IN1 + SIZE value is out of the device range provided

Chapter 7. Basic Functions

1
7-156

■ Program Example

1. LD

(1) When the execution condition (%IX0.1.1) is On, the GROUP_FIND function is executed.

(2) Search target start address If the start address is input to IN1, the input string declared as an input variable is input to

IN2, and the search string is input to IN2, it is displayed in OUT declared as an output variable.

3. Program Example

- It searches for Size 10 (10 byte) from the position of %RB0. After finding the string '3' entered in IN2, the position

value is output in OUT.

Chapter 7. Basic Functions

7
7-157

1.74. GROUP_MOVE

GROUP_MOVE Availability Flags

Copy as the group
XGI-CPUUN(V1.61)

XG5000 V4.51
_ERR, _LER

Function Description

Input EN : executes the function in case of 1

 SRC : direct variable to move or

variable with device assigned

 INDX_S : the starting position of SRC to move

 value (cannot use negative numbers)

INDX_D : the start position of DST to be

moved (cannot use negative numbers)

SIZE : data size to be moved

Output ENO : without an error, it is 1

 DST : Direct variable to be moved

ANY type
variable

Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

SRC ○
DST ○

■ Function

 1. After reading data as much as SIZE from the starting position of SRC, copy as many as SIZE from the starting position
of DST.

2. SRC and DST can only use direct devices with allocated memory (I, Q, M, R, W, K, U).
3. SRC and DST type size should be the same.
4. When using ARRAY/ARRAY_STRUCT type, the location of SRC cannot be changed.

(Example ARRAY[index]: X, ARRAY[1]: O)
ARRAY[index] should be used with ARRAY_MOVE function.

Flag Description

_ERR

 An error occurs when executing a SIZE command that exceeds the range of the direct
device allocated to SRC. At this time, data copying is not performed and ENO becomes 0.
Also, _ERR and LER flags are set.

 If INDX is negative, an error occurs.

Chapter 7. Basic Functions

1
7-158

 If SIZE is 0, an error occurs.

Caution

 Since commands are copied as many as the number of SIZEs entered by the user
regardless of the input/output type, if the SIZE is not accurately calculated and used, data
in other areas may be overwritten and malfunction may result.

 If INDEX_S/INDEX_D is not 0, copying is performed from the position moved as much
as INDEX from the current position. If this is not used, data in other areas may be
overwritten, resulting in malfunction.

■ Program Example

1. LD

GROUP_MOVE

EN

SRC

ENO

DST

INDX_S

SIZE

A

SRC

1

DST

ENO

3

Variable Address

SRC %MB0

DST %MB100

INDX_D2

(1) When the execution condition (A) is On, GROUP_MOVE function is executed.

(2) Copy data as much as SIZE(3) from MB1 away from SRC position (MB0) by INDX_S value (1) and copy it

to (MB102) by INDX_D(2) away from DST position (MB100).

Chapter 7. Basic Functions

9
7-159

1.75. GROUP_FILL

GROUP_FILL Availability Flags

Fill group data
XGI-CPUUN(V1.61)

XG5000 V4.51
_ERR, _LER

Function Description

Input EN : executes the function in case of 1

 DATA : value to fill

SRC : device to be filled in

INDX : first position of DST to write value

(cannot use negative numbers)

SIZE : data size to be copied

Output ENO : without an error, it is 1

OUT : output 1 when the operation is successful

ANY type
variable

Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

SRC ○

■ Function

1. Fill with input data value as much as SIZE from SRC position.
2. Only direct devices with allocated memory can be used in SRC. (I, Q, M, R, W, K, U)
3. Be careful when using ARRAY type for SRC/DST because copying is performed even if it exceeds the ARRAY

range.
4. The size of the data type of SRC and DATA must match.
5. STRING type input is performed by calculating in BYTE unit
6. When using ARRAY/ARRAY_STRUCT type, SRC position cannot be changed.

(Ex. ARRAY[index]: X, ARRAY[1]: O)
To use ARRAY[index], use the ARRAY_FILL command.

Flag Description

_ERR

 If the range of SRC and LEN exceeds the range of the direct device, an error occurs.
At this time, data write is not performed, and ENO and OUT become 0. Also, _ERR
and _LER flags are set.

 If INDX is negative, an error occurs.
 If SIZE is 0, an error occurs.

Chapter 7. Basic Functions

1
7-160

Caution

 Since commands are copied as many as the number of SIZE entered by the user
regardless of the input/output type, if the SIZE is not accurately calculated and used,
data in other areas may be overwritten and malfunction may result.

 If INDEX is not 0, copying is performed from the position moved as many as INDEX
from the current position. If this is not used, data in other areas may be overwritten and
malfunction may result.

■ Program Example

1. LD

A

SRC

Variable Address

SRC %MB0

GROUP_FILL

EN

SRC

ENO

OUT

INDX

DATA

LEN

12

1

3

OUT

ENO

(1) When contact A is On, GROUP_FILL function is executed.

(2) Write 12 data as many as LEN(3) from MB1, which is separated by INDX value (1) from SRC position (MB0).

Chapter 7. Basic Functions

1
7-161

1.76. GROUP_ROTATE

GROUP_ROTATE Availability Flags

Rotates in group
XGI-CPUUN(V1.61)

XG5000 V4.51
_ERR, _LER

Function Description

Input EN : executes the function in case of 1

 SRC : direct device to be rotated

 START : start position of the device to be rotated

END : end position of the device to be rotated

N : the number to rotate

Output ENO : without an error, it is 1

 OUT : carry output when rotating

ANY type
variable

Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

SRC ○

■ Function

1. Device values in the specified range are moved from the SRC position to the specified direction.
2. Only direct devices with allocated memory can be used in SRC. (I, Q, M, R, W, K, U)
3. ARRAY type can be used for SRC/DST, but be careful because copying is performed even if it exceeds the

ARRAY range.
4. The size of the data type of SRC and DATA must match.
5. STRING type input is performed by calculating in BYTE unit.
6. When using ARRAY/ARRAY_STRUCT type, SRC position cannot be changed.

(Example ARRAY[index]: X, ARRAY[1]: O)
To use ARRAY[index], you must use the ROTATE_A command.

Flag Description

_ERR
 An error occurs in case of executing a SIZE command that exceeds the range of the

direct device allocated to SRC. At this time, data copying is not performed and ENO
becomes 0. Also, _ERR and _LER flags are set.

Chapter 7. Basic Functions

1
7-162

Caution

 Regardless of the device range set in SRC, the data from the START position to the

END position is ROTATE. Therefore, if the START and END ranges are not calculated
correctly, the data in other areas may be changed and a malfunction may result.

■ Program Example

1. LD

A

변수명 Address

SRC %MB0

GROUP_ROTATE

EN

START

ENO

OUT

END

SRC

N

SRC

1

7

3

ENO

OUT

(1) When the execution condition (A) is On, the BLK_ROTATE function is executed.

(2) Elements from MB1 separated by STRT from the SRC position (MB0) to MB7 separated by END are rotated 3 times

in the direction of the END element.

(3) In the output value, the element value 16#66 corresponding to the carry output is output.

16#11

16#22

16#33

16#44

16#55

16#66

16#77

16#88

16#99

16#AA

MB0

MB9

STRT

END

16#11

16#66

16#77

16#88

16#22

16#33

16#44

16#55

16#99

16#AA

Before execution

16#66

OUTSRC SRC

After execution

Chapter 7. Basic Functions

3
7-163

1.77. GROUP_SHIFT

GROUP_SHIFT Availability Flags

Shift in group
XGI-CPUUN(V1.61)

XG5000 V4.51
_ERR, _LER

Function Description

Input EN : executes the function in case of 1

IN : Value to be entered in the empty device

after shifting

 SRC : Direct device to be shifted

 START : Start position of device to be shifted

END : End position of device to be shifted

N : Number to shift

Ontput ENO : without an error, it is 1

 OUT : Shifted data

ANY type
variable

Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

SRC ○
OUT ○

■ Function

1. Values in the specified range from the SRC position are moved in the specified direction. The position that is
emptied while moving is filled with IN data.

2. Only direct devices with allocated memory can be used in SRC. (I, Q, M, R, W, K, U)
3. ARRAY type can be used for SRC/DST, but be careful when using it because it copies even if it exceeds the

ARRAY range.
4. The size of the data type of SRC and DATA must match.
5. STRING type input is performed by calculating in BYTE unit.
6. When using ARRAY/ARRAY_STRUCT type, SRC position cannot be changed.

(Example ARRAY[index]: X, ARRAY[1]: O)
To use ARRAY[index], use the SHIFT_A command.

Flag Description

_ERR
 If N exceeds the range of direct devices allocated to SRC, an error occurs. At this time,

data movement is not performed, and ENO and 0 are made. Also, _ERR and _LER
flags are set.

Chapter 7. Basic Functions

1
7-164

Caution
 It shifts the data from the START position to the END position regardless of the size

range of SRC. Therefore, if the START and END ranges are not accurately calculated
and used, the data in other areas may be changed and malfunction may result.

■ Program Example

1. LD

A

Variable Address

SRC %MB0

GROUP_SHIFT

EN

START

ENO

OUT

END

SRC

N

IN16#FF

SRC

1

7

3

ENO

OUT

(1) When contact (A) is On, BLK_SHIFT function is executed.

(2) The values from MB1 separated by STRT from SRC position (MB0) to MB7 separated by END are shifted 3 times

in the END direction. Empty positions created by shifting are filled with IN(FF).

(3) In the OUT value, the value 16#66 corresponding to the carry is output.

16#11

16#22

16#33

16#44

16#55

16#66

16#77

16#88

16#99

16#AA

MB0

MB9

STRT

END

16#11

16#FF

16#FF

16#FF

16#22

16#33

16#44

16#55

16#99

16#AA
16#66

OUT

SRC SRC

16#FF

IN

Before execution After execution

Chapter 7. Basic Functions

5
7-165

1.78. ANY_MOVE

ANY_MOVE Availability Flags

Copy without matching data types
XGI-CPUUN(V1.62)

XG5000 V4.51
_ERR, _LER

Function Description

Input EN : executes the function in case of 1

 SRC : Value to move

Ontput ENO : without an error, it is 1

 DST : Moved data

ANY type
variable

Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

SRC ○
OUT ○

■ Function

1. Read data from SRC and copy it to DST.
2. The data types of SRC and DST do not have to match
3. If the SRC type size is smaller than DST, the data is copied to DST as much as the size of the SRC type size.
4. If the SRC type size is larger than DST, the instruction is not executed and ENO becomes 0.

Flag Description

_ERR
 If the SRC type size is larger than DST, the instruction is not executed and ENO becomes 0.

Also, _ERR and _LER flags are set.

Chapter 7. Basic Functions

1
7-166

■ Program Example

1. LD

(1) BOOL -> BYTE

OPERAND TYPE VALUE RESULT

SRC BOOL 1 1

DST BYTE 0 16#01

1) When the execution condition (A) is On, ANY_MOVE function is executed.

2) Data is written as much as the type size of SRC from the start address of DST, and 1BIT is written to DST

as the value of SRC

SRC
0

DST

1 2

1

3 4 5 6 7

1

(2) BOOL -> BYTE

OPERAND TYPE VALUE RESULT

SRC BYTE 16#12 16#12

DST WORD 16#0000 16#0012

1) When the execution condition (A) is On, ANY_MOVE function is executed.

2) When writing to SRC as 16#12, and executing RUN, data is written as much as the size of SRC from the start

address of DST, so you can see the value of 16#0012

A

Chapter 7. Basic Functions

7
7-167

16#12

SRC

16#12

DST

16#00

(3) ARRAY OF BOOL -> BYTE

OPERAND TYPE VALUE RESULT

SRC ARRAY OF BOOL[10] SET 0~8 BIT to 1 0~8 BIT:1, 9BIT:0

DST WORD 16#0000 16#01FF

 1) When the execution condition (A) is On, ANY_MOVE function is executed.

2) When 0~8BIT is set to 1 in SRC and RUN is executed, data is written as much as SRC size (10BIT) from the

start address of DST, so you can see the value of 16#01FF.

(4) ARRAY OF WORD -> ARRAY OF LWORD

OPERAND TYPE VALUE RESULT

SRC ARRAY OF WORD[5] [0]~[4]: 16#1234 [0]~[4]: 16#1234

DST ARRAY OF LWORD[2]
[0]: 16#0000000000000000

[1]: 16#0000000000000000

[0]: 16#1234123412341234

[1]: 16#0000000000001234

1) When the execution condition (A) is On, ANY_MOVE function is executed.

2) If ARRAY [0]~[4] is set to 1 in 16#1234 in SRC, and when RUN is executed, data is written as much as SRC size

from ARRAY start address of DST, [0]: 16#1234123412341234 [1] : You can see the value of

16#0000000000001234.

Chapter 7. Basic Functions

1
7-168

(5) STRUCT -> ARRAY OF BYTE

OPERAND TYPE VALUE RESULT

SRC STRUCT

{

 BOOL,

BYTE,

DWORD

}

BOOL: 1

BYTE: 16#12

DWORD: 16#A9876543

BOOL: 1

BYTE: 16#12

DWORD: 16#A9876543

DST ARRAY OF BYTE[8] [0]~[7]: 16#00 [0]: 16#01

[1]: 16#12

[2]~[3]: 16#00

[4]: 16#34

[5]: 16#56

[6]: 16#78

[7]: 16#9A

1) When the execution condition (A) is On, ANY_MOVE function is executed.

2) Declare BOO, BYTE, and DWORD variables one by one in the structure in order, and set SRC as the structure

type

3) 1BIT of SRC BOOL is copied to DST[0], and SRC BYTE is copied to DST[1].

4) Due to the DWORD declared after BYTE, 2BYTE is additionally allocated and entered. (Align alignment) 2BYTE

value added to DST[2],[3] is entered, and DWORD data is entered in [4]~[7].

Chapter 7. Basic Functions

9
7-169

Chapter 7. Basic Functions

1
7-170

1.79. ANY_MOVE2

ANY_MOVE2 Availability Flags

Copying by setting TYPE and SIZE
XGI-CPUUN(V1.62)

XG5000 V4.51
_ERR, _LER

Function Description

Input EN : executes the function in case of 1

 SRC : value to move

TYPE : set data type (size) to move

 INDX_S : the starting position of SRC to move

INDX_D : the starting position of DST to be moved

SIZE : data size to move

Ontput ENO : without an error, it is 1

 DST : moved data

ANY type
variable

Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

SRC ○
OUT ○

■ Function

1. Copy the data of TYPE×SIZE from the position designated by INDX_S of the direct variable (or automatic variable)
registered in SRC, and save it in the position designated in INDX_D of the direct variable (or automatic variable)
registered in DST.

2. INDX_S, INDX_D, and SIZE are calculated based on the redefined type set in TYPE.
3. TYPE is defined as follows.

- 1:BOOL, 2:BYTE, 3:WORD, 4:DWORD, 5:LWORD
4. The data types of SRC and DST do not have to match.
5. When SRC and DST are direct variables, copying is performed as much as TYPE×SIZE even if the size set through

TYPE, INDX_S, INDX_D, SIZE exceeds the type size of SRC and DST. (Available direct variables: I, Q, M, R, W, U, K)
6. When SRC and DST are automatic variables, the size set through TYPE, INDX_S, INDX_D, and SIZE cannot exceed

the data type size range of SRC and DST. (Error occurs when exceeding)

Chapter 7. Basic Functions

1
7-171

Flag Description

_ERR

 In case of command execution exceeding the direct variable area allocated to SRC or DST
 When SRC or DST sets as an automatic variable and executes a command that exceeds

the type size of the variable
- When the area set by INDX_S exceeds the variable size of SRC
- When the area set by INDX_D exceeds the variable size of DST
- As much as TYPE×SIZE

 When SIZE is set to 0
 When the _ERR flag is On, data copy is not performed and ENO becomes 0.

Caution

 Since commands are copied as many as the number of SIZEs entered by the user
regardless of the input/output type, if the SIZE is not accurately calculated and used, data in
other areas may be overwritten and malfunction may result.

 If INDEX_S, INDEX_D is not 0, copying is performed from the position moved as much as
INDEX from the current position. If this is not used, data in other areas may be overwritten,
resulting in malfunction.

■ Program Example

1. LD

(1) SRC: BOOL type, automatic allocation variable  DST: WORD type, automatic allocation variable,

TYPE: BOOL(1)

OPERAND VALUE

INDX_S 2

INDX_D 0

SIZE 10 or 5

A

Chapter 7. Basic Functions

1
7-172

OPERAND TYPE MEMORY VALUE RESULT

SRC BYTE AUTO 16#AF 16#AF

DST WORD AUTO 16#0000 16#000B

(A) Since TYPE is BOOL, INDX_S, INDX_D, and SIZE are calculated in BOOL units.

(B) SIZE: 10

-SIZE is 10 BIT, but the command cannot be executed because the set SRC type size (BYTE) is 8 BIT (_ERR

error occurs).

(C) SIZE: 5

-As data is read only up to 2~6 BIT, which is the value of INDX_S+SIZE, the command is executed normally

without exceeding the range of SRC.

(D) Since INDX_S = 2, data is read as much as SIZE(5BIT) from SRC.2BIT position.

(E) SRC.2BIT~6BIT data is written to DST at 0BIT~4BIT position.

(2) SRC: BYTE type direct variable  DST: WORD type direct variable, TYPE: BOOL(1)

OPERAND VALUE

INDX_S 2

INDX_D 0

SIZE 10

OPERAND TYPE MEMORY VALUE RESULT

SRC BYTE %MB0 16#AF 16#AF

DST WORD %MW10 16#FF00 16#FC2B

1) When the execution condition (A) is On, ANY_MOVE32 function is executed.

2) Since TYPE is BOOL, INDX_S/INDX_D/SIZE is calculated in BOOL units

3) The effective range of SRC is 8 BIT and the size is 10 BIT, which exceeds the data reference range, but in the

Chapter 7. Basic Functions

3
7-173

case of direct variables, copying is performed even if it exceeds the range, so it operates normally..

4) Since INDX_S = 2, data is read as much as SIZE(10BIT) from SRC.2BIT position.

5) SRC.2BIT~7BIT data is written to DST's 0BIT~5BIT position, and MB1 data of 0BIT~3BIT is written to DST's

8BIT~11BIT position.

(A) Since the type is BOOL, INDEX_S, INDEX_D and SIZE are calculated in BOOL type.

(B) The data type (BYTE) of SRC is 8 BIT and the size is 10 BIT, which is out of the data reference range, but in the

case of a direct variable, copying is performed even if it exceeds the range, so it operates normally.

(C) Since INDX_S = 2, data is read as much as SIZE(10 BIT) from SRC.2BIT position.

(D) Copy data of SRC.2BIT~7BIT to 0BIT~5BIT position of DST, and 0BIT~3BIT data of %MB1 to 6BIT~9BIT position

of DST.

(3) SRC: ARRAY OF BOOL type direct variable  DST: BYTE type direct variable, TYPE: BOOL(1)

OPERAND VALUE

INDX_S 1

INDX_D 0

SIZE 1

OPERAND TYPE MEMORY VALUE RESULT

SRC ARRAY OF BOOL[10] %MX0 [0]~[9] : 1 [0]~[9] : 1

DST BYTE %MB10 0
%MB10: 16#FF

%MB11: 16#01

(A) Since TYPE is BOOL, INDX_S, INDX_D, and SIZE are calculated in BOOL type.

(B) Since INDX_S = 1, data is read as much as SIZE(10BIT) from %MX1.

(C) Data of %MX1~%MX10 is written to %MX80(%MB10)~%MX89(%MB11).

Chapter 7. Basic Functions

1
7-174

(4) SRC: ARRAY OF BOOL type direct variable  DST: BYTE type direct variable, TYPE: BYTE(2)

OPERAND VALUE

INDX_S 1

INDX_D 0

SIZE 1

OPERAND TYPE MEMORY VALUE RESULT

SRC ARRAY OF BOOL[0]..[9] %MX0 [0]~[9] : 1 [0]~[9] : 1

DST BYTE %MB10 0 %MB10: 16#03

(A) Since TYPE is BYTE, INDX_S, INDX_D, and SIZE are calculated in BYTE type.

(B) Since INDX_S = 1, data is read as much as SIZE(1BYTE) from %MB1(%MX8~%MX15).

(C) Write the data of %MB1 to %MB10.

(5) SRC: ARRAY OF BOOL type automatic allocation variable  DST: BYTE type automatic allocation

variable, TYPE: BOOL(1)

OPERAND VALUE

INDX_S 1

INDX_D 0

SIZE 10 or 8

Chapter 7. Basic Functions

5
7-175

OPERAND TYPE MEMORY VALUE RESULT

SRC ARRAY OF BOOL[0..9] AUTO [0]~[9] : 1 [0]~[9] : 1

DST BYTE AUTO 0 16#FF

(A) Since TYPE is BOOL, INDX_S, INDX_D, and SIZE are calculated in BOOL units.

(B) Since INDX_S = 1, data is read from SRC[1].

(C) SIZE: 10

- For automatic variables, you must check the type size. When the SIZE is 10, the SIZE is 10 BIT, but the

corresponding instruction cannot be executed because the type size of DST is 8 BIT.

(D) SIZE: 8

- Copy the data of SRC[1]~[8] to DST.

(6) SRC: ARRAY OF BOOL type automatic allocation variable  DST: BYTE type direct variable,

TYPE: BOOL(1)

OPERAND VALUE

INDX_S 1

INDX_D 0

SIZE 10 or 9

OPERAND TYPE MEMORY VALUE RESULT

SRC ARRAY OF BOOL[0..9] AUTO [0]~[9] : 1 [0]~[9] : 1

DST BYTE %MB10 0
%MB10: 16#FF

%MB11: 16#01

(A) Since TYPE is BOOL, INDX_S, INDX_D, and SIZE are calculated in BOOL type.

(B) Since INDX_S = 1, data is read from SRC[1].

(C) SIZE: 10 BIT

- It does not exceed the SRC type size, but since it has moved 1 bit from INDX_S, it exceeds the actual SRC data

Chapter 7. Basic Functions

1
7-176

range. Therefore, the command does not work and an error occurs.

(D) SIZE: 9 BIT

- Even if INDX_S 1BIT is included, it operates normally because it does not exceed the SRC type size.

(E) The data type size of DST is 8BIT, and all exceed the type size of DST. However, since it is a direct device, it is safe

to exceed the size.

(F) If the SIZE is set to 9, the data of SRC[1]~[8] are copied to %MB10 and the remaining SRC[9] data is copied

to %MB11.

(7) SRC: STRUCT type automatic allocation variable  DST: ARRAY OF WORD type automatic allocation

variable, TYPE: BYTE(2)

OPERAND VALUE

INDX_S 0

INDX_D 0

SIZE 8

OPERAND TYPE MEMORY VALUE RESULT

SRC

STRUCT

{

BOOL,

BYTE,

WORD,

}

Auto

BOOL = 1

BYTE = 16#12

WORD = 16#6543

BOOL = 1

BYTE = 16#12

WORD = 16#6543

DST ARRAY OF WORD[0..4] Auto

[0]: 16#FFFF

[1]: 16#FFFF

[2]: 16#FFFF

[3]: 16#FFFF

[4]: 16#FFFF

[0]: 16#1201

[1]: 16#6543

[2]: 16#0000

[3]: 16#0000

[4]: 16#FFFF

(A) Since TYPE is BYTE, INDX_S, INDX_D, and SIZE are calculated in BYTE type.

Chapter 7. Basic Functions

7
7-177

(B) Since the size of STRUCT is allocated in 8 BYTE units, 2 WORDs are additionally allocated after WORD.

(C) Read data as much as 8 BYTE from the start position of SRC and copy to DST[0] ~ DST[3].

(D) The size of STRUCT cannot exceed the size of DST.

Chapter 7. Basic Functions

1
7-178

1.80. GROUP_MOVE32

GROUP_MOVE32 Availability Flags

Copy as the group(INDEX value expansion)
XGI-CPUUN(V1.62)

XG5000 V4.51
_ERR, _LER

Function Description

Input EN : executes the function in case of 1

 SRC : direct variable to move

 INDX_S : the starting position of SRC to move

INDX_D : the starting position of DST to be moved

SIZE : data size to move

Output ENO : without an error, it is 1

 DST : direct variable to be moved

ANY type
variable

Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

SRC ○
DST ○

■ Function

 1. Copy data as much as SIZE from the location designated by INDX_S of the direct variable designated by SRC,
It is saved in the location designated by INDX_D of the direct variable designated by DST.

2. Only direct devices with allocated memory can be used in SRC (I, Q, M, R, W, K, U).
3. The data type size of SRC and DST must match.
4. When using ARRAY, ARRAY_STRUCT type, the location of SRC cannot be changed. ARRAY[index] should be used

with ARY_MOVE function. (Example, ARRAY[index]: not available, ARRAY[1]: available)

Flag Description

_ERR

 If the function is executed after setting the size to exceed the direct variable area allocated to
SRC, an error occurs. At this time, data copying is not performed, and ENO becomes 0. Also,
_ERR and LER flags are set.

 When SRC or DST is an automatic variable area, an error occurs when executing a function
after setting the size to exceed the data type size of the variable. At this time, copying is not
performed and ENO becomes 0. Also, _ERR and _LER flags are set.

 If INDX is negative, an error occurs.
 If SIZE is 0, an error occurs.

Chapter 7. Basic Functions

9
7-179

Caution

 Since commands are copied as many as the number of SIZEs entered by the user
regardless of the input/output type, if the SIZE is not accurately calculated and used, data
in other areas may be overwritten and malfunction may result.

 If INDEX_S/INDEX_D is not 0, copying is performed from the position moved as much
as INDEX from the current position. If this is not used, data in other areas may be
overwritten, resulting in malfunction.

■ Program Example

1. LD

(1) When the execution condition (A) is On, GROUP_MOVE32 function is executed.

(2) Copy data as much as SIZE(3 BYTE) from %MB1 away from SRC location (%MB0) by INDX_S(1), and copy data

to %MB102 away from DST location (%MB100) by INDX_D(2).

Chapter 7. Basic Functions

1
7-180

1.81. GROUP_FILL32

GROUP_FILL32 Availability Flags

Fill group data (INDEX value expansion)
XGI-CPUUN(V1.62)

XG5000 V4.51
_ERR, _LER

Function Description

Input EN : executes the function in case of 1

 DATA : value to fill

SRC : device to be filled in

INDX : first position of DST to write value

LEN : data size to be copied

Output ENO : without an error, it is 1

OUT : output 1 when the operation is successful

ANY type
variable

Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

DATA ○
SRC ○

■ Function

1. Set the value of the DATA variable as much as LEN from the SRC position.
2. Only direct variables can be used in SRC (I, Q, M, R, W, K, U).
3. STRING type input is performed by calculating in BYTE unit.
4. When using ARRAY, ARRAY_STRUCT type, the location of SRC cannot be changed. ARRAY[index] should be

used with ARRAY_FILL command. (Example, ARRAY[index]: not available, ARRAY[1]: available)
5. Even if EN is Off, OUT value is maintained.

Flag Description

_ERR

 If the range of SRC and LEN exceeds the range of the direct device, an error occurs.
At this time, data write is not performed, and ENO and OUT become 0. Also, _ERR
and _LER flags are set.

 If INDX is negative, an error occurs.
 If SIZE is 0, an error occurs.

Chapter 7. Basic Functions

1
7-181

Caution

 Since commands are copied as many as the number of SIZE entered by the user
regardless of the input/output type, if the SIZE is not accurately calculated and used,
data in other areas may be overwritten and malfunction may result.

 If INDEX is not 0, copying is performed from the position moved as many as INDEX
from the current position. If this is not used, data in other areas may be overwritten and
malfunction may result.

■ Program Example

1. LD

(1) When contact A is On, GROUP_FILL32 function is executed.

(2) Write 12 data as many as LEN(3) from %MB1, which is separated by INDX value (1) from SRC position (%MB0).

 %MB1 : 12, %MB2 : 12, %MB3 : 12

Chapter 7. Basic Functions

1
7-182

1.82. ANY_CMP

ANY_CMP Availability Flags

Memory data Comparison
XGI-CPUUN(V1.70)

XG5000 V4.60
_ERR, _LER

Function Description

BOOL

ANY_PTR

ANY_PTR

UINT

UINT

UINT

BOOL

BOOL

EN
ANY_CMP

IN1

IN1_INDX

IN2

ENO

OUT

IN2_INDX

LEN

Input EN: executes the function in case of 1

 IN1: first data to compare

IN1_INDX : starting at comparable positions IN1

IN2: second data to compare

IN2_INDX : starting at comparable positions IN2

LEN: number of elements to compare

Output EN : without an error, it is 1

OUT : output 1 when the operation is successful

ANY type
variable

Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

DATA ○
SRC ○

■ Function

1. Compare the data from the start position of IN1 to the LEN size and the data from the start position of IN2 to the
LEN size.

2. IN1_INDX and LEN are based on IN1 type, and IN2_INDX is based on IN2 type.
3. The types of IN1 and IN2 do not have to match.
4. If IN1, IN2 are automatic variables, LEN cannot exceed the type size range of IN1, IN2
5. In case IN1 and IN2 are direct devices, copy is performed as much as LEN even if LEN exceeds the type size of

IN1, IN2. (Available direct devices: M, I, Q, U, K, R, W).

Flag Description

_ERR

 An error occurs when the LEN command is executed beyond the range of the direct
device allocated to IN1 and IN2. At this time, the command is not executed and ENO
becomes 0. Also, the _ERR and LER flags are set.

 If IN1 or IN2 is an automatic variable area, an error occurs in the case of LEN command
execution that exceeds the type size of the variable. At this time, the command is not
executed and ENO becomes 0. Also, _ERR and LER flags are set..

 If SIZE is 0, an error occurs.

Chapter 7. Basic Functions

3
7-183

■ Program Example

1. LD

EN
ANY_CMP

IN1

IN1_INDX

IN2

ENO

OUT

IN2_INDX

LEN

%MB0

%MW10

2

0

4

OUT

2. ST

 OUT:=ANY_CMP(IN1:=%MB0, IN1_INDX:=2, IN2:=%MW10, IN2_INDX:=0, LEN:=4);

(1) Since IN1 is of Byte type and IN1_INDX = 2, it is compared from the position separated by IN1 + 2Bytes.

(2) Compare the values of %MB2~5 and %MB20~23, respectively.

(3) Outputs out = 1 if all values are the same, and out = 0 if there is at least one other value.

Chapter 7. Basic Functions

1
7-184

1.83. ANY_CMP_EQ

ANY_CMP_EQ Availability Flags

Equivalent comparison of the two Data

Elements

XGI-CPUUN(V1.70)

XG5000 V4.60
_ERR, _LER

Function Description

BOOL

ANY_PTR

ANY_PTR

UINT

UINT

UINT

BOOL

BOOL

ARRAY
OF UDNT

UINT

EN
ANY_CMP_EQ

IN1

IN1_INDX

IN2

ENO

OUT

IN2_INDX

LEN

P_INDX

N

Input EN: executes the function in case of 1

 IN1: first data to compare

IN1_INDX : starting at comparable positions IN1

IN2: second data to compare

IN2_INDX : starting at comparable positions IN2

LEN: number of elements to compare

Output ENO: without an error, it is 1

OUT: if there is a same element, it is 1

P_INDX : position of the same element in IN1

N : The number of same elements

ANY type
variable

Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

DATA ○
SRC ○

■ Function

1. Compare the data from the start position of IN1 to the LEN size and the data from the start position of IN2 to the
LEN size.

2. IN1_INDX and LEN are based on IN1 type, and IN2_INDX is based on IN2 type.
3. The types of IN1 and IN2 do not have to match.
4. If IN1, IN2 are automatic variables, LEN cannot exceed the type size range of IN1, IN2
5. In case IN1 and IN2 are direct devices, copy is performed as much as LEN even if LEN exceeds the type size of

IN1, IN2. (Available direct devices: M, I, Q, U, K, R, W).
6. If the data is the same, the data location of IN1 is stored in P_INDX.
7. Location information exceeding the size of P_INDX Array may be lost.

Chapter 7. Basic Functions

5
7-185

Flag Description

_ERR

 An error occurs when the LEN command is executed beyond the range of the direct
device allocated to IN1 and IN2. At this time, the command is not executed and ENO
becomes 0. Also, the _ERR and LER flags are set.

 If IN1 or IN2 is an automatic variable area, an error occurs in the case of LEN
command execution that exceeds the type size of the variable. At this time, the
command is not executed and ENO becomes 0. Also, _ERR and LER flags are set.

 If SIZE is 0, an error occurs

■ Program Example

1. LD

EN
ANY_CMP_EQ

IN1

IN1_INDX

IN2

ENO

OUT

IN2_INDX

LEN

P_INDX

N

%MB0

%MW10

2

0

4

OUT

P_INDX

N

1

2

3

4

%MB2

%MB5

16#0605

16#0403

%MW10

%MW11

2. ST

 OUT:=ANY_CMP_EQ(IN1:=%MB0, IN1_INDX:=2, IN2:=%MW10, IN2_INDX:=0, LEN:=4, P_INDX=>P_INDX,

N=>N);

(1) Since IN1 is of Byte type and IN1_INDX = 2, it is compared from the position separated by IN1 + 2Bytes.

(2) Compare the values of %MB2~5 and %MB20~23, respectively.

(3) P_INDX[0]=4, P_INDX[1]=5, N=2, OUT = 1 are output.

Chapter 7. Basic Functions

1
7-186

1.84. ANY_CMP_NE

ANY_CMP_NE Availability Flags

Not equal comparison of the two Data

Elements

XGI-CPUUN(V1.70)

XG5000 V4.60
_ERR, _LER

Function Description

BOOL

ANY_PTR

ANY_PTR

UINT

UINT

UINT

BOOL

BOOL

ARRAY
OF UDINT

UINT

EN
ANY_CMP_NE

IN1

IN1_INDX

IN2

ENO

OUT

IN2_INDX

LEN

P_INDX

N

Input EN: executes the function in case of 1

 IN1: first data to compare

IN1_INDX : starting at comparable positions IN1

IN2: second data to compare

IN2_INDX : starting at comparable positions IN2

LEN: number of elements to compare

Output ENO: without an error, it is 1

OUT: if there is a different element, it is 1
P_INDX : position of the same element in IN1

N : The number of array elements that not equal

ANY type
variable

Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

DATA ○
SRC ○

■ Function

1. Compare the data from the start position of IN1 to the LEN size and the data from the start position of IN2 to the
LEN size.

2. IN1_INDX and LEN are based on IN1 type, and IN2_INDX is based on IN2 type.
3. The types of IN1 and IN2 do not have to match.
4. If IN1, IN2 are automatic variables, LEN cannot exceed the type size range of IN1, IN2
5. In case IN1 and IN2 are direct devices, copy is performed as much as LEN even if LEN exceeds the type size of

IN1, IN2. (Available direct devices: M, I, Q, U, K, R, W).
6. If the data is the same, the data location of IN1 is stored in P_INDX.
7. Location information exceeding the size of P_INDX Array may be lost.

Chapter 7. Basic Functions

7
7-187

Flag Description

_ERR

 An error occurs when the LEN command is executed beyond the range of the direct
device allocated to IN1 and IN2. At this time, the command is not executed and ENO
becomes 0. Also, the _ERR and LER flags are set.

 If IN1 or IN2 is an automatic variable area, an error occurs in the case of LEN
command execution that exceeds the type size of the variable. At this time, the
command is not executed and ENO becomes 0. Also, _ERR and LER flags are set.

 If SIZE is 0, an error occurs

■ Program Example

1. LD

EN
ANY_CMP_NE

IN1

IN1_INDX

IN2

ENO

OUT

IN2_INDX

LEN

P_INDX

N

%MB0

%MW10

2

0

4

OUT

P_INDX

N

1

2

3

4

%MB2

%MB5

16#0605

16#0403

%MW10

%MW11

2. ST

 OUT:=ANY_CMP_NE(IN1:=%MB0, IN1_INDX:=2, IN2:=%MW10, IN2_INDX:=0, LEN:=4, P_INDX=>P_INDX,

N=>N);

(1) Since IN1 is of Byte type and IN1_INDX = 2, it is compared from the position separated by IN1 + 2Bytes.

(2) Compare the values of %MB2~5 and %MB20~23, respectively.

(3) P_INDX[0]=4, P_INDX[1]=5, N=2, OUT = 1 are output.

Chapter 7. Basic Functions

1
7-188

Chapter 8. Application Functions

8-1

Chapter 8. Application Functions

This chapter describes application functions unlike the basic functions described in the previous chapter.

Chapter 8. Application Functions

8-2

1.1. ARY_ASC_TO_BCD

ARY_ASC_TO_BCD
Input : ASCII Array, Output: BCD Array

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1
 IN: ASCII Array input

 Output ENO: without an error, it is 1
 OUT: BCD Array output

■ Function

It converts a word array input (ASCII data) to a byte array output (BCD data).

B15

3

B12 B3 B0B4B7B8B11

IN[0] '1' OUT[0]

OUT[1]

OUT[n]

…

0 3 1

3 4

B7 B4 B0B3

0 1

8 9IN[1] 3 8 3 9

IN[n]

…

3 3 3 4
■ Flag

Flag Description

_ERR

If the number of each input/output array is different, there’s no change in OUT data, and _ERR and _LER

flags are set. If the elements of IN array are not between 0 and 9 (hexadecimal), its responding elements of

OUT array are 16#00 (while other elements of IN1 are normally converted), and _ERR and _LER flags are

set.

 ☆ If the number of each input/output array is different, _ERR and _LER flags occur; if output array variable is

omitted, the number of array is regarded as ‘0’ and _ERR and _LER flags occur.

Chapter 8. Application Functions

8-3

■ Program Example

1. LD

EN

IN

ENO

OUT

ARY_ASC
_TO_BCD

ASC_ARY

%MX0

BCD_ARY

2. ST

CD_ARY := ARY_ASC_TO_BCD(EN:=%MX0, IN:=ASC_ARY);

(1) If the transition condition (%MX0) is on, ARY_ASC_TO_BCD function executes.
(2) If the input ASC_ARY data is

ASC_ARY[0] 16#3031

ASC_ARY[1] 16#3839

ASC_ARY[2] 16#3334

Output BCD_ARY data is as follows.

BYTE_ARY[0] 01

BYTE_ARY[1] 89

BYTE_ARY[2] 34

Chapter 8. Application Functions

8-4

1.2. ARY_ASC_TO_BYTE

ARY_ASC_TO_BYTE
Input: ASCII Array, Output: BYTE Array

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

ARY_ASC
_TO_BYTE

ENOEN

IN OUT

BOOLBOOL

ARRAY OF
WORD

ARRAY OF
BYTE

Input EN: executes the function in case of 1

 IN1: ASCII Array input

 Output ENO: without an error, it is 1
 OUT: BYTE Array output

■ Function

It converts a word array input (ASCII data) to a byte array output (hexadecimal).

B15 B12 B3 B0B4B7B8B11

IN[0] OUT[0]

OUT[1]

OUT[n]

B7 B4 B0B3

IN[1]

IN[n]

■ Flag

Flag Description

_ERR
If the number of each input/output array is different, there’s no change in OUT data, and _ERR and _LER flags

are set. If the elements of IN array are not between 0 and F (hexadecimal), its responding elements of OUT

array are 0 (while other elements of IN1 are normally converted), and _ERR and _LER flags are set.

☆ If the number of each input/output array is different, _ERR and _LER flags occur; if output array variable is

omitted, the number of array is regarded as ‘0’ and _ERR and _LER flags occur.

Chapter 8. Application Functions

8-5

■ Program Example

1. LD

EN

IN

ENO

OUT

ARY_ASC
_TO_BYTE

ASC_ARY

%MX0

BYTE_ARY

2. ST

YTE_ARY := ARY_ASC_TO_BYTE(EN:=%MX0, IN:=ASC_ARY);

(1) If the transition condition is (%MX0) is on, ARY_ASC_TO_BYTE function executes.

(2) If Input ASC_ARY is as below;

ASC_ARY[0] 16#3441

ASC_ARY[1] 16#3346

ASC_ARY[2] 16#3239

Output BYTE_ARY data is as follows.

BYTE_ARY[0] 4A

BYTE_ARY[1] 3F

BYTE_ARY[2] 29

Chapter 8. Application Functions

8-6

1.3. ARY_AE

ARY_AVE
Finds an average of an array

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

ANY_NUM

ARY_AVE

ENOEN

IN OUT

BOOLBOOL
ARRAY OF
ANY_NUM

INDX

LEN
INT
INT

Input EN: executes the function in case of 1

IN: data array for average
INDX: starting point to average in an array
LEN: number of array elements for average

 Output ENO: without an error, it will be 1

 OUT: average of an array

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
OUT ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

■ Function

1. ARY_AVE function finds an average for a specified length of an array.
2. Input and output array is the same type.
3. If LEN is a negative number, it finds an average between INDX (Array index) and ‘INDX – |LEN|’. Its output is rounded off.

Function Output type Description

ARY_AVE SINT Finds an average for SINT value (decimal is rounded off)

ARY_AVE INT Finds an average for INT value (decimal is rounded off)

ARY_AVE DINT Finds an average for DINT value (decimal is rounded off)

ARY_AVE LINT Finds an average for LINT value (decimal is rounded off)

ARY_AVE USINT Finds an average for USINT value (decimal is rounded off)

ARY_AVE UINT Finds an average for UINT value (decimal is rounded off)

ARY_AVE UDINT Finds an average for UDINT value (decimal is rounded off)

ARY_AVE ULINT Finds an average for ULINT value (decimal is rounded off)

ARY_AVE REAL Finds an average for REAL value.

ARY_AVE LREAL Finds an average for LREAL value.

Chapter 8. Application Functions

8-7

■ Flag

Flag Description

_ERR

If it is designated beyond the array range, _ERR and _LER flags are set.

If an error occurs, the output is 0.

※ An error occurs when:

INDX < 0 or INDX > max. number of IN

INDX + LEN > max. number of IN

■ Program Example

1. LD

EN

IN

ENO

OUT

ARY_AVE

IN_ARY

%IX1.1.6

RESULT

INDX3

LEN6

2. ST

RESULT := ARY_AVE(EN:=%IX1.1.6, IN:=IN_ARY, INDX:=3, LEN:=6);

(1) If input transition condition (%IX1.1.6) is On, ARY_AVE_INT function executes.
(2) If the value within ARRAY is as same as the above-presented picture, it calculates the average value of 6 from the 3rd

of Array Index.
(3) Since the mean value is 16,044.8 but its output type is INT, it rounds off and outputs 16,045.

Chapter 8. Application Functions

8-8

1.4. ARY_BCD_TO_ASC

ARY_BCD_TO_ASC
Input: BCD Array, Output: ASCII Array

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

ARY_BCD
_TO_ASC

ENOEN

IN OUT

BOOLBOOL

ARRAY OF
BYTE

ARRAY OF
WORD

Input EN: executes the function in case of 1

 IN: BCD array input

 Output ENO: without an error, it is 1

 OUT: ASCII array output

■ Function

It converts a byte array input (BCD) to a word array (ASCII).

B15 B12 B3 B0B4B7B8B11

OUT[0]

OUT[1]

OUT[n]

IN[0]

IN[1]

IN[n]

B7 B4 B0B3

■ Flag

Flag Description

_ERR
If the number of each input/output array is different, there's no change in OUT data, and _ERR and _LER flags

are set. If the elements of IN array are not between 0 and 9 (hexadecimal), its responding elements of OUT

array are 0 (while other elements of IN1 are normally converted), and _ERR and _LER flags are set.

☆ If the number of each input/output array is different, _ERR and _LER flags occur; if output array variable is

omitted, the number of array is regarded as ‘0’ and _ERR and _LER flags occur.

Chapter 8. Application Functions

8-9

■ Program Example

1. LD

EN

IN

ENO

OUT

ARY_BCD
_TO_ASC

BYTE_ARY

%MX0

ASC_ARY

2. ST

ASC_ARY := ARY_BCD_TO_ASC(EN:=%MX0, IN:=BCD_ARY);

(1) If the transition condition (%MX0) is on, ARY_BCD_TO_ASC function executes.

(2) If the input BCD_ARY is as below:

BYTE_ARY[0] 01

BYTE_ARY[1] 89

BYTE_ARY[2] 45

Output ASC_ARY is as follows:

ASC_ARY[0] 3031

ASC_ARY[1] 3839

ASC_ARY[2] 3435

Chapter 8. Application Functions

8-10

1.5. ARY_BYTE_TO_ASC

ARY_BYTE_TO_ASC
Input: BYTE Array, Output: ASCII Array

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1

 IN: BYTE array input

 Output ENO: without an error, it is 1
 OUT: ASCII Array output

■ Function

It converts a byte array input (HEX) to a word array (ASCII).

■ Flag

Flag Description

_ERR
If the number of each input/output array is different, there's no change in OUT data, and _ERR and _LER flags

are set.

☆ If the number of each input/output array is different, _ERR and _LER flags occur; if output array variable is omitted,

the number of array is regarded as ‘0’ and _ERR and _LER flags occur.

Chapter 8. Application Functions

8-11

■ Program Example

1. LD

EN

IN

ENO

OUT

ARY_BYTE
_TO_ASC

BYTE_ARY

%MX0

ASC_ARY

2. ST

ASC_ARY := ARY_BYTE_TO_ASC(EN:=%MX0, IN:=BYTE_ARY);

(1) If the transition condition (%MX0) is on, ARY_BYTE_TO_ASC function executes.

(2) If the input BYTE_ARY is as below:

BYTE_ARY[0] 4A

BYTE_ARY[1] 3F

BYTE_ARY[2] 29

The output ASC_ARY is as follows:

ASC_ARY[0] 3441

ASC_ARY[1] 3346

ASC_ARY[2] 3239

Chapter 8. Application Functions

8-12

1.6. ARY_CMP

ARY_CMP
Array comparison

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

BOOL

ARY_CMP

ENOEN

IN1

IN1_INDX

OUT

BOOLBOOL

*ARRAY
OF ANY

INT
IN2

IN2_INDX

LENINT

INT

*ARRAY
OF ANY

Input EN: executes the function in case of 1

 IN1: first array to compare
 IN1_INDX : starting point in 1st array for comparison
 IN2: second array to compare
 IN2_INDX : starting point in 2nd array for comparison
 LEN: number of elements to compare

 Output ENO: without an error, it is 1

 OUT: if two arrays are equal, it is 1

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN1 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
IN2 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

*ARRAY OF ANY: exclude STRING from ANY type.

■ Function

1. It compares two arrays whether they have the same value.
2. If LEN is a negative number, it compares two arrays between IN*_INDX (Array INDX) and “Array INDX – |LEN|.”

Function Input array type Description

ARY_CMP BOOL Compares two BOOL Arrays.

ARY_CMP BYTE Compares two BYTE Arrays.

ARY_CMP WORD Compares two WORD Arrays.

ARY_CMP DWORD Compares two DWORD Arrays.

ARY_CMP LWORD Compares two LWORD Arrays.

ARY_CMP SINT Compares two SINT Arrays.

ARY_CMP INT Compares two INT Arrays.

ARY_CMP DINT Compares two DINT Arrays.

ARY_CMP LINT Compares two LINT Arrays.

ARY_CMP USINT Compares two USINT Arrays.

Chapter 8. Application Functions

8-13

Function Input array type Description

ARY_CMP UINT Compares two UINT Arrays.

ARY_CMP UDINT Compares two UDINT Arrays.

ARY_CMP ULINT Compares two ULINT Arrays.

ARY_CMP REAL Compares two REAL Arrays.

ARY_CMP LREAL Compares two LREAL Arrays.

ARY_CMP TIME Compares two TIME Arrays.

ARY_CMP DATE Compares two DATE Arrays.

ARY_CMP TOD Compares two TOD Arrays.

ARY_CMP DT Compares two DT Arrays.

■ Flag

Flag Description

_ERR

If it is designated beyond the array range, _ERR and _LER flags are set.

※ An error occurs when:

 IN1_INDX < 0 or IN1_INDX > max. number of IN1

 IN2_INDX < 0 or IN2_INDX > max. number of IN2

IN1_INDX + LEN  max. number of IN1

IN2_INDX + LEN  max. number of IN2

■ Program Example

 1. LD

EN

IN1

ENO

OUT

ARY_CMP

IN_ARY1

%MX0

%QX1.3.2

IN1_
INDX

10

IN2IN_ARY2

IN2_
IXDX

0

LEN10

2. ST

%QX1.3.2 := ARY_CMP(EN:=%MX0, IN1:=IN_ARY1, IN1_INDX:=10, IN2:=IN_ARY2, IN2_INDX:=0, LEN:=10);

(1) If the input transition condition (%MX0) is on, ARY_CMP function executes.

(2) When IN_ARY1 is a time array with 100 elements and IN_ARY2 is a time array with 10 elements, if the elements

from 11th to 20th of IN_ARY1 and the elements of IN_ARY 2 are equal, the output %Q1.3.2 is on.

Chapter 8. Application Functions

8-14

1.7. ARY_FLL

ARY_FLL
Filling an array with data

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1

 DATA: the data to fill an array
 INDX: starting point of an array to be filled
 LEN: number of array elements to be filled

 Output ENO: without an error, it is 1
 OUT: without an error, it is 1

 In/Out SRC: an array to be filled

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

DATA ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
SRC ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

*ARRAY OF ANY: exclude STRING from ANY type.

■ Function

1. It fills an array with the input data.
2. If LEN is minus, it fills an array from INDX to “INDX – |LEN|.”

Function In/out array type Description

ARY_FLL BOOL Fills a BOOL Array with the input data.

ARY_FLL BYTE Fills a BYTE Array with the input data.

ARY_FLL WORD Fills a WORD Array with the input data.

ARY_FLL DWORD Fills a DWORD Array with the input data.

ARY_FLL LWORD Fills a LWORD Array with the input data.

ARY_FLL SINT Fills a SINT Array with the input data.

ARY_FLL INT Fills a INT Array with the input data.

ARY_FLL DINT Fills a DINT Array with the input data.

ARY_FLL LINT Fills a LINT Array with the input data.

ARY_FLL USINT Fills a USINT Array with the input data.

ARY_FLL UINT Fills a UINT Array with the input data.

ARY_FLL UDINT Fills a UDINT Array with the input data.

Chapter 8. Application Functions

8-15

Function In/out array type Description

ARY_FLL ULINT Fills a ULINT Array with the input data.

ARY_FLL REAL Fills a REAL Array with the input data.

ARY_FLL LREAL Fills a LREAL Array with the input data.

ARY_FLL TIME Fills a TIME Array with the input data.

ARY_FLL DATE Fills a DATE Array with the input data.

ARY_FLL TOD Fills a TOD Array with the input data.

ARY_FLL DT Fills a DT Array with the input data.

■ Flag

Flag Description

_ERR

If it is designated beyond the array range, _ERR and _LER flags are set.

If an error occurs, there’s no change in arrays and OUT is Off.

※ An error occurs when:

 INDX < 0 or INDX > max. element number of IN

 INDX + LEN  max. element number of IN

■ Program Example

1. LD

2. ST

OUT :=ARY_FLL(EN:=%MX0, DATA:=34, SRC:=IN_ARY, INDX:=2, LEN:=4);

 IF _ERR = 1 AND _LER = 1 THAN %QX1.3.15 := 1;

 END_IF;

Chapter 8. Application Functions

8-16

IN_ARY 10-INT Arrary

It fills 4 elements starting from Array Index 2

0 1 2 3 4 5 6 7 8 9

(1) If input condition (%MX0) is on, ARY_FLL function executes.

(2) It fills 4 elements of IN_ARY starting from INDX with 34.

(3) If LEN is 9, it is beyond the array range and an error occurs; _ERR and _LER flags are on and the output

(%QX1.13.15) is on.

Chapter 8. Application Functions

8-17

1.8. ARY_MOVE

ARY_MOVE
Array move

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN : executes the function in case of 1

 MOVE_NUM: array number to move

IN: array variable to move (STRING type, unavailable)

 IN_INDX: starting pointer of array to move

 OUT_INDX: starting pointer of array to be moved

Output ENO: without an error, it is 1

OUT: array variable to be moved (STRING type,

unavailable)

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
OUT ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

*ARRAY OF ANY: exclude STRING from ANY type.

■ Function

1. If EN is 1, it moves IN data to OUT.
2. It copies MOVE_NUM elements of IN (from IN_INDX) and pastes it in OUT (from OUT_INDX).
3. IN and OUT are the same data type (the number of each array can be different).
4. The data size is as follows:

Data size Variable type
1 Bit BOOL
8 Bit BYTE/ SINT/ USINT
16 Bit WORD / INT / UINT / DATE
32 Bit DWORD / DINT / UDINT / TIME / TOD
64 Bit DT

Chapter 8. Application Functions

8-18

■ Flag

Flag Description

_ERR

An error occurs when IN and OUT array data sizes are different. An error occurs when 1)
the array number of IN Array < (IN_INDX + MOVE_NUM) and 2) the array number of OUT
Array < (OUT_INDX + MOVE_NUM).
Then ARY_MOVE function is not executed, and OUT is 0. EN0 is Off and _ERR and

_LER flags are set.

☆ If the number of each input/output array is different, _ERR and _LER flags occur; if output array variable is

omitted, the number of array is regarded as ‘0’ and _ERR and _LER flags occur.

■ Program Example

Variable name Variable type Array number

ARY_SRC INT 10

ARY_DES WORD 15

1. LD

EN

MOVE_NUM

ENO

OUT

ARY_MOVE

5

A

INARY_SRC

ARY_DES

IN_INDX5

OUT_INDX10

2. ST

ARY_DES := ARY_MOVE(EN:=A, MOVE_NUM:=5, IN:=ARY_SRC, IN_INDX:=5, OUT_INDX:=10);

(1) If the transition condition (A) is on, ARY_MOVE function executes.

(2) It moves 5 elements from ARY_SRC[5] to ARY_DES[10].

Now the data type of ARY_DES is WORD, it’s a hexadecimal.

Before After
ARY_SRC[0] 0 ARY_DES[0] 16#0 ARY_SRC[0] 0 ARY_DES[0] 16#0
ARY_SRC[1] 11 ARY_DES[1] 16#1 ARY_SRC[1] 11 ARY_DES[1] 16#1
ARY_SRC[2] 22 ARY_DES[2] 16#2 ARY_SRC[2] 22 ARY_DES[2] 16#2
ARY_SRC[3] 33 ARY_DES[3] 16#3 ARY_SRC[3] 33 ARY_DES[3] 16#3

Chapter 8. Application Functions

8-19

Before After
ARY_SRC[4] 44 ARY_DES[4] 16#4 ARY_SRC[4] 44 ARY_DES[4] 16#4
ARY_SRC[5] 55 ARY_DES[5] 16#5 ARY_SRC[5] 55 ARY_DES[5] 16#5
ARY_SRC[6] 66 ARY_DES[6] 16#6 ARY_SRC[6] 66 ARY_DES[6] 16#6
ARY_SRC[7] 77 ARY_DES[7] 16#7 ARY_SRC[7] 77 ARY_DES[7] 16#7
ARY_SRC[8] 88 ARY_DES[8] 16#8 ARY_SRC[8] 88 ARY_DES[8] 16#8
ARY_SRC[9] 99 ARY_DES[9] 16#9 ARY_SRC[9] 99 ARY_DES[9] 16#9

- - ARY_DES[10] 16#A - - ARY_DES[10] 16#37
- - ARY_DES[11] 16#B - - ARY_DES[11] 16#42
- - ARY_DES[12] 16#C - - ARY_DES[12] 16#4D
- - ARY_DES[13] 16#D - - ARY_DES[13] 16#58
- - ARY_DES[14] 16#E - - ARY_DES[14] 16#63

Chapter 8. Application Functions

8-20

1.9. ARY_ROT_C

ARY_ROT_C
Array Bit Rotate with Carry

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

ARY_ROT_C

ENOEN

SRC

BOOLBOOL

STRT

ENDUINT

UINT

*ARRARY OF
 ANY_BIT

N

SRC

UINT

CYO ARRARY
OF BOOL

*ARRARY OF
ANY_BIT

Input EN: executes the function in case of 1

 STRT: starting bit to rotate
 END: ending bit to rotate
 N: number to rotate

 Output ENO: without an error, it is 1
 CYO: Output Carry bit Array after rotate

 Input/Output SRC: Source Array to rotate

ANY type variable Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

SRC ○ ○ ○ ○

*ARRAY OF ANY_BIT: exclude BOOL from ANY_BIT type.

■ Function

1. It rotates as many bits of array elements as they’re specified.

2. Setting

- Scope: it sets a rotation scope with STRT and END.

- Rotation direction and time: it rotates N times from STRT to END.

- Output: the result is stored in configured array in SRC and a bit array data from END to STRT is written at CYO.

Chapter 8. Application Functions

8-21

1 Bit Rotate
Execution

CYO(4 WORD Arrary)

STRT:3

END:13

MSB LSB

CYO[0]

CYO[1]

CYO[2]

CYO[3]

1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1

1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1

1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0

0

0

0

SRC[0]

SRC[1]

SRC[2]

SRC[3]

CYO[0]

CYO[1]

CYO[2]

CYO[3]

1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1

1 1 0 0 0 1 1 1 1 1 0 0 1 0 1 1

1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1

1

0

0

SRC[0]

SRC[1]

SRC[2]

SRC[3]

CYO

Function In/Out Array Type Description

ARY_ROT_C BYTE

It rotates elements of an array as many bits as specified.
ARY_ROT_C WORD

ARY_ROT_C DWORD

ARY_ROT_C LWORD

■ Flag

Flag Description

_ERR
If the number of SRC and CYO Arrays are different, _ERR and _LER flags are set.

If STRT and END are out of bit range of SRC, an error occurs.

When an error occurs, there’s no change in SRC and CYO.

☆ If the number of each input/output array is different, _ERR and _LER flags occur; if output array variable is omitted,

the number of array is regarded as ‘0’ and _ERR and _LER flags occur.

Chapter 8. Application Functions

8-22

■ Program Example

1. LD

EN

N

ENO

CY0

ARY_ROT_C

2

%MX2

SRCIN_ARY

START

13 END

3 CY0

SRC IN_ARY

P

2. ST

ARY_ROT_C(EN:=%MX2, SRC:=IN_ARY, STRT:=3, END:=13, N:=2, CYO=>CYO);

(1) If the input condition (%MX2) is on, ARY_ROT_C function executes.

(2) It rotates 2 times the bit (from 3 to 13 bit) arrays of IN_ARY from STRT to END.

(3) The result is stored at IN_ARY and the carry bit arrays are written in CYO Array.

STRT:3

END:13

ARY_SC

Chapter 8. Application Functions

8-23

1.10. ARY_SCH

ARY_SCH
Array search

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: executes the function in case of 1

 DATA: data to search
 IN: array to search

 Output ENO: outputs EN value as it is
 OUT: if it finds, it is 1

P: first position of an object array

N: total number of array elements equal to an

object

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

DATA ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
IN ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

*ARRAY OF ANY: exclude STRING from ANY type.

■ Function

It finds an equal value of input in arrays and produces its first position and total number. When it finds at least one which is equal
to an object in arrays, OUT is 1.

Function Input Array type Description

ARY_SCH BOOL Search in BOOL Array.

ARY_SCH BYTE Search in BYTE Array.

ARY_SCH WORD Search in WORD Array.

ARY_SCH DWORD Search in DWORD Array.

ARY_SCH LWORD Search in LWORD Array.

ARY_SCH SINT Search in SINT Array.

ARY_SCH INT Search in INT Array.

ARY_SCH DINT Search in DINT Array.

ARY_SCH LINT Search in LINT Array.

ARY_SCH USINT Search in USINT Array.

ARY_SCH UINT Search in UINT Array.

Chapter 8. Application Functions

8-24

Function Input Array type Description

ARY_SCH UDINT Search in UDINT Array.

ARY_SCH ULINT Search in ULINT Array.

ARY_SCH REAL Search in REAL Array.

ARY_SCH LREAL Search in LREAL Array.

ARY_SCH TIME Search in TIME Array.

ARY_SCH DATE Search in DATE Array.

ARY_SCH TOD Search in TOD Array.

ARY_SCH DT Search in DT Array.

■ Program Example

1. LD

2. ST

%QX1.3.0 := ARY_SCH(EN:=%MX1, DATA:=16#22, IN:=IN_ARY, P=>POS, N=>NUM);

(1) If the input condition (%MX1) is on, ARY_SCH function executes.

(2) When IN_ARY is a 10-byte array, if you search for “22h” in this array, three bytes are found as the above.

(3) The result is: 1) 1, the first position of an array, is stored at POS; 2) 3, the total number, is stored at NUM. The total

number is 3, so the output %Q1.3.0 is on.

Chapter 8. Application Functions

8-25

1.11. ARY_SCH2

ARY_SCH2

Array search

Availability
XGI-CPUUN V1.62

XG5000 V4.52

Flags

Function Description

BOOL

BOOL

ARY_SCH2

ENOEN

DATA OUT

BOOL

ANY

*ARRAY
OF ANY

IN
ARRAY
OF UINT

P

UINTN

Input EN : executes the function in case of 1

 DATA : data to search
 IN : array to search

 Output ENO : Output 1 if executed without error
 OUT : if it finds, it is 1

P : ARRAY that stores the location of the found
value

N : total number of array elements equal to an
object

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

DATA ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
IN ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

*ARRAY OF ANY: exclude STRING from ANY type.

■ Function

1. ARY_SCH2 function compares the value input in ARRAY (IN variable) with the value input in DATA variable, finds the
same value, stores all the locations found in P variable, and outputs the number of found in variable N..

2. If there is more than one value equal to the target value in the input ARRAY (IN variable), 1 is output to OUT.

3. As the position value can be stored as much as the ARRAY size defined in the variable P, the appropriate ARRAY size
must be declared.

ex) If the array size of P variable is allocated as much as 10, only 10 can be saved, so if N is larger than 10, all locations
cannot be saved.)

Chapter 8. Application Functions

8-26

■ Program Example

1. LD

ON
ARY_SCH2

ENOEN

DATA OUT

IN P

N

DATA

IN

ENO

OUT

P

N

2. ST

(*BOOL*):=ARY_SCH2(DATA:=(*ANY_ELEMENTARY*), IN:=(*ARRAY[0..-1]_OF_ANY_ELEMENTARY*),

P=>(*ARRAY[0..-1]_OF_UINT*), N=>(*UINT*));

(1) When DATA variable is BOOL type

Variable name Type Input Value

DATA BOOL 1

IN

ARRAY OF

BOOL[0..4]

IN[0]

IN[1]

IN[2]

IN[3]

IN[4]

0

1

0

1

0

Variable name Type Out Value

OUT BOOL 1

P

ARRAY OF

UINT[0..3]

P[0]

P[1]

P[2]

P[3]

1

3

0

0

N UINT 2

- Finds the value 1 of the DATA variable in the IN ARRAY variable, stores the positions of all elements in the P

variable, and outputs the found number to the N variable.

- Since IN[1] and IN[3] are set to 1, the position data is stored in P[0] and P[1] respectively.

Chapter 8. Application Functions

8-27

- The number of matching data values N variable is 2.

0

0

1

3

0 1 0 1 0

[0] [1] [2] [3] [4]

IN

P[0]

P[1]

P[2]

P[3]

(2) When DATA variable is BYTE type

Variable name Type Input Value

DATA BYTE 16#12

IN

ARRAY OF

BOOL[0..4]

IN[0]: 16#12

IN[1]: 16#00

IN[2]: 16#33

IN[3]: 16#12

IN[4]: 16#12

Variable name Type Out Value

OUT BOOL 1

P
ARRAY OF

UINT[0..1]

P[0]: 0

P[1]: 3

N UINT 3

- Finds the DATA(16#12) value in the IN ARRAY element, stores the positions of all elements in P, and outputs the

number of found in N.

- Since IN[0], IN[3], IN[4] are the same as the value of the DATA variable, the position data is saved. However, since

the size of the P variable ARRAY is 2, only the first two positions can be stored in P[0] and P[1], respectively.

- The number of matching data values N is 3.

16#33

16#12

16#12

16#00

IN[0]

IN

0

3

P

16#12

X
IN[1]

IN[2]

IN[3]

IN[4]

Chapter 8. Application Functions

8-28

1.12. ARY_SFT_C

ARY_SFT_C
Array of Bit Shift Left with Carry

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1

 CYI: Input Carry bit Array
 STRT: starting bit to shift
 END: ending bit to shift
 N: bit number to shift

 Output ENO: without an error, it is 1
 CYO: Output Carry bit Array after shift

 In/Out SRC: Source Array to shift

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

SRC ○ ○ ○ ○

*ARRAY OF ANY_BIT: exclude BOOL from ANY_BIT type.

■ Function

4. It shifts as many bits of array elements as specified.

5. Setting
- Scope: it sets a shifting scope with STRT and END.
- Shifting direction and time: it shifts N times from STRT to END.
- Input data: it fills the empty bits with input data (CYI).
- Output: the result is stored in ANY_BIT_ARY and an overflowing bit array data from END is written at CYO.

Chapter 8. Application Functions

8-29

STR
T:

EN
D:

Function In/Out array type Description

ARY_SFT_C BYTE

It shifts as many bits of array elements as specified.
ARY_SFT_C WORD

ARY_SFT_C DWORD

ARY_SFT_C LWORD

■ Flag

Flag Description

_ERR
If the number of CYI, SRC and CYO Array are different, _ERR and _LER flags are set.

An error occurs if STRT and END are out of SRC range.

When an error occurs, there’s no change in SRC and CYO.

☆ If the number of each input/output array is different, _ERR and _LER flags occur; if output array variable is omitted,

the number of array is regarded as ‘0’ and _ERR and _LER flags occur.

Chapter 8. Application Functions

8-30

■ Program Example

1. LD

EN

CYI

ENO

CYO

ARY_SFT_C

CYI

%MX2

CYO

SRCSRC_ARY

START13

END4

N3

SRC SRC_ARY

2. ST

ARY_SFT_C(EN:=%MX2, CYI:=CYO, SRC:=SRC_ARY, STRT:=13, END:=4, N:=2, CYO=>CYO);

(1) If input condition (%MX2) is on, ARY_SFT_C function executes.

(2) It shifts a bit array (from 4 to 13 bit) of SRC 3 times from STRT to END.

(3) The bit array after shifting is filled with CYI (2#0011).

(4) It produces its shifting result at SRC_ARY and a carry bit array is written at CYO.

STR
T

:

EN
D:

Chapter 8. Application Functions

8-31

1.13. ARY_SWAP

ARY_SWAP
Upper/Lower elements swapping of an array

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

ARY_SWAP

ENOEN

IN OUT

BOOLBOOL

*ARRAY OF
ANY_BIT

*ARRAY OF
ANY_BIT

Input EN: executes the function in case of 1

 IN1: array input

 Output ENO: without an error, it is 1

 OUT: array output after swapping

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○ ○ ○
OUT ○ ○ ○ ○

*ARRAY OF ANY_BIT: exclude BOOL from ANY_BIT type.

■ Function
It swaps upper/lower elements after dividing an array.

■ Flag

Flag Description

_ERR _ERR and _LER flags are set if two arrays are different; there’s no change in an OUT array.

☆ If the number of each input/output array is different, _ERR and _LER flags occur; if output array variable is omitted,

the number of array is regarded as ‘0’ and _ERR and _LER flags occur.

Chapter 8. Application Functions

8-32

■ Program Example

1. LD

EN

IN

ENO

OUT

ARY_SWAP

 IN_ARY

%MX0

OUT_ARY

2. ST

OUT_ARY := ARY_SWAP(EN:=%MX0, IN:=IN_ARY);

(1) If the transition condition (%MX0) is on, ARY_SWAP function with WORD type executes.

(2) If IN_ARY data is as below:

IN_ARY[0] 12AB

IN_ARY[1] 23BC

IN_ARY[2] 34CD

OUT_ARY data is as follows:

OUT_ARY[0] AB12

OUT_ARY[1] BC23

OUT_ARY[2] CD34

Chapter 8. Application Functions

8-33

1.14. ARY_TO_BCD

ASC_TO_BCD
Converts ASCII to BCD

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1.

 IN: ASCII input

 Output ENO: without an error, it is 1

 OUT: BCD output

■ Function

It converts two ASCII data into two-digit BCD (Binary Coded Decimal) data.

■ Flag

Flag Description

_ERR If IN is not a hexadecimal number between 0 ~ 9, the output is 0 and _ERR and _LER flags are set.

■ Program Example

1. LD

EN

IN

ENO

OUT

ASC_TO_BCD

ASCII_VAL

%MX0

BCD_VAL

2. ST

BCD_VAL := ASC_TO_BCD(EN:=%MX0, IN:=ASCII_VAL);

(1) If the transition condition (%MX0) is on, ASC_TO_BCD function executes.

(2) If input variable ASCII_VAL (WORD) = 16#3732 = “72”, output variable BCD_VAL (BYTE) = 16#72.

Chapter 8. Application Functions

8-34

1.15. ARY_TO_BYTE

ASC_TO_BYTE
Converts ASCII to BYTE data

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER
ASC

Function Description

BYTE

ASC_TO_BYTE

ENOEN

IN1 OUT

BOOLBOOL

WORD

Input EN: executes the function in case of 1.

 IN: ASCII input

 Output ENO: without an error, it is 1

 OUT: BYTE Output

■ Function

It converts two ASCII data to 2-digit hexadecimal (HEX).

■ Flag

Flag Description

_ERR If IN is not between ‘0’ and ‘F’, its output is 0 and _ERR and _LER flags are set.

■ Program Example

1. LD

EN

IN

ENO

OUT

ASC_TO_BYTE

ASCII_VAL

%MX0

BYTE_VAL

2. ST

BYTE_VAL := ASC_TO_BYTE(EN:=%MX0, IN:=ASCII_VAL);

(1) If the transition condition (%MX0) is on, ASC_TO_BYTE function executes.

(2) If input ASCII_VAL (WORD) = 16#4339, output BYTE_VAL (BYTE) = 16#C9.

Chapter 8. Application Functions

8-35

1.16. ARY_TO_BYTE

BCD_TO_ASC
Converts BCD to ASCII data

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1.

 IN: BCD input

 Output ENO: without an error, it is 1

 OUT: ASCII Output

■ Function

It converts 2-digit BCD data to two ASCII data.

■ Flag

Flag Description

_ERR If IN is not a hexadecimal number between 0 and 9, its output is 16#3030 (“00”) and _ERR/_LER flags are set.

■ Program Example
1. LD

EN

IN

ENO

OUT

BCD_TO_ASC

BCD_VAL

%MX0

ASCII_VAL

2. ST

 ASCII_VAL := BCD_TO_ASC(EN:=%MX0, IN:=BCD_VAL);

(1) If the transition condition (%MX0) is on, BCD_TO_ASC function executes.
(2) If input BCD_VAL (BYTE) = 16#85, output ASCII_VAL (WORD) = 16#3835 = “85.”

Chapter 8. Application Functions

8-36

1.17. _BYTE

BIT_BYTE
Combines 8 bits into BYTE

Availability XGI, XGR, XEC, XMC

Flags

Function Description

BYTE

BIT_BYTE

 ENOEN

IN1 OUT

BOOLBOOL

BOOL

IN2

IN3

IN4

IN5

IN6

IN7
IN8

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

Input EN: executes the function in case of 1.

 IN1 ~ IN8: Bit input

 Output ENO: without an error, it is 1

 OUT: Byte output

■ Function

It combines 8 bits into one byte.
IN8: MSB (Most Significant Bit), IN1: LSB (Least Significant Bit).

■ Program Example

 1. LD

EN

IN1

ENO

OUT

BIT_BYTE

INPUT1

%MX3

OUTPUT

INPUT2

INPUT3

INPUT4

INPUT5

INPUT6

INPUT7

INPUT8

IN2

IN3

IN4

IN5

IN6

IN7

IN8

Chapter 8. Application Functions

8-37

2. ST

OUTPUT := BIT_BYTE(EN:=%MX3, IN1:=INPUT1, IN2:=INPUT2, IN3:=INPUT3, IN4:=INPUT4, IN5:=INPUT5, IN6:=INPUT6,
IN7:=INPUT7, IN8:=INPUT8);

 (1) If the transition condition (%MX3) is on, BIT_BYTE function executes.
(2) If 8 input are (from INPUT1 to INPUT 8) {0,1,1,0,1,1,0,0}, OUTPUT (BYTE) = 2#0110_1100.

Chapter 8. Application Functions

8-38

BMOV

BMOV
Moves part of a bit string

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

*ANY_BIT

BMOV

ENOEN

IN2

OUT

BOOLBOOL

IN1_P

IN2_P

INT

INT

NINT

IN1*ANY_BIT

*ANY_BIT

Input EN: executes the function in case of 1.

 IN1: String data having bit data to be combined

 IN2: String data having bit data to be combined

 IN1_P: Start bit position on IN1 set data

 IN2_P: Start bit position on IN2 set data

 N: Bit number to be combined

 Output ENO: without an error, it is 1

 OUT: Combined bit string data output

ANY type variable

Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN1 ○ ○ ○ ○
IN2 ○ ○ ○ ○

OUT ○ ○ ○ ○

*ANY_BIT: exclude BOOL from ANY_BIT type.

■ Function

1. If EN is 1, it takes N bits of IN1 starting from the IN1_P bit and moves it to IN2 starting from IN2_P bit.
2. If N1 = 1111_0000_1111_0000, IN2 = 0000_1010_1010_1111, IN1_P = 4, IN2_P = 8, N = 4, then output data is

0000_1111_1010_1111. Input data types are B (BYTE), W (WORD), D (DWORD), L (LWORD).
■ Flag

Flag Description

_ERR
If IN1_P and IN2_P exceed the data range or N is negative or N bit of IN1_P and IN2_P exceeds the data

range, _ERR and _LER flags are set.

Chapter 8. Application Functions

8-39

■ Program Example

1. LD

EN

IN1

ENO

CY0

BMOV

SOURCE

%MX0

DESTINE

IN2DESTINE

IN1_P0

IN2_P0

N4

2. ST

DESTINE := BMOV(EN:=%MX0, IN1:=SOURCE, IN2:=DESTINE, IN1_P:=0, IN2_P:=0, N:=4);

(1) If the transition condition (%MX0) is on, BMOV function executes.
(2) Since SOURCE = 2#0101_1111_0000_1010, DESTINE = 2#0000_0000_0000_0000 as declared as input variable

and IN1_ P = 0, IN2_P = 8, N = 4, the operations yields 2#0000_1010_0000_0000, and it is changed to DESTINE
= 2#0000_1010_0000_0000 because output is designated as DESTINE.

Chapter 8. Application Functions

8-40

1.18. BSUM

BSUM
Counts on-bit number of input

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: executes the function in case of 1.

IN: input data to detect on bit

 Output ENO: outputs EN value as it is

OUT: Result data (sum of on-bit number)

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○ ○ ○

*ANY_BIT: exclude BOOL from ANY_BIT type.

■ Function

1. If EN is 1, it counts bit number of 1 among IN bit string and produces output, OUT.
2. Input data types are BYTE, WORD, DWORD and LWORD.

Function IN type Description

BSUM BYTE

You can select one of these functions according to input data.
BSUM WORD

BSUM DWORD

BSUM LWORD

Chapter 8. Application Functions

8-41

■ Program Example

1. LD

2. ST

 ON_COUNT := BSUM(EN:=%MX0, IN:=SWITCHS);

(1) If the transition condition (%MX0) is on, BSUM function executes.

(2) If input SWITCHS (WORD) = 2#0000_0100_0010_1000, then it counts on-bit number, 3. So the output ON_COUNT

(INT) = 3.

Chapter 8. Application Functions

8-42

1.19. BIT

BYTE_BIT
Divides byte into 8 bits

Availability XGI, XGR, XEC, XMC

Flags

Function Description

BOOL

BYTE_BIT

ENOEN

IN

BOOLBOOL

Q01

Q02

Q03

Q04

Q05

Q06

 Q07

BOOL

BOOL

BOOL

BOOL

BOOL

BOOL

BOOLQ08

BYTE

Input EN: executes the function in case of 1.

 IN: BYTE input

 Output ENO: outputs EN value as it is

 QO1~8: bit output

■ Function

1. It divides one byte into 8 bits (QO1~QO2).
2. QO8: MSB (Most Significant Bit), QO1: LSB (Least Significant Bit)

Chapter 8. Application Functions

8-43

■ Program Example

1. LD

EN

BIT1

ENO

INPUT

BYTE_BIT

Q01

%MX0

IN

Q02

Q03

Q04

Q05

Q06

Q07

Q08

BIT2

BIT3

BIT4

BIT5

BIT6

BIT7

BIT8

2. ST

BYTE_BIT(EN:=%MX0, IN:= INPUT, Q01=> BIT1, Q02=> BIT2, Q03=> BIT3, Q04=> BIT4, Q05=> BIT5, Q06=> BIT6, Q07=>
BIT7, Q08=> BIT8);

(1) If the execution condition (%MX0) is on, BYTE_BIT function executes.
(2) If INPUT = 16#AC = 2#1010_1100, it distributes INPUT from Q01 to Q08 in order. The order is 2#{0, 0, 1, 1, 0, 1, 0, 1}.

Chapter 8. Application Functions

8-44

1.20. BYTE_TO_ASC

BYTE_TO_ASC

Converts BYTE to ASCII data

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: executes the function in case of 1.

 IN: BYTE input

 Output ENO: outputs EN value as it is

 OUT: ASCII output

■ Function

1. It converts 2-digit hexadecimal into two ASCII data.
Ex) 16#12 -> 3132

2. In case of 16#A~F, it produces ASCII data for character.

■ Program Example

1. LD

EN

IN

ENO

OUT

BYTE_TO_ASC

BYTE_VAL

%MX0

ASCII_VAL

2. ST

ASCII_VAL := BYTE_TO_ASC(EN:=%MX0, IN:=BYTE_VAL);

(1) If the transition condition (%MX0) is on, BYTE_TO_ASC function executes.
(2) If input BYTE_VAL (BYTE) = 16#3A, output ASCII_VAL (WORD) = 16#3341 = ‘3’, ‘A’.

Chapter 8. Application Functions

8-45

1.21. BYTE_WORD

BYTE_WORD
Combines 2 bytes into WORD

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: executes the function in case of 1.

 LOW: lower BYTE input
 HIGH: upper BYTE input

 Output ENO: outputs EN value as it is

 OUT: WORD output

■ Function

It combines two bytes into one word.
LOW: lower BYTE input, HIGH: upper BYTE input

■ Program Example
1. LD

EN

LOW

ENO

OUT

BYTE_WORD

BYTE_IN1

%MX3

OUTPUT

HIGHBYTE_IN2

2. ST

OUTPUT := BYTE_WORD(EN:=%MX3, LOW:=BYTE_IN1, HIGH:=BYTE_IN2);

(1) If the transition condition (%MX3) is on, BYTE_WORD function executes.
(2) If input BYTE_IN1 = 16#56 and BYTE_IN2 = 16#AD, output variable OUTPUT = 16#AD56.

Chapter 8. Application Functions

8-46

1.22. BYTE_STRING

 BYTE_STRING
Converting Byte Array to String

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN : executes the function in case of 1
 IN : input Byte Array

Output ENO : outputs EN value as it is
 OUT : outputs converted string

■ Function

Converts Byte Array to a string.

■ Program Example

 1. LD

EN

IN

ENO

OUT

BYTE_STRING

INPUT

%MX2

RESULT

2. ST

RESULT := BYTE_STRING(EN:=%MX2, IN:=INPUT);

(1) If the execution condition(%MX2) is on, BYTE_STRING function executes.
(2) If setting INPUT array variable as 3 and if entering INPUT[0] = 16#41, INPUT[1] = 16#31, INPUT[2] = 16#35, Output

RESULT = ‘A15’.

Chapter 8. Application Functions

8-47

1.23. DEC

DEC
Decrease IN data by 1 bit

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: executes the function in case of 1.

 IN: input data to decrease

 Output ENO: outputs EN value as it is

 OUT: result data

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○ ○ ○
OUT ○ ○ ○ ○

*ANY_BIT: exclude BOOL from ANY_BIT type.

■ Function

1. If EN is 1, it produces an output after decreasing bit-string data of IN by 1.
2. Even though the underflow occurs, an error won’t occur and if the result is 16#0000, then the output result data is

16#FFFF.
3. Input data types are BYTE, WORD, DWORD and LWORD.

FUNCTION IN/OUT type Description

DEC BYTE

You can select one of these functions according to in/out data type.
DEC WORD

DEC DWORD

DEC LWORD

Chapter 8. Application Functions

8-48

■ Program Example

 1. LD

2. ST

 %MW20 := DEC(EN:=%MX0, IN:=%MW100);

(1) If the transition condition (%MX0) is on, DEC function executes.

(2) If input variable %MW100 = 16#0007 (2#0000_0000_0000_0111), output variable %MW20 = 16#0006

(2#0000_0000_0000_0110).

Chapter 8. Application Functions

8-49

1.24. DECO

DECO
Decodes the designated bit position

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1.

 IN: input data for Decoding

 Output ENO: without an error, it is 1

 OUT: Decoding result data

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○ ○ ○
OUT ○ ○ ○ ○

*ANY_BIT: exclude BOOL from ANY_BIT type.

■ Function

1. If EN is 1, it turns on ‘the designated position bit of output bit-string data’ according to the value of IN, and
produces an output.

2. Output data types are BYTE, WORD, DWORD and LWORD.

FUNCTION OUT type Description

DECO BYTE

You can select one of these functions according to output data type.
DECO WORD

DECO DWORD

DECO LWORD

■ Flag

Flag Description

_ERR If input data is a negative number or bit position data is out of output-type range, (in case of

DECO_WORD, it’s more than 16), then OUT is 0 and _ERR/_LER flags are set.

Chapter 8. Application Functions

8-50

■ Program Example

1. LD

2. ST

RELAYS := DECO_DWORD(EN:=%MX0, IN:=ON_POSITION);

(1) If the transition condition (%MX0) is on, DECO function executes.

(2) Since the only 5th bit of output is on if ON_POSITON(INT) = 5 as declared as input variable, RELAYS(WORD type) =

2#0000_0000_0010_0000.

Chapter 8. Application Functions

8-51

1.25. DEG

DEG
Converts radian into degree

Availability XGI, XGR, XEC, XMC

Flags

Function Description

ANY_REAL

DEG

ENOEN

IN OUT

BOOLBOOL

ANY_REAL

Input EN: executes the function in case of 1.

 IN: radian input

 Output ENO: outputs EN value as it is

 OUT: degree output

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○
OUT ○ ○

■ Function

It converts radian input into degree output.

Function Input type Output type Description

DEG REAL REAL
It converts input (radian) into output (degree).

DEG LREAL LREAL

■ Program Example

1. LD

2. ST

 DEG_VAL := DEG(EN:=%MX0, IN:=RAD_VAL);

(1) If the transition condition (%M0) is on, DEG function executes.
(2) If input variable RAD_VAL = 1.0, then output variable DEG_VAL = 5.7295779513078550e+001.

Chapter 8. Application Functions

8-52

1.26. DI

DI
Disable start of task program

Availability XGI, XGR, XEC, XMC

Flags

1.27.

Function Description

BOOL

DI

ENOEN

REQ OUT

BOOLBOOL

BOOL

Input EN: executes the function in case of 1

 REQ: requires to invalidate when task

program starts

Output ENO: outputs EN value as it is

 OUT: if DI executes, it is 1

■ Function

1. If EN = 1 and REQ = 1, it stops a task program (single, interval, interrupt).
2. Once DI function executes, a task program does not start even if REQ input is 0.
3. In order to start a task program normally, use ‘EI’ function.

If you want to partially stop the task program for the troubled part, (otherwise, the continuity of operation process
due to the execution of other task program), you can to use this function.

4. The task programs created while its execution is not invalidated is executed according to task program types as
follows:.
- Single task: It executes after 'EI' function or current-running task program executes. In this case, it repeats a task

program as many as the state of single variable changes.
- Interval task, interrupt: the task occurred when it is not permitted to execute and executes after 'EI' function or the

current-running task program executes. But, if it occurs more than 2 times, TASK_ERR is on and TC_CNT (the
number of task collision) is counted.

Chapter 8. Application Functions

8-53

■ Program Example

This is the program that controls the task program, increasing the value per second by using DI (Invalidates task

program) and EI (permits running for task program).

1. LD

Scan program (TASK program control)

Task program increasing every second

2. ST

Scan program (TASK program control)
 %IX0.1.14 := DI(EN:=%MX100, REQ:=DI_OK);
 %IX0.1.15 := EI(EN:=%MX100, REQ:=EI_OK);

Task program increasing every second
 %MW100 := MOVE(EN:=_T1S, IN:=%IW0.0.0);

(1) If REQ (assigned as direct variable %IX0.1.14) of DI is on, DI function executes and output DI_OK is 1.
(2) If DI function executes, the task program to be executed per second stops.
(3) If REQ (assigned as direct variable %IX0.1.15) of EI is on, EI function executes and output EI_OK is 1.
(4) If EI function executes, the task program stops and the function DI restarts.

Chapter 8. Application Functions

8-54

1.28. DIRECT_IN

DIREC_IN
Update input data immediately

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

BOOL

DIREC_IN
ENOEN

BASE

SLOT

OUT

BOOLBOOL

USINT

MASK_L

MASK_H

USINT

DWORD

DWORD

Input EN: executes the function in case of 1

 BASE: base number of an input module installed

 SLOT: slot number of an input module installed

 MASK_L: designates bits not to be updated

among lower 32-bit data of input

 MASK_H: designates bits not to be updated

among upper 32-bit data of input

 Output ENO: without an error, it is 1.

 OUT: if update is completed, output is 1.

■ Function

1. If EN is 1 during the scan, DIREC_IN function reads 64-bit data of an input module from the designated position of a
BASE and a SLOT, and updates them.

2. Only the actual contacts of an input module updates in the image scope.
3. DIREC_IN function is available to use when you want to change the On/Off state of input (%I) during the scan.
4. Generally, it's impossible to update input data during 1 scan (executing a scan program) because a scan-

synchronized batch processing mode executes the batch processing to read input data and produce output data
after a scan program.

5. If you use DIREC_IN function during program execution, related input data updates.

■ Flag

Flag Description

_ERR
If BASE, SLOT input range is exceeded, or if an error is occurred while input/output data refresh,

the output is 0 and _ERR and _LER flags are set.

Chapter 8. Application Functions

8-55

■ Program Example

1. This program updates a 16-contact module installed in the slot no.3 of the 3rd extension base for which input data are
2# 1010_1010_1110_1011.
1. LD

EN

BASE

ENO

OUT

DIREC_IN

3

%MX0

REF_OK

SLOT

MASK_
L

16#FFFF0000

MASK_
H

16#FFFF0000

3

2. ST

REF_OK := DIREC_IN(EN:=%MX0, BASE:=3, SLOT:=3, MASK_L:=16#FFFF0000, MASK_H:=16#FFFF0000);

(1) If the input condition (%MX0) is on, DIREC_IN function executes.
(2) The image scope to update is %IW3.3.0 because a 16-contact module installs. %IW3.3.0 is updated with

2#1010_1010_1110_1011 during the scan because a lower 16-bit data of MASK_L (lower 32-bit input) which is not
going to be changed is updatable.

(3) It does not matter what data are set in MASK_H (upper 32-bit input) because a 16-contact module is installed on the
slot and base.

2. This program updates the lower 32-bit data of the 32-contact module installed in the slot no.3 of the 3rd extension base

for which input data are 2#0000_0000_1111_1111_1100_1100_0011_0011.

1. LD

EN

BASE

ENO

OUT

DIREC_IN

3

%MX0

REF_OK

SLOT

MASK_
L

16#00000000

MASK_
H

16#FFFFFFFF

3

2. ST

REF_OK := DIREC_IN(EN:=%MX0, BASE:=3, SLOT:=3, MASK_L:=16#00000000, MASK_H:=16#FFFFFFFF);

(1) If input condition (%MX0) is on, function DIREC_IN executes.
(2) The image scope to update is %ID3.3.0 because a 32-contact module installs. %ID3.3.0 is updated with

2#0000_0000_1111_1111_1100_1100_0011_0011 during the scan because a lower 32-bit data of MASK_L (lower
32-bit input) which is not going to be changed is updatable.

Chapter 8. Application Functions

8-56

3. This program updates the lower 48-bit data of the 64-contact module installed in the slot no.3 of the 3rd extension

base for which input data are 16#0000_FFFF_AAAA_7777

(2#0000_0000_0000_0000_1111_1111_1111_1111_1010 _1010_1010_1010_0111_0111_0111_0111).

 1. LD

EN

BASE

ENO

OUT

DIREC_IN

3

%MX0

REF_OK

SLOT

MASK_
L

16#00000000

MASK_
H

16#FFFF0000

3

 2. ST

REF_OK := DIREC_IN(EN:=%MX0, BASE:=3, SLOT:=3, MASK_L:=16#00000000, MASK_H:=16#0000FFFF);

(1) If the input condition (%MX0) is on, function DIREC_IN function executes.
(2) The installed module is a 64-contact module and the image scope to update is %IL3.3.0 (%ID3.3.0 and ID3.3.1).
(3) %ID3.3.0 updated because the lower 32-bit data (MASK_L) update is allowed.
(4) %IW3.3.2 of %ID3.3.1 is updated because only the lower 16-bit data update among upper 32 bits (MASK_H) is

allowed.
(5) Accordingly, the data update of the image scope is as follows..

 %IL3.3.0 %ID3.3.0 %IW3.3.0: 2#0111_0111_0111_0111

%IW3.3.1: 2#1010_1010_1010_1010

 %ID3.3.1 %IW3.3.2: 2#1111_1111_1111_1111

%IW3.3.3: maintains the previous value
(6) If the input update is completed, output REF_OK is 1.

Chapter 8. Application Functions

8-57

1.29. DIREC_O

DIREC_O
Update output module data immediately

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

BOOL

DIREC_O
ENOEN

BASE

SLOT

OUT

BOOLBOOL

USINT

MASK_L

MASK_H

USINT

DWORD

DWORD

Input EN: executes the function in case of 1

 BASE: base number of an input module installed

 SLOT: slot number of an input module installed

 MASK_L: designates bits not to be updated

among lower 32-bit data of output

 MASK_H: designates a bit not to update

among upper 32-bit data of output

 Output ENO: without an error, it is 1.

 OUT: if update is completed, output is 1.

■ Function

1. If EN is 1 during the scan, DIREC_O function reads 64-bit data of an output module from the configured position of
BASE and SLOT and updates the unmasked (MASK (1)) data.

2. DIREC_O is available to use when you want to change the on/off state of output (%Q) during the scan.
3. Generally, it is impossible to update input data during 1 scan (executing a scan program) because a scan-

synchronized batch processing mode executes the batch processing to read input data and produce output data
after a scan program.

4. It is available to update related output data, if you use DIREC_O function during program execution.
5. If the base/slot number is wrong or it is not available to write data normally in an output module, ENO and OUT are

'0' (without an error, it is 1).

■ Flag

Flag Description

_ERR
If BASE, SLOT input range is exceeded, or if an error is occurred while input/output data refresh,

the output is 0 and _ERR and _LER flags are set.

Chapter 8. Application Functions

8-58

■ Program Example

1. This is the program that produces output data 2#0111_0111_0111_0111 in a 32-contact relay output module

installed in the slot no.4 of the 2nd extension base.

1. LD

EN

BASE

ENO

OUT

DIREC_O

2

%IX0.0.0

REF_OK

SLOT

MASK_
L

16#FFFF0000

MASK_
H

16#FFFFFFFF

4

2. ST

 REF_OK := DIREC_O(EN:=%IX0.0.0, BASE:=2, SLOT:=4, MASK_L:=16#FFFF0000, MASK_H:=16#FFFFFFFF);

(1) Input the base number 2 and slot number 4 in which an output module is installed.
(2) Set MASK_L as 16#FFFF0000 because the output data to produce are the lower 16 bits among the output contacts.
(3) If the transition condition (%IX0.0.0) is on, DIREC_O executes and the data of the output module is updated as

2#0111_0111_0111_0111 during the scan.

2. This is the program that updates the lower 24 bits of the 32-contact transistor output module, installed in the slot no.4

of the 2nd extension base, with 2#1111_0000_1111_0000_1111_0000 during the scan.

1. LD

EN

BASE

ENO

OUT

DIREC_O

2

%IX0.0.0

REF_OK

SLOT

MASK_
L

16#FF000000

MASK_
H

16#FFFFFFFF

4

2. ST

 REF_OK := DIREC_O(EN:=%IX0.0.0, BASE:=2, SLOT:=4, MASK_L:=16#00000000, MASK_H:=16#FFFFFFFF);
(1) Input the base number 2 and slot number 4 in which an output module is installed.

(2) Set MASK_L as 16#FF000000 because the output data to produce are the lower 24 bits among the output contacts.

(3) If the transition condition (%IX0.0.0) is off, function DIREC_O executes and the data of the output module is updated.

 2#□□□□_□□□□_1111_0000_1111_0000_1111_0000 during the scan.

1.30. Maintains the previous value.

Chapter 8. Application Functions

8-59

 DIS

DIS
Data distribution

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

DIS

ENOEN

IN

SEG

OUT

BOOLBOOL

*ANY_BIT

ARRAY
OF INT

*ARRAY OF
ANY_BIT

Input EN: executes the function in case of 1.

 IN: input data
 SEG: configured bit array for data distribution

 Output ENO: without an error, it is 1

 OUT: distributed array output

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○ ○ ○
OUT ○ ○ ○ ○

*ANY_BIT: exclude BOOL from ANY_BIT type.

■ Function

It distributes input data over OUT after segmenting input data by bit number set by SEG.
Function Input Description
DIS BYTE

It distributes IN input by bit number set with SEG array and outputs, OUT array
which is the same type as IN.

DIS WORD
DIS DWORD
DIS LWORD

Chapter 8. Application Functions

8-60

After
Distribution

■ Flag

Flag Description

_ERR _LER If the sum of configured number of SEG exceeds input variable bit number, _ERR and _LEF flags are set.

☆ If output array is omitted, it assumes the number of array as 0, producing _ERR and _LER flags.

■ Program Example

 1. LD

EN

IN

ENO

OUT

DIS

WORD_IN

%MX0

DIS_DATA

SEGSEG_ARY

2. ST

DIS_DATA := DIS(EN:=%MX0, IN:= WORD_IN, SEG:=SEG_ARY);

(1) If the transition condition (%MX0) is o, DIS function executes.

(2) If input variable WORD_IN = 16#3456, SEG_ARY = {3, 4, 5, 4}, then, output variable DIS_DATA is:

DIS_DATA[0]=16#0006

 DIS_DATA[1]=16#000A

 DIS_DATA[2]=16#0008

 DIS_DATA[3]=16#0003

Chapter 8. Application Functions

8-61

1.31. DWORD_LWORD

DWORD_LWORD
Combines two DWORD data into LWORD

Availability XGI, XGR, XEC, XMC

Flags

Function Description

LWORD

DWORD_LWORD

ENOEN

LOW

HIGH

OUT

BOOLBOOL

DWORD

DWORD

Input EN: executes the function in case of 1.

 LOW: lower DWORD Input
 HIGH: upper DWORD Input

 Output ENO: outputs EN value as it is

 OUT: LWORD Output

■ Function

It combines 2 DWORD data into one LWORD data.
LOW: lower DWORD Input, HIGH: upper DWORD Input

■ Program Example
1. LD

EN

LOW

ENO

OUT

DWORD_LWORD

INPUT1

%MX11

RESULT

HIGHINPUT2

 2. ST

RESULT := DWORD_LWORD(EN:=%MX11, LOW:=INPUT1, HIGH:=INPUT2);

(1) If the transition condition (%MX11) is on, DWORD_LWORD function executes.
(2) If input variable INPUT1 = 16#1A2A_3A4A and INPUT2 = 16#8C7C_6C5C, then, output variable RESULT =

16#8C7C_6C5C_1A2A_3A4A.

Chapter 8. Application Functions

8-62

1.32. DWORD_LWORD

DWORD_WORD
Divides DWORD into 2 WORD data

Availability XGI, XGR, XEC, XMC

Flags

Function Description

DWORD_WORD

ENOEN

LOW

HIGH

BOOLBOOL

WORD

WORD

INDWORD

Input EN: executes the function in case of 1

 IN: DWORD Input

 Output ENO: outputs EN value as it is
 LOW: lower WORD Output

 HIGH: upper WORD Output

■ Function

 It divides one DWORD into two WORD data.
LOW: lower WORD Output, HIGH: upper WORD Output

■ Program Example
1. LD

EN

IN

ENO

LOW

DWORD_WORD

INPUT

%MX5

WORD_OUT1

WORD_OUT2HIGH

2. ST

 DWORD_WORD(EN:=%MX5, IN:=INPUT, LOW=>WORD_OUT1, HIGH=>WORD_OUT2);

(1) If the transition condition (%MX5) is on, DWORD_WORD function executes.
(2) If input variable INPUT = 16#1122_AABB, then, WORD_OUT1 = 16#AABB and WORD_OUT2= 16#1122.

Chapter 8. Application Functions

8-63

1.33. EMOV

EMOV
Reading data from the preset flash area

Availability XGI, XGR, XEC

Flags _ERR, _LER

Function Description

Input REQ : executes the function in case of 1

 F_NO: Block NO(0~31) with the data to move

 ADDR: Byte address of a block set with B_NO.

Output EN0: produces 1 if executing without error

 DATA: data saving area

(all variables except BOOL and STRING available)

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

DATA ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

*ANY: exclude BOOL and STRING from ANY type.

■ Function

1. The command moves one data among 32 block data in flash memory.
2. It moves the data in ADDR of the F_NO (flash number) block according to the type set in DATA. then the moved

data is entered to DATA variable.
3. If the variable type declared as DATA and the ADDR variable type are not identical, it does not produce any error

but any undesirable data may be moved; set ADDR value according to DATA type. For instance, if declaring
4BYTE type variables (DWORD, UDINT, DINT, REAL ...) to DATA, ADDR variable must also use 4BYTE type
variable.

4. If F_NO is 31 and greater or ADDR value exceeds 65,535, _ERR and _LER are set.

■ Flag

Flag Description

_ERR If F_NO value is 31 and over or ADDR value exceeds 65,535

Chapter 8. Application Functions

8-64

■ Program Example

1. LD

EN

B_N0

ENO

DATA

EMOV

F_N0

%MX5

DW1

ADDR_DW ADDR

2. ST

EMOV(EN:=%MX5, F_NO:= F_NO, ADDR:= ADDR_DW, DATA=> DW1);

(1) If the execution condition (%MX5) is on, EMOV function executes.
(2) If setting F_N0 = 1, ADDR_DW(DWORD type) = 4, move DWORD DATA in 4BYTE OFFSET of No.1 Flash Block to

DW1(DWORD).

Chapter 8. Application Functions

8-65

1.34. EBCMP

EBCMP
Check the consistency after comparing content

Availability XGI, XGR, XEC, XMC

Flags

Function Description

EBCMP

DIFF

F_NO

R_NO

EN0EN

STAT

BOOLBOOL

UINT

BOOLUINT

UINT

MATCH

USINT

Input EN: executes the function in case of 1
 R_N0: R device block no.
 F_N0: Flash memory block no.

Output ENO: On if comparison is complete

STAT: Error status
 MATCH: On if comparison results are consistent
 DIFF: No. of inconsistency (DWORD)

■ Function

1. The command to check the consistency by comparing a block of R device and another block of flash memory while
input contact is on; it compares data in DWORD.

2. STAT shows error status; if it is greater than 1 in R_NO input, STAT = 1; if it is greater than 31 in F_NO input, STAT
= 2. Even though there is only one error after the entire comparison, it shows an error; STAT = 3.

3. In case of inconsistency, it saves the number in DIFF.

■ Program Example

 1. LD

EN

R_N0

ENO

STAT

EBCMP

R_AREA

%MX5

F_AREA F_N0

OUT

RESULT

STAT_USINT

DIFF

MATCH

2. ST

EBCMP(EN:=%MX5, R_NO:=R_AREA, F_NO:=F_AREA, STAT=>STAT_USINT, MATCH=>RESULT, DIFF=>OUT);

(1) If the execution condition (%MX5) is on, EBCMP function executes.
(2) If setting R_AREA = 0, F_AREA = 1 and if R device block no.0 and flash block no.1 are consistent, RESULT(BOOL) is on and

shows OUT(no. of inconsistency) = 0.

Chapter 8. Application Functions

8-66

 ENCO

ENCO
Produces On bit position as number

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1

 IN: input data to encode

Output ENO: without an error, it is 1

 OUT: Encoding result data

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○ ○ ○
OUT ○

*ANY_BIT: exclude BOOL from ANY_BIT type.

■ Function

1. If EN is 1, it produces the most priority bit position among bits of 1 to OUT.
2. Input data types are B(BYTE), W(WORD), D(DWORD) and L(LWORD).

FUNCTION IN type Description

ENCO BYTE

Uses a desirable ENCO function type depending on input variable type.
ENCO WORD

ENCO DWORD

ENCO LWORD

■ Flag

Flag Description

_ERR OUT is -1 if no bit among input data is 1; _ERR and _LER flags are set.

Chapter 8. Application Functions

8-67

■ Program Example

1. LD

2. ST

ON_POSITION := ENCO(EN:=%MX0, IN:=SWITCHS);

(1) If the execution condition (%MX0) is on, ENCO function executes.

(2) If SWITCHS (WORD type) = 2#0000_1000_0000_0010, it produces the positions of 2 bits with on, that is, ‘11’ out of ‘11’

and ‘1’, so that ‘11’ is saved into ON_POSITION(INT Type).

Chapter 8. Application Functions

8-68

1.35. EI

EI
Permits running for task program (Cancel of DI)

Availability XGI, XGR, XEC, XMC

Flags

Function Description

BOOL

EI

ENOEN

REQ OUT

BOOLBOOL

BOOL

Input EN: executes the function in case of 1

 REQ: requires to permit running for task program

 Output ENO: outputs EN value as it is

 OUT: If EI is executed, an output is 1

■ Function

1. If EN is 1 and REQ input is 1, task program blocked by 'DI' function starts normally.
2. Once 'EI' command executes, task program starts normally even if REQ input is 0.
3. Task programs created when they are not permitted to operate executes after 'EI' function or the current-running

task program execution.

■ Program Example

1. LD

2. ST

EN_OK := EI(EN:=%IX0.0.0, REQ:=EN_TAST);

(1) If EN_TASK is 1, a task program starts normally.
(2) If EI function permits running for a task program, output EN_OK is 1.

Chapter 8. Application Functions

8-69

1.36. ESTOP

ESTOP
Emergency running stop by program

Availability XGI, XGR, XEC, XMC

Flags

Function Description

BOOL

ESTOP

ENOEN

REQ OUT

BOOLBOOL

BOOL

Input EN: executes the function in case of 1

 REQ: requires the emergency running stop

 Output ENO: outputs EN value as it is. Refer to function 1

 OUT: if ESTOP executes, an output is 1

■ Function

1. If transition condition EN is 1 and the signal to require the emergency running stop by program REQ is 1, program
operation stops immediately and returns to STOP mode.

2. In case that a program stops by 'ESTOP' function, it does not start despite of power re-supply.
3. If operation mode moves from STOP to RUN, it restarts.
4. If 'ESTOP' function executes, it stops the running program during operation; if it is not a cold restart mode, an error

may occur when restarts.

■ Flag

Flag Description

_ESTOP_ON It turns On if the program is stopped by ESTOP command. It is off when the program enters into
RUN in the status.

■ Program Example

1. LD

EN

REQ

ENO

OUT

ESTOP

ACCIDENT

%IX0.2.0

DUMMY

2. ST

DUMMY := ESTOP(EN:=%IX0.2.0, REQ:=ACCIDENT);

(1) If the transition condition (%IX0.2.0) is on, ESTOP function executes.

(2) If ACCIDENT = 1, the running program stops immediately and returns to STOP mode.

※ In case of emergency, it is available to use it as a double safety device with mechanical interrupt.

Chapter 8. Application Functions

8-70

1.37. FALS

FALS

Saving a user-defined constant(N) to the designated

address in F(_FALS_NUM)

Availability XGI, XGR

Flags

Function Description

Input EN: executes the function in case of 1

 NUM: number to be saved in F

Output ENO: outputs EN value as it is

 OUT: produces on if it normally works

■ Function

1. The command saves a user-defined constant (N) to the designated address in F (_FALS_NUM).
2. NUM can be designated between 16#0000 ~ 16#FFFF and the first generated number is saved until it is cancelled.
3. To cancel FALS, FALS 0000 executes.

■ Program Example

1. LD

Chapter 8. Application Functions

8-71

2. ST

OUT1 := FALS(EN:=%IX0.2.0, NUM:=FALS_NUM1);

OUT2 := FALS(EN:=%IX0.3.0, NUM:=FALS_NUM2);

OUT3 := FALS(EN:=%IX0.4.0, NUM:=33);

(1) If the execution condition is on, each FALS function executes (ex: FALS_NUM1=31, FALS_NUM2=32).

(2) The value is saved in _FALS_NUM Flag according to the execution condition (%IX0.2.0, %IX0.3.0, %IX0.4.0), the

value is saved into the first _FALS_NUM_Flag, and the next value is not saved until FALS is canceled.

(3) To cancel FALS, 0000 must be set in NUM.

(4) It is convenient to view the status if executing the program by setting a value of special condition and checking

_FALS_NUM Flag.

Chapter 8. Application Functions

8-72

1.38. GET_CHAR

GET_CHAR
Gets one character from a String

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

INT

GET_CHAR

ENOEN

IN

N

OUT

BOOLBOOL

STR BYTE

Input EN: executes the function in case of 1

 IN: STRING input
 N: position in a String

 Output ENO: outputs EN value as it is

 OUT: Byte Output

■ Function

1. It extracts one byte from a String starting from N.

■ Flag

Flag Description

_ERR
_ERR/_LER flags are set if N exceeds the number of byte in STRING.
If an error occurs, the output is 16#00.

■ Program Example

1. LD

EN

IN

ENO

OUT

GET_CHAR

INPUT

%MX0

OUTPUT

N4

2. ST

OUTPUT := GET_CHAR(EN:=%MX0, IN:=INPUT, N:=4);

(1) If the transition condition (%MX0) is on, GET_CHAT function executes.

(2) When input INPUT (STRING) = “LS XGI PLC,” if you extract 4th character from this string, output variable OUTPUT is

16#58 (“X”).

Chapter 8. Application Functions

8-73

1.39. NIC

INC
Increase IN data by 1

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: executes the function in case of 1

 IN: Input data to increase

 Output ENO: outputs EN value as it is

 OUT: result data after increase

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○ ○ ○
OUT ○ ○ ○ ○

*ANY_BIT: exclude BOOL from ANY_BIT type.

■ Function

1. If EN is 1, it increases IN bit string data by 1 and produces an output.
2. An error does not occur when there’s an overflow; the result is 16#0000 in case of 16#FFFF.
3. Input data types are BYTE, WORD, DWORD and LWORD.

FUNCTION IN/OUT type Description

INC BYTE

You can select one of these functions according to the in/out data type.
INC WORD

INC DWORD

INC LWORD

Chapter 8. Application Functions

8-74

■ Program Example

1. LD

2. ST

%MW100 := INC(EN:=%MX0, IN:=%MW10);

(1) If the transition condition (%MX0) is on, INC function executes.

(2) If input variable %MW10 = 16#0007 (2#0000_0000_0000_0111), then output variable %MW100 =16#0008

(2#0000_0000_0000_1000).

Chapter 8. Application Functions

8-75

1.40. LWORD_DWORD

LWORD_DWORD
Divides LWORD into two DWORD data

Availability XGI, XGR, XEC, XMC

Flags

Function Description

LWORD_DWORD

ENOEN

IN

BOOLBOOL

LWORD LOW

HIGH

DWORD

DWORD

Input EN: executes the function in case of 1

 IN: LWORD Input

 Output ENO: outputs EN value as it is
 LOW: lower DWORD Output

 HIGH: upper DWORD Output

■ Function

1. It divides one LWORD into two DWORD data.
LOW: lower DWORD Output, HIGH: upper DWORD Output

■ Program Example

1. LD

EN

IN

ENO

LOW

LWORD_DWORD

INPUT

%MX10

WORD_OUT1

WORD_OUT2HIGH

2. ST

LWORD_DWORD(EN:=%MX10, IN:=INPUT, LOW=>DWORD_OUT1, HIGH=>DWORD_OUT2);

(1) If the transition condition (%MX10) is on, LWORD_DWORD function executes.

(2) If the input variable INPUT = 16#AAAA_BBBB_CCCC_DDDD, then

DWORD_OUT1 = 16#CCCC_DDDD

DWORD_OUT2 = 16#AAAA_BBBB.

Chapter 8. Application Functions

8-76

1.41. MCS

MCS
Master Control

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: executes the function in case of 1.

NUM: Nesting (0~15)

Output ENO: If MCS is executed, it is 1

■ Function

1. If EN is on, MCS function executes and the program between MCS and MCSCLR function is normally executes.
2. If EN is off, the program between MCS and MCSCLR function executes as follows:

Instruction Description

Timer Current value (CV) becomes 0 and the output (Q) becomes off.

Counter Output (Q) becomes off and CV retains its present state.

Coil All becomes off.

Negated coil All becomes off.

Set coil, reset coil All retains its current value.

Function, function block All retains its current value.

3. Even when EN is off, scan time is not shortened because the instructions between MCS and MCSCLR function are
executed as the above.

4. Nesting is available in MCS. That is to say, Master Control is divided by Nesting (NUM). You can set up Nesting
(NUM) from 0 to 15 and if you set it more than 16, MCS is not executed normally.
* Note: if you use MCS without ‘MCSCLR’, MCS function executes till the end of the program.

Chapter 8. Application Functions

8-77

■ Program Example

 1. LD

Chapter 8. Application Functions

8-78

 2. ST
MCS(EN:=A, NUM:=0);
LAMP1 := %IX0.0.0; // When A is on, execute LAMP1

MCS(EN:=B, NUM:=1);
LAMP2 := %IX0.0.1; // When A and B are on, execute LAMP2

MCS(EN:=C, NUM:=2);
LAMP3 := %IX0.0.2; // When A, B and C are on, execute LAMP3

MCSCLR(NUM:=2);
LAMP4 := %IX0.0.3; // When A and B are on, execute LAMP4

MCSCLR(NUM:=1);
LAMP5 := %IX0.0.4; // When A is on, execute LAMP5

MCSCLR(NUM:=0);
LAMP6 := %IX0.0.5; //Regardless of A, B, C, execute LAMP6

(1) The value corresponding to NUM of each MCS function sets an area with its counterpart, MCSCLR of the number.

NESTING (NUM) can be set between 0~15 and the higher number is not allowed. Unless MCS and MCSCLR are
combined as a pair, MCS function executes to the end of the program.

Chapter 8. Application Functions

8-79

1.42. MCSCLR

MCSCLR
Master Control Clear

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: executes the function in case of 1

 NUM: Nesting (0~15)

 Output ENO: if MCSCLR is executed, it will be 1

■ Function

1. It clears a Master Control instruction. And it indicates the end of the Master Control.
2. If MCSCLR function executes, it clears all the MCS instructions which are less than or equal to Nesting (NUM).
3. There’s no contact before MCSCLR function.

■ Program Example

Refer to the MCS function example.

Chapter 8. Application Functions

8-80

1.43. MEQ

MEQ
Masked Equal

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: executes the function in case of 1.

 IN1: Input1
 IN2: Input2
 MASK: input data to mask

 Output ENO: outputs EN value as it is
 OUT: when equal, it is 1

ANY type variable

Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN1 ○ ○ ○ ○
IN2 ○ ○ ○ ○

MASK ○ ○ ○ ○

*ANY_BIT: exclude BOOL from ANY_BIT type.

■ Function
1. It compares whether two input variables are equal after masking. If it masks an 8-bit variable with 2#11111100, then, lower

2 bits are excluded when it compares input values.
2. It’s available to see whether or not specific bits are on in a variable. For example, in case of comparing 8-bit variables, IN1 is

an input variable, IN2 is 16#FF, and MASK for masking is a bit array 2#00101100. If IN1 and IN2 after masking are equal,
then output OUT is 1.

Function Input type Description

MEQ BYTE

It compares whether two variables are equal after making. MEQ WORD

MEQ DWORD

MEQ LWORD

Chapter 8. Application Functions

8-81

■ Program Example
1. LD

EN

IN1

ENO

OUT

MEQ

INPUT1

%MX0

%QX1.3.20

IN2INPUT2

MASKMASK

()

2. ST

%QX1.3.20 := MEQ(EN:=%MX0, IN1:=INPUT1, IN2:=INPUT2, MASK:=MASK);

(1) If the transition condition (%MX0) is on, MEQ function executes.
(2) Input variable

INPUT1 (BYTE) = 2#01011100
INPUT2 (BYTE) = 2#01110101
MASK (BYTE) = 2#11010110
Then, the compared bits of input variables after masking are as follows:

 INPUT1 (BYTE) = 2#01010100
 INPUT2 (BYTE) = 2#01010100

INPUT1 and INPUT2 are equal; therefore, output contact %QX1.3.20 is on.

Chapter 8. Application Functions

8-82

1.44. OUTOFF

OUTOFF
Every Output Off if input condition is On

Availability XGI, XGR, XEC, XMC

Flags

Function Description

OUTOFF

REQ

EN0

BOOL

BOOLENBOOL

Input EN : executes the function in case of 1

REQ: stop every output by program

Output EN0: check the operation

■ Function

1. Every output is off if EN = 1 and REQ = 1.
2. Clear all the output off when EN = 1, REQ = 0.
3. Above and beyond these cases, it keeps the previous state.

■ Program Example

 1. LD

2. ST

%QX0.0.0 := SW1;

OUTOFF(EN:=SW2, REQ:= Reg);

(1) It sets a program as the above example after output module establishes.

(2) if SW1 is on, the output (%QX0.0.0) is set.

(3) If operating with Reg = 1 after setting SW2 On, OUTOFF function is executed and every output module is off.

The actual output module is off although it seems to be set on the program monitor. (2))

Chapter 8. Application Functions

8-83

1.45. PUT_CHAR

PUT_CHAR
Puts a character in a string

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

INT

PUT_CHAR

ENOEN

DATA

N

OUT

BOOLBOOL

BYTE STR

INSTR

Input EN: executes the function in case of 1

 DATA: BYTE input to insert a STRING
 IN: STRING input
 N: setting position in a STRING

 Output ENO: outputs EN value as it is

 OUT: STRING output

■ Function

1. It overwrites one BYTE input on a specific position (N) string.

■ Flag

Flag Description

_ERR
If N value exceeds a byte number of a string, _ERR and _LER flags are set.
If an error occurs, the output is 16#00.

■ Program Example

1. LD

EN

DATA

ENO

OUT

PUT_CHAR

INPUT

%MX1

RESULT

INSTRING_IN

N2

2. ST

RESULT := PUT_CHAR(EN:=%MX1, DATA:= INPUT, IN:= STRING_IN, N:=2);

(1) If the transition condition (%MX1) is on, PUT_CHAR function executes.

(2) If input variable INPUT = 16#41 (“A”) and STRING_IN = “TOKEN”, and N = 2, then, output RESULT is “TAKEN”.

Chapter 8. Application Functions

8-84

1.46. RAD

RAD
Converts degree into radian

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: executes the function in case of 1.

 IN: degree Input

 Output ENO: outputs EN value as it is

 OUT: radian output

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○
OUT ○ ○

■ Function

1. It converts a degree value () into a radian value.
2. If the degree is over 360, it converts normally.

For example, if input is 370, output is radian value corresponding to 370 - 360 = 10.

Function Input type Output type Description
 RAD REAL REAL

It converts a degree value () into a radian value.
 RAD LREAL LREAL

■ Program Example
1. LD

2. ST

RAD_VAL := RAD(EN:=%MX0, IN:= DEG_VAL);

(1) If the transition condition (%MX0) is on, RAD_REAL function executes.
(2) If input variable DEG_VAL = 127(), its output RAD_VAL = 2.21656823.

Chapter 8. Application Functions

8-85

1.47. ROTATE_A

ROTATE_A
Rotates designated array elements

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

ROTATE_A

ENOEN

SRC SRC

BOOLBOOL

STRT

END

UINT

UINT

NUINT

*ARRAY
OF ANY

*ANYOUT

*ARRAY
OF ANY

Input EN: executes the function in case of 1

 N: element number to rotate
 STRT: starting position to rotate in an array block
 END: ending position to rotate in an array block

 Output ENO: without an error, it is 1
 OUT: overflowing data

In/Out SRC: array block to rotate

ANY type variable

Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

SRC ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

OUT ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

*ANY: exclude STRING from ANY type.

■ Function

1. It rotates designated elements of an array block in the chosen direction.

2. Setting:

A. Scope: STRT and END set a data array to rotate.

B. Rotation direction and time: rotates N times in the chosen direction set by STRT and END (STRT → END)

C. Input data setting: fills an empty element with data pushed from END after rotation with Input data (IN)

D. Output: the result is written at the ARRAY configured by SRC, and the data to rotate from END to STRT is written at
OUT.

Chapter 8. Application Functions

8-86

Function In/Out array type Description

ROTATE_A BOOL

It rotates configured elements of an array block in the chosen direction.

ROTATE_A BYTE

ROTATE_A WORD

ROTATE_A DWORD

ROTATE_A LWORD

ROTATE_A SINT

ROTATE_A INT

ROTATE_A DINT

ROTATE_A LINT

ROTATE_A USINT

ROTATE_A UINT

ROTATE_A UDINT

ROTATE_A ULINT

ROTATE_A REAL

ROTATE_A LREAL

ROTATE_A TIME

ROTATE_A DATE

ROTATE_A TOD

ROTATE_A DT

Chapter 8. Application Functions

8-87

■ Flag

Flag Description

_ERR
If STRT or END exceed the range of SRC array element, _ERR and _LER flags are set.

If an error occurs, there’s no change in SRC and output OUT is the initial value of each variable

type(i.e. INT=0, TIME=T#0S).

☆ If output array variable is omitted, it assumes the output array number as 0, producing _ERR and _LER flags.

■ Program Example

1. LD

EN

SRC

ENO

SRC

ROTATE_A

2

%MX2

SRC_ARY

STRT

SRC_ARY

END

8

N2

OUT OUT

2. ST

OUT := ROTATE_A(EN:=%MX2, SRC:=SRC_ARY, STRT:=8, END:=2, N:=2);

(1) If input condition (%MX2) is on, ROTATE_A function executes.

(2) It rotates designated elements (from 2nd to 8th elements) of SRC_ARY in the chosen direction set by STRT and END

(from index 8 to index 2).

(3) The overflowing data (16#44) is written at OUT.

16#11

16#22

16#33

16#44

16#55

16#66

16#77

16#88

16#99

16#AA

16#11

16#22

16#55

16#66

16#77

16#88

16#99

16#33

16#44

16#AA

44OUT

Chapter 8. Application Functions

8-88

1.48. ROTATE_C

ROTATE_C
Rotate with Carry

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

*ANY_BIT

ROTATE_C

ENOEN

SRC SRC

BOOLBOOL

STRT

END

UINT

UINT

NUINT

*ANY_BIT

BOOLOUT

Input EN: executes the function in case of 1.

 STRT: starting bit position of SRC bit array to rotate
 END: ending bit position of SRC bit array to rotate
 N: bit number to shift

 Output ENO: without an error, it is 1
 OUT: carry output

 In/Out SRC: variable for rotation

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

SRC ○ ○ ○ ○

*ANY_BIT: exclude BOOL from ANY_BIT type.

■ Function
1. It rotates a configured bit array of SRC bit arrays in the chosen direction.
2. Setting:

A. Scope: STRT and END set a bit data to rotate.
B. Rotation direction and time: rotates N times in the chosen direction set by STRT and END (STRT → END)
C. Output: the result is written at ANY_BIT configured by SRC, and the data to rotate from END to STRT is written at OUT.

Chapter 8. Application Functions

8-89

Function SRC type Description

ROTATE_C BYTE
It rotates a designated bit array of SRC bit arrays N times in the chosen
direction.

ROTATE_C WORD
ROTATE_C DWORD
ROTATE_C LWORD

■ Flag

Flag Description

_ERR
If STRT or END exceed the bit number of SRC variable type, there’s no change in SRC and _ERR and

_LER flags are set

■ Program Example

1. LD

EN

SRC

ENO

SRC

ROTATE_C

16#A5A5

%MX2

STRT13

END3

N2

OUT OUT

P

2. ST

OUT := ROTATE_C(EN:=%MX2, SRC:=16#A5A5, STRT:=13, END:=3, N:=2);

(1) If the transition condition (%MX2) is on, ROTATE_C function executes.

(2) It rotates the designated bit array, from STRT (13) to END (3), of SRC (16#A5A5) 2 times in the chosen direction set

by STRT and END (from STRT to END): refer to the diagram below.

(3) The result data after rotation is written at SRC (16#896D), and the overflowing bit (0) is written at OUT.

Chapter 8. Application Functions

8-90

1.49.

1.50.

Chapter 8. Application Functions

8-91

 RSET

RSET

Converting the set block number to the designated block

number

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1

 B_NO: block NO(0~1) to convert

 (XGI-CPUU/D, CPUUN : 0~15)

Output EN0: without an error, it is 1

■ Function

1. Convert the set block number (_RBANK_NUM) to the designated block number.
2. Block number is initialized to 0 if converting stop to run.
3. If S is over the max block number, error flag (_ERR) is set.

■ Flag

Flag Description

_ERR If B_N0 value is 2 and over (XGI-CPUU/D, CPUUN : 16 and over), _ERR and _LER Flags are set.

■ Program Example

 1. LD

2. ST

RSET(EN:=%MX0, B_NO:=BLOCK_NUM);

(1) If the execution condition (%MX0) is on, RSET function executes.

(2) BLOCK_NUM (UINT type) can be 0 or 1 and convert it to the designated R block.

Chapter 8. Application Functions

8-92

1.51. SEG_WORD

SEG_WORD
Converts BCD or HEX into 7 segment display code

Availability XGI, XGR, XEC, XMC

Flags

Function Description

BOOL

DWORD

SEG_WORD

ENOEN

IN OUT

BOOL

WORD

Input EN: executes the function in case of 1.

 IN: Input data to covert into 7 segment code

 Output ENO: outputs EN value as it is

 OUT: result data converted into 7 segment data

■ Function

1. If EN is 1, it converts BCD or HEX (hexadecimal) of IN into 7 segment display code as follow and produces output,
OUT.

2. If an input is BCD type, it is available to display a number between 0000 and 9999. And in case of HEX input, it's
available to display a number between 0000 and FFFF on 4-digit 7 segment display.

Display example

1) 4-digit BCD -> 4-digit 7 segment code: use SEG function.

2) 4-digit HEX -> 4-digit 7 segment code: use SEG function.

3) INT -> 4-digit BCD-type 7 segment code: use INT_TO_BCD function first and SEG function.

4) INT -> 4-digit HEX-type 7 segment code: use INT_TO_WORD function first and SEG function.

5) When 7 segment display digits are more than 4.

 A) In case of BCD, HEX type, use SEG function, after dividing them into 4 digits.

 B) INT -> 8-digit BCD-type 7 segment code:

 Divide INT by 10,000 and convert ‘quotient’ and ‘remainder’ into upper/lower 4-digit 7 segment code using

INT_TO_BCD and SEG function.

Chapter 8. Application Functions

8-93

■ Program Example

 1. LD

2. ST

 SEG_PATTERN := SEG_WORD(EN:=%MX0, IN:=BCD_DATA);

(1) If the transition condition (%MX0) is on, SEG_WORD function executes.

(2) If input variable BCD_DATA (WORD) = 16#1234, the output is ‘2#00000110_01011011_01001111_01100110’

which is displayed as a 7 segment code (1234) and written at SEG_PATTERN (DWORD).

■ 7 Segment Configuration

B0

B6
B5 B1

B2B4
B3

Chapter 8. Application Functions

8-94

■ Conversion table for 7 segment code

Input

(BCD)

Input

(Hex)
INT

Output

B7 B6 B5 B4 B3 B2 B1 B0
Display Data

0 0 0 0 0 1 1 1 1 1 1 0

1 1 1 0 0 0 0 0 1 1 0 1

2 2 2 0 1 0 1 1 0 1 1 2

3 3 3 0 1 0 0 1 1 1 1 3

4 4 4 0 1 1 0 0 1 1 0 4

5 5 5 0 1 1 0 1 1 0 1 5

6 6 6 0 1 1 1 1 1 0 1 6

7 7 7 0 0 1 0 0 1 1 1 7

8 8 8 0 1 1 1 1 1 1 1 8

9 9 9 0 1 1 0 1 1 1 1 9

- A 10 0 1 1 1 0 1 1 1 A

- B 11 0 1 1 1 1 1 0 0 B

- C 12 0 0 1 1 1 0 0 1 C

- D 13 0 1 0 1 1 1 1 0 D

- E 14 0 1 1 1 1 0 0 1 E

 - F 15 0 1 1 1 0 0 0 1 F

Chapter 8. Application Functions

8-95

1.52. SHIFT_A

SHIFT_A
Shifts designated array elements

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1.

 IN: Input data to empty element after shifting
 N: number to shift
 STRT: starting position to shift in an array block
 END: ending position to shift in an array block

 Output ENO: without an error, it is 1
 OUT: overflowing data

 In/Out SRC: array block to shift

ANY type variable

Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN1 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
IN2 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

OUT ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

*ANY: exclude STRING from ANY type.

■ Function

1. It shifts designated elements of an array block in the chosen direction.

2. Setting:

 - Scope: STRT and END set a data array to rotate.

 - Shifting direction and time: rotates N times in the chosen direction set by STRT and END (STRT → END).

 - Input data setting: fills an empty element after shifting with input data (IN).

 - Output: the result is written at ARRAY configured by SRC, and the overflowing data by shifting from END to STRT is
written at OUT.

Chapter 8. Application Functions

8-96

Function In/Out Array Type Description

SHIFT_A BOOL

It shifts configured elements of an array block in the chosen

direction.

SHIFT_A BYTE

SHIFT_A WORD

SHIFT_A DWORD

SHIFT_A LWORD

SHIFT_A SINT

SHIFT_A INT

SHIFT_A DINT

SHIFT_A LINT

SHIFT_A USINT

SHIFT_A UINT

SHIFT_A UDINT

SHIFT_A ULINT

SHIFT_A REAL

SHIFT_A LREAL

SHIFT_A TIME

SHIFT_A DATE

SHIFT_A TOD

SHIFT_A DT

Chapter 8. Application Functions

8-97

■ Flag

Flag Description

_ERR
If STRT or END exceed the range of SRC array element, _ERR and _LER flags are set.

If an error occurs, there’s no change in SRC and output, OUT is the initial value of each variable type(i.e.

INT=0, TIME=T#0S).

☆ If output array is omitted, it assumes the number of array as 0, producing _ERR and LER flags.

■ Program Example

 1. LD

EN

IN

ENO

OUT

SHIFT_A

555

%MX2

OUT

SRCSRC_ARY

STRT2

END8

N3

SRC SRC_ARY

 2. ST

(1) If the input condition (%MX2) is on, SHIFT_A function executes.

(2) It shifts designated elements (from 2nd to 8th elements) of SRC_ARY.

(3) It shifts three times the configured elements.

(4) The empty elements after shifting, from array index 2 to array index 3, are filled with input ‘555’.

(5) The overflowing data (1234), carry output, is written at OUT.

Chapter 8. Application Functions

8-98

3. LD(If STRT is greater than END)

EN

IN

ENO

OUT

SHIFT_A

555

%MX2

OUT

SRCSRC_ARY

STRT8

END2

N3

SRC SRC_ARY

ARY_SRC

STRT : 8

END : 2

Before
Transition

After
Transition

N = 3000

111

222

333

444

555

1234

777

888

999

000

111

555

1234

777

888

555

555

555

999

444

ARY_SRC

OUT

555IN

Chapter 8. Application Functions

8-99

1.53. SHIFT_C

SHIFT_C
Shift with Carry

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

SHIFT_C

ENOEN

SRC

OUT

BOOLBOOL

STRT

END

UINT

UINT

NUINT

*ANY_BIT

CY1BOOL

*ANY_BITSRC

BOOL

Input EN: executes the function in case of 1

 CYI: Carry Input
 STRT: starting bit position of SRC bit array to shift
 END: ending bit position of SRC bit array to shift
 N: bit number to shift

 Output ENO: without an error, it is 1
 OUT: carry output

 In/Out SRC: variable to shift

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

OUT ○ ○ ○ ○

*ANY_BIT: exclude BOOL from ANY_BIT type.

■ Function

1. It shifts a configured bit array of SRC bit arrays N times in the chosen direction.
2. Setting:
 - Scope: STRT and END set a bit data to shift.
 - Shifting direction and time: shifts N times from STRT to END.
 - Input data setting: fills empty bit after shifting with input data (CYI).
 - Output: the result is written at ANY_BIT configured by SRC, and the overflowing bit data by shifting from END to

STRT is written at OUT.
.

Chapter 8. Application Functions

1
8-100

Function SRC type Description

SHIFT_C BYTE

It shifts a configured bit array of SRC bit arrays N times.
SHIFT_C WORD
SHIFT_C DWORD
SHIFT_C LWORD

■ Flag

Flag Description

_ERR
If STRT or END exceed the bit number of SRC variable type, there’s no change in SRC and _ERR and

_LER flags are set.

■ Program Example
 1. LD

EN

CYI

ENO

OUT

SHIFT_C
%MX2

SRC

1

STRT3

END13

N2

SRC

OUT

P

SRC SRC

 2. ST

OUT := SHIFT_C(EN:=%MX2, CYI:=1, SRC:=SRC, STRT:=3, END:=13, N:=2);

(1) If the transition condition (%MX2) is on, SHIFT_C function executes.
(2) 16#A5A5 is shifted from STRT to END by 2 bits and the empty bits after shifting are filled with 1 (CYI).

(3) SRC after shifting is 16#969D and the overflowing bit data (0) is written at OUT after 2-bit shifting.

Chapter 8. Application Functions

1
8-101

1.54. STOP

STOP
Stop running by program

Availability XGI, XGR, XEC, XMC

Flags

Function Description

BOOL

BOOL

STOP

ENOEN

REQ OUT

BOOL

BOOL

Input EN: executes the function in case of 1

 RE: requires the operation stop by program

 Output ENO: outputs EN value as it is

 OUT: If STOP function executes, it is 1.

■ Function

1. If EN and REQ are 1, stop running and return to STOP mode.
2. If function 'STOP' executes, the program stops after completing scan program in executing.
3. Program restarts in case of power re-supply or the change of operation mode from STOP to RUN.

■ Flag

Flag Description

_USTOP_ON On if stopped by STOP instruction. It is off if entering into RUN.

■ Program Example

1. LD

EN

REQ

ENO

OUT

STOP

LOG_OUT

%IX0.0.0

3HUT_OFF

2. ST

3HUT_OFF := STOP(EN:=%IX0.0.0, REQ:=LOG_OUT);

(1) If the transition condition (%IX0.0.0) and LOG_OUT is 1, it enters to STOP mode after completing the scan program

in executing.

(2) It is recommended to turn off the power of PLC in the stable state after executing 'STOP' function declared as input

variable.

Chapter 8. Application Functions

1
8-102

1.55. STRING_BYTE

STRING_BYTE
Convert a string into a byte array

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: if EN is 1, function converts.

 IN: string input

 Output ENO: outputs EN value as it is
 OUT: outputs converted Byte Array

■ Function

It converts a string into 31 byte arrays.

■ Program Example

 1. LD

EN

IN

ENO

OUT

STRING_BYTE

IN_VAL

%MX2

OUT_VAL

2. ST

OUT_VAL := STRING_BYTE(EN:=%MX2, IN:=IN_VAL);

(1) If the transition condition (%MX2) is on, STRING_BYTE function executes.
(2) If IN_VAL = ‘ABC’, OUT_VAL[0] = 16#41, OUT_VAL[1] = 16#42, OUT_VAL[2] = 16#43.

Chapter 8. Application Functions

3
8-103

1.56. SWAP

SWAP
Swaps upper data for lower data

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: executes the function in case of 1.

 IN: Input

 Output ENO: outputs EN value as it is

 OUT: swapped data

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○ ○ ○
OUT ○ ○ ○ ○

*ANY_BIT: exclude BOOL from ANY_BIT type.

■ Function

It swaps upper data for lower data.

Function Input type Description
SWAP BYTE Swaps upper nibble for lower nibble data.
SWAP WORD Swaps upper byte for lower byte data.
SWAP DWORD Swaps upper word for lower word data.
SWAP LWORD Swaps upper double word for lower double word data.

■ Program Example
1. LD

2. ST

RESULT := SWAP(EN:=%MX0, IN:=INPUT);

(1) If the transition condition (%MX0) is on, SWAP function executes.

(2) If INPUT (BYTE) = 16#5F, RESULT (BYTE) = 16#F5.

Chapter 8. Application Functions

1
8-104

1.57. UNI

UNI
Unites data

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Description

Input EN: executes the function in case of 1

 IN: input data array
 SEG: bit-number-designate array to united data

 Output ENO: without an error, it is 1

 OUT: united data output

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○ ○ ○
OUT ○ ○ ○ ○

*ANY_BIT: exclude BOOL from ANY_BIT type.

■ Function

1. It unites an input data array from the lower bit to a configured bit set by SEG and produces an output.
Function Input type Output type Description
UNI BYTE BYTE

It cuts an input array into bit data set by SET and produces an
output (united data) with the same array type of input.

UNI WORD WORD
UNI DWORD DWORD
UNI LWORD LWORD

Chapter 8. Application Functions

5
8-105

After
Combination

If the sum of value set by SEG exceeds the bit number of input data type, _ERR and _LER flags are set.

■ Flag

Flag Description

_ERR If the sum of value set by SEG exceeds the bit number of input data type, _ERR and _LER flags are set. If

the number of arrays of IN and SEG is different, output OUT is 0 and _ERR and _LER flags are set.

■ Program Example

 1. LD

EN

IN

ENO

OUT

UNI

IN_ARY

%MX0

RESULT

SEGSEG_ARY

2. ST

RESULT := UNI(EN:=%MX0, IN:=IN_ARY, SEG:=SEG_ARY);

(1) If the transition condition (%MX0) is on, UNI function executes.

Chapter 8. Application Functions

1
8-106

(2) If input IN_ARY and SEG_ARY are as below

A3B5

B4C6

C5D7

D6E8

IN_ARY[0]

IN_ARY[1]

IN_ARY[2]

IN_ARY[3]

SEG_ARY[0]

SEG_ARY[1]

SEG_ARY[2]

SEG_ARY[3]

3

4

7

2

output RESULT = 2#0010_1011_1011_0101 = 16#2BB5.

2#1010 0011 1011 0101IN_ARY[0]

IN_ARY[1]

IN_ARY[2]

IN_ARY[3]

SEG_ARY[0]

SEG_ARY[1]

SEG_ARY[2]

SEG_ARY[3]

3

4

7

2

2#1011 0100 1100 0110

2#1100 0101 1101 0111

2#1101 0110 1110 1000

RESULT : 2#00 1010111 0110 101

Chapter 8. Application Functions

7
8-107

1.58. WORD_BYTE

WORD_BYTE
Divides WORD into two bytes

Availability XGI, XGR, XEC, XMC

Flags

Function Description

WORD_BYTE

ENOEN

IN LOW

BOOLBOOL

BYTEWORD

HIGH BYTE

Input EN: executes the function in case of 1

 IN: WORD Input

 Output ENO: outputs EN value as it is
 LOW: lower BYTE output

 HIGH: upper BYTE output

■ Function

1. It divides one word data into two byte data.
LOW: lower byte output, HIGH: upper byte output

■ Program Example

1. LD

EN

IN

ENO

LOW

WORD_BYTE

INPUT

%MX3

BYTE_OUT1

BYTE_OUT2HIGH

2. ST

WORD_BYTE(EN:=%MX3, IN:=INPUT, LOW=>BYTE_OUT1, HIGH=>BYTE_OUT2);

(1) If the transition condition (%MX3) is on, WORD_BYTE function executes.
(2) If input variable INPUT is 16#ABCD, then BYTE_OUT1 = 16#CD and BYTE_OUT2 = 16#AB.

Chapter 8. Application Functions

1
8-108

1.59. WORD_DWORD

WORD_DWORD
Combines two WORD data into DWORD

Availability XGI, XGR, XEC, XMC

Flags
WO

Function Description

WORD_DWORD

ENOEN

LOW OUT

BOOLBOOL

WORD DWORD

HIGHWORD

Input EN: executes the function in case of 1.

 LOW: lower WORD input
 HIGH: upper WORD input

 Output ENO: outputs EN value as it is

 OUT: DWORD output

■ Function

It combines two WORD data into one DWORD.
LOW: lower WORD input, HIGH: upper WORD input.

■ Program Example

1. LD

EN

LOW

ENO

OUT

WORD_DWORD

INPUT1

%IX1.1.5

RESULT

HIGHINPUT2

2. ST

RESULT := WORD_DWORD(EN:=%IX1.1.5, LOW:=INPUT1, HIGH:=INPUT2);

(1) If the transition condition (%IX1.1.5) is on, WORD_DWORD function executes.
(2) If input variable INPUT1 = 16#1020 and INPUT2 = 16#A0B0, output variable RESULT=16#A0B0_1020.

Chapter 8. Application Functions

9
8-109

1.60. XCHG

XCHG
Exchanges two input data

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: executes the function in case of 1

 Output ENO: outputs EN value as it is

 In/Out SRC1: In/Output 1

 SRC2: In/Output 2

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

SRC1 ○
SRC2 ○

■ Function

1. Exchanges input1 data with input2 data.
Function In/Out type Description

XCHG BOOL Exchanges two BOOL input data.

XCHG BYTE Exchanges two BYTE input data.

XCHG WORD Exchanges two WORD input data.

XCHG DWORD Exchanges two DWORD input data.

XCHG LWORD Exchanges two LWORD input data.

XCHG SINT Exchanges two SINT input data.

XCHG INT Exchanges two INT input

XCHG DINT Exchanges two DINT input data.

XCHG LINT Exchanges two LINT input data.

XCHG USINT Exchanges two USINT input data.

XCHG UINT Exchanges two UINT input data.

XCHG UDINT Exchanges two UDINT input data.

XCHG ULINT Exchanges two ULINT input data.

XCHG REAL Exchanges two REAL input data.

XCHG LREAL Exchanges two LREAL input data.

Chapter 8. Application Functions

1
8-110

Function In/Out type Description

XCHG TIME Exchanges two TIME input data.

XCHG DATE Exchanges two DATE input data.

XCHG TOD Exchanges two TOD input data.

XCHG DT Exchanges two DT input data.

XCHG STRING Exchanges two STRING input data.

■ Program Example

1. LD

2. ST

XCHG(EN:=%MX0, SRC1:=INPUT1, SRC2:=INPUT2);

(1) If the transition condition (%MX0) is on, XCHG function executes.
(2) If INPUT1 = 0 and INPUT2 = 1, it will exchange two input data. After the function execution, INPUT1 = 1 and INPUT2 = 0.

Chapter 8. Application Functions

1
8-111

1.61. XNR

XNR
Exclusive Logical AND

Availability XGI, XGR, XEC, XMC

Flags

Function Description

XNR
ENOEN

IN1

IN2

OUT

BOOLBOOL

ANY_BIT

ANY_BIT ANY_BIT

Input EN: executes the function in case of 1

 IN1: XNR-to-be value

 IN2: XNR-to-be value

 Input variables can be extended up to 8.

 Output ENO: outputs EN value as it is

 OUT: XNR result

 IN1, IN2, and OUT must be of the same data type.

ANY type variable

Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN1 ○ ○ ○ ○ ○

IN2 ○ ○ ○ ○ ○

OUT ○ ○ ○ ○ ○

■ Function

1. It performs XNR operation on the input variables by bit and produces output, OUT.

 IN1 1111 0000

 XNR

 IN2 1010 1010

 OUT 1010 0101

Chapter 8. Application Functions

1
8-112

■ Program Example

 1. LD

EN

IN1

ENO

OUT

XNR

%MB10

%MX0

%QB0.0.0

IN2ABC

2. ST

%QB0.0.0 := XNR(EN:=%MX0, IN1:=%MB10, IN2:=ABC);

(1) If the transition condition (%MX0) is on, XNR function executes.

(2) If %MB10 = 16#F0 = 2#1111_0000 and ABC(BYTE type) = 16#AA = 2#1010_1010, the result of XNR is shown in

OUT (%QB0.0.0 = 16#A5 = 2#1010_0101).

Chapter 8. Application Functions

3
8-113

CPT
ST expression computation

Availability XGI, XGR, XEC, XMC

Flags

Function Description

Input EN: executes the function in case of 1.

 EXP: ST expression

 Output ENO: outputs EN value as it is

 OUT: result data

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

W
ST

RI
NG

IN ○
OUT ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

■ Function

1. If EN is 1, it produces an output after computation of EXP input ST expression.
2. Maximum size of input expression is 100 Byte. (English : 100 character)
3. Available functions to expression are only comparison, numerical operation, degree conversion and type

conversion.
(1) Comparison: EQ, GE, GT, LE, LT, NE
(2) Numerical operation: ABS, ACOS, ADD, ASIN, ATAN, COS, DIV, EXP, EXPT, LN, LOG, MOVE, MUL, SIN,

SQRT, SUB, TAN, TRUNC (but MOD is not available, operated as a keyword)
(3) Degree conversion: DEG, RAD
(4) Type conversion: Type conversion functions without special symbol (***)

4. Refer to ST instruction manual for the information of ST expression

FUNCTION IN/OUT type Description

CPT BOOL Output value must be BOOL type.

CPT BYTE Output value must be BYTE type.

CPT WORD Output value must be WORD type.

CPT DWORD Output value must be DWORD type.

CPT LWORD Output value must be LWORD type.

CPT SINT Output value must be SINT type.

CPT INT Output value must be INT type.

Chapter 8. Application Functions

1
8-114

CPT DINT Output value must be DINT type.

CPT LINT Output value must be LINT type.

CPT USINT Output value must be USINT type.

CPT UINT Output value must be UINT type.

CPT UDINT Output value must be UDINT type.

CPT ULINT Output value must be ULINT type.

CPT REAL Output value must be REAL type.

CPT LREAL Output value must be LREAL type.

■ Program Example

 1. LD

2. ST

-CPT function is not available. But ST expression is available directly.

IF A THEN

 OUT := AA+BB *CC ;

 END_IF;

(1) If the transition condition (A) is on, CPT function executes.

(2) If input variable AA = 10, BB = 10, CC = 2, output variable OUT = 30

Chapter 8. Application Functions

5
8-115

1.62. ARY_CMP

ARY_CMP_EQ
Equivalent comparison of the two Array Elements

Availability XGI, XGR, XEC, XMC(U)

Flags _ERR, _LER

Function Description

BOOL

ARY_CMP_EQ

ENOEN

IN1

IN1_INDX

OUT

BOOLBOOL

*ARRAY
OF ANY

INT
IN2

IN2_INDX

LENINT

*ARRAY
OF ANY

INT

P_INDX

N

ARRAY
OF UINT

Input EN: executes the function in case of 1

 IN1: first array to compare
 IN1_INDX : starting point in 1st array for comparison
 IN2: second array to compare
 IN2_INDX : starting point in 2nd array for comparison
 LEN: number of elements to compare

 Output ENO: without an error, it is 1

 OUT: if there is a same element, it is 1
 P_INDX : index position that same array in the IN1
 N : The number of same array elements

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN1 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
IN2 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

*ARRAY OF ANY: exclude STRING from ANY type.

■ Function

1. It Compare that with the same value as the other two receiving Array.
2. If LEN is a negative number, it compares two arrays between IN*_INDX (Array INDX) and “Array INDX – |LEN|.”
3. If the size of P_INDX Array is less than LEN, the location information that beyond the size of P_INDX Array can be lost.

Function Input array type Description

ARY_CMP_EQ BOOL
Compare that to the element with a value equal to each other in two BOOL

Array.

ARY_CMP_EQ
BYTE

Compare that to the element with a value equal to each other in two BYTE

Array.

ARY_CMP_EQ
WORD

Compare that to the element with a value equal to each other in two

WORD Array.

ARY_CMP_EQ
DWORD

Compare that to the element with a value equal to each other in two

DWORD Array.

ARY_CMP_EQ LWORD Compare that to the element with a value equal to each other in two

Chapter 8. Application Functions

1
8-116

Function Input array type Description

LWORD Array.

ARY_CMP_EQ
SINT

Compare that to the element with a value equal to each other in two SINT

Array.

ARY_CMP_EQ
INT

Compare that to the element with a value equal to each other in two INT

Array.

ARY_CMP_EQ
DINT

Compare that to the element with a value equal to each other in two DINT

Array.

ARY_CMP_EQ
LINT

Compare that to the element with a value equal to each other in two LINT

Array.

ARY_CMP_EQ
USINT

Compare that to the element with a value equal to each other in two USINT

Array.

ARY_CMP_EQ
UINT

Compare that to the element with a value equal to each other in two UINT

Array.

ARY_CMP_EQ
UDINT

Compare that to the element with a value equal to each other in two UDINT

Array.

ARY_CMP_EQ
ULINT

Compare that to the element with a value equal to each other in two ULINT

Array.

ARY_CMP_EQ
REAL

Compare that to the element with a value equal to each other in two REAL

Array.

ARY_CMP_EQ
LREAL

Compare that to the element with a value equal to each other in two

LREAL Array.

ARY_CMP_EQ
TIME

Compare that to the element with a value equal to each other in two TIME

Array.

ARY_CMP_EQ
DATE

Compare that to the element with a value equal to each other in two DATE

Array.

ARY_CMP_EQ
TOD

Compare that to the element with a value equal to each other in two TOD

Array.

ARY_CMP_EQ
DT

Compare that to the element with a value equal to each other in two DT

Array.

■ Flag

Flag Description

_ERR
If it is designated beyond the array range, _ERR and _LER flags are set.

※ An error occurs when:

 IN1_INDX < 0 or IN1_INDX > max. number of IN1

Chapter 8. Application Functions

7
8-117

 IN2_INDX < 0 or IN2_INDX > max. number of IN2

IN1_INDX + LEN  max. number of IN1

IN2_INDX + LEN  max. number of IN2

■ Program Example

 1. LD

2. ST

%QX1.3.2 := ARY_CMP_EQ(EN:=%MX0, IN1:=IN_ARY1, IN1_INDX:=10, IN2:=IN_ARY2, IN2_INDX:=0, LEN:=10,

P_INDX=>OUT_ARY, N=>N_OUT);

(1) If the input transition condition (%MX0) is on, ARY_CMP_EQ function executes.

(2) When IN_ARY1 is a WORD array with 1000 elements and IN_ARY2 is a WORD array with 100 elements, if there

are same value as compared to each of 10 elements between the elements from 11th (IN_ARY1[10]) to 20th

(IN_ARY1[19]) of IN_ARY1 and the elements from 1st (IN_ARY2[0]) to 10th (IN_ARY2[9]) of IN_ARY1, the

output %Q1.3.2 is on and index value of IN_ARY1 is written in order, count of array elements that have same value

output to N_OUT

Chapter 8. Application Functions

1
8-118

1.63. ARY_CMP

ARY_CMP_NE
Not equal comparison of the two Array Elements

Availability XGI, XGR, XEC, XMC(U)

Flags _ERR, _LER

Function Description

BOOL

ARY_CMP_NE

ENOEN

IN1

IN1_INDX

OUT

BOOLBOOL

*ARRAY
OF ANY

INT
IN2

IN2_INDX

LENINT

*ARRAY
OF ANY

INT

P_INDX

N

ARRAY
OF UINT

Input EN: executes the function in case of 1

 IN1: first array to compare
 IN1_INDX : starting point in 1st array for comparison
 IN2: second array to compare
 IN2_INDX : starting point in 2nd array for comparison
 LEN: number of elements to compare

 Output ENO: without an error, it is 1

 OUT: if there is a different element, it is 1
 P_INDX : index position that not equal in the IN1

Array
 N : The number of array elements that not equal

ANY type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN1 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
IN2 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

*ARRAY OF ANY: exclude STRING from ANY type.

■ Function

4. It Compare that with the not equal value as the other two receiving Array.
5. If LEN is a negative number, it compares two arrays between IN*_INDX (Array INDX) and “Array INDX – |LEN|.”
6. If the size of P_INDX Array is less than LEN, the location information that beyond the size of P_INDX Array can be lost.

Function Input array type Description

ARY_CMP_NE BOOL
Compare that to the element with a value equal to each other in two BOOL

Array.

ARY_CMP_NE
BYTE

Compare that to the element with a value equal to each other in two BYTE

Array.

ARY_CMP_NE
WORD

Compare that to the element with a value equal to each other in two

WORD Array.

ARY_CMP_NE
DWORD

Compare that to the element with a value equal to each other in two

DWORD Array.

Chapter 8. Application Functions

9
8-119

Function Input array type Description

ARY_CMP_NE
LWORD

Compare that to the element with a value equal to each other in two

LWORD Array.

ARY_CMP_NE
SINT

Compare that to the element with a value equal to each other in two SINT

Array.

ARY_CMP_NE
INT

Compare that to the element with a value equal to each other in two INT

Array.

ARY_CMP_NE
DINT

Compare that to the element with a value equal to each other in two DINT

Array.

ARY_CMP_NE
LINT

Compare that to the element with a value equal to each other in two LINT

Array.

ARY_CMP_NE
USINT

Compare that to the element with a value equal to each other in two USINT

Array.

ARY_CMP_NE
UINT

Compare that to the element with a value equal to each other in two UINT

Array.

ARY_CMP_NE
UDINT

Compare that to the element with a value equal to each other in two UDINT

Array.

ARY_CMP_NE
ULINT

Compare that to the element with a value equal to each other in two ULINT

Array.

ARY_CMP_NE
REAL

Compare that to the element with a value equal to each other in two REAL

Array.

ARY_CMP_NE
LREAL

Compare that to the element with a value equal to each other in two

LREAL Array.

ARY_CMP_NE
TIME

Compare that to the element with a value equal to each other in two TIME

Array.

ARY_CMP_NE
DATE

Compare that to the element with a value equal to each other in two DATE

Array.

ARY_CMP_NE
TOD

Compare that to the element with a value equal to each other in two TOD

Array.

ARY_CMP_NE
DT

Compare that to the element with a value equal to each other in two DT

Array.

■ Flag

Flag Description

_ERR If it is designated beyond the array range, _ERR and _LER flags are set.

※ An error occurs when:

Chapter 8. Application Functions

1
8-120

 IN1_INDX < 0 or IN1_INDX > max. number of IN1

 IN2_INDX < 0 or IN2_INDX > max. number of IN2

IN1_INDX + LEN  max. number of IN1

IN2_INDX + LEN  max. number of IN2

■ Program Example

 1. LD

2. ST

%QX1.3.2 := ARY_CMP_NE(EN:=%MX0, IN1:=IN_ARY1, IN1_INDX:=10, IN2:=IN_ARY2, IN2_INDX:=0, LEN:=10,

P_INDX=>OUT_ARY, N=>N_OUT);

(1) If the input transition condition (%MX0) is on, ARY_CMP_NE function executes.

(2) When IN_ARY1 is a WORD array with 1000 elements and IN_ARY2 is a WORD array with 100 elements, if there

are not equal value as compared to each of 10 elements between the elements from 11th (IN_ARY1[10]) to 20th

(IN_ARY1[19]) of IN_ARY1 and the elements from 1st (IN_ARY2[0]) to 10th (IN_ARY2[9]) of IN_ARY1, the

output %Q1.3.2 is on and index value of IN_ARY1 is written in order, count of array elements that have not equal

value output to N_OUT.

Chapter 9. Basic Function Blocks

9-1

Chapter 9. Basic Function Blocks

1. This chapter describes basic function block library.
2. Before using basic function block, it is recommended to understand 3.4.2 Function Block and apply function block

library to a program, it is facilitative to write a program.

Chapter 9. Basic Function Blocks

9-2

1.1. CTD

CTD
Down Counter (function block)

Availability XGI, XGR, XEC, XMC

Flags

Function Block Description

Input CD: down counter pulse input

 LD: loads a preset value

 PV: preset value

 Output Q: down counter output

 CV: current value

Any type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

PV ○ ○ ○ ○ ○ ○
CV ○ ○ ○ ○ ○ ○

*ANY_INT: exclude SINT and USINT from ANY_INT type.

■ Function

1. Down counter function block CTD decreases the current value (CV) by 1 with every rising pulse input.
2. CV decreases only when CV is more than the minimum value of INT (-32768); after reaching it, CV does not

change its value.
3. When LD is 1, PV is loaded into CV (CV=PV).
4. Output Q is 1 when CV is 0 or a negative number.

Function Block PV Description

CTD_INT INT Decrease as much as the min INT(-32,768).

CTD_DINT DINT Decrease as much as the min DINT(-2,147,483,648).

CTD_LINT LINT Decrease as much as the min LINT(-9,223,372,036,854,775,808).

CTD_UINT UINT Decrease as much as the min UINT(0).

CTD_UDINT UDINT Decrease as much as the min UDINT(0).

CTD_ULINT ULINT Decrease as much as the min ULINT(0).

Chapter 9. Basic Function Blocks

9-3

■ Time Chart

■ Program Example
 1. LD

2. ST

INST_CTD_INT(CD:=%IX0.1.14, LD:=_10N, PV:=5, Q=>COUNT_Q, CV=>COUNT_CV);

%QX0.3.0 := COUNT_Q

This is the program that sets the output contact (%QX0.3.0) when the down counter pulse input enters the input contact
(%IX0.1.14) five times.

(1) Register the name of CTD function block (COUNT_D).

(2) Make the input contact (%IX0.1.14) attached to CD.

(3) Make the flag _10N (1 scan On contact) that loads PV into CV.

(4) Set the PV value as 5 in range of INT ((-32,768~32,767).

(5) Set the CV value as the random output variable (COUNT_CV).

(6) Set the Q value as the random output variable (COUNT_Q).

(7) Compile and write your program to the PLC after completing the program.

(8) After writing, change the PLC mode (Stop -> Run).

(9) If program runs, PV 5 will be loaded into CV (Count_CV).

(10) The current value CV (COUNT_CV) decreases by 1 when the pulse input enters the input contact (%IX0.1.14).

Chapter 9. Basic Function Blocks

9-4

(11) When the down counter pulse input enters the input contact (%IX0.1.14) five times, CV (COUNT_CV) will be 0 and Q

(COUNT_CV) will be 1.

(12) If Q (COUNT_Q) is 1, the output contact (%Q0.3.0) will be set.

Chapter 9. Basic Function Blocks

9-5

1.2. CTU

CTU
Up Counter (function block)

Availability XGI, XGR, XEC, XMC

Flags
CTU

Function Block Description

CTU

QCU

R

PV

CV

BOOLBOOL

BOOL

*ANY_INT

*ANY_INT

Input CU: up counter pulse input
 R: reset input
 PV: loads a preset value

 Output Q: increase counter output
 CV: current value

Any type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

PV ○ ○ ○ ○ ○ ○
CV ○ ○ ○ ○ ○ ○

*ANY_INT: exclude SINT and USINT from ANY_INT type.

■ Function

1. Up counter function block CTU increases the current value (CV) by 1 with every rising pulse input.
2. CV increases only when CV is less than the maximum value of INT (32767); after reaching it, CV does not change

its value.
3. When the reset input (R) is 1, CV is cleared (0).
4. Output Q is 1 when CV is equal to or more than PV.
5. PV value reloads the preset value and operate it when CTU function block executes.

Function Block PV Description

CTU_INT INT Increase as much as the max INT (32767).

CTU_DINT DINT Increase as much as the max DINT (2147483647).

CTU_LINT LINT Increase as much as the max LINT (9223372036854775807).

CTU_UINT UINT Increase as much as the max UINT (0).

CTU_UDINT UDINT Increase as much as the max UDINT (0).

CTU_ULINT ULINT Increase as much as the max ULINT (0).

Chapter 9. Basic Function Blocks

9-6

■ Time Chart

■ Program Example

1. This is the program that sets the output contact (%QX0.3.0) when the increase counter pulse input enters the input
contact (%IX0.1.15) ten times

1. LD

2. ST

INST_CTU_INT(CU:=%IX0.1.15, R:=%IX0.1.5, PV:=10, Q=>COUNT_Q, CV=>COUNT_CV);

%QX0.3.0 := COUNT_Q;

(1) Register the name of CTU function block (COUNT_U).

(2) Make the input contact %I0.1.15 attach to CU.

(3) Set the PV value as 10.

(4) Assign input contact %IX0.1.5 to the reset input R.

(5) Set the CV value as the random output variable (COUNT_CV).

(6) Set the Q value as the random output variable (COUNT_Q).

(7) Compile and write your program to the PLC after completing the program.

Chapter 9. Basic Function Blocks

9-7

(8) After writing, change the PLC mode (Stop  Run).

(9) The current value CV (COUNT_CV) increases by 1 when the pulse input enters the input contact (%IX0.1.15).

(10) When the up counter pulse input enters the input contact (%IX0.1.15) ten times, CV (COUNT_CV) is 10 and Q

(COUNT_Q) is 1.

(11) If Q (COUNT_Q) is 1, the output contact (%QX0.3.0) is set.

Chapter 9. Basic Function Blocks

9-8

CTUD
Up/Down Counter (function block)

Availability XGI, XGR, XEC, XMC

Flags

Function Block Description

Input CU: up counter pulse input

 CD: down counter pulse input

 R: reset

 LD: loads a preset value

 PV: preset value

 Output QU: up counter output

 QD: down counter output
 CV: current value

Any type variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

PV ○ ○ ○ ○ ○ ○
CV ○ ○ ○ ○ ○ ○

*ANY_INT: excluding SINT and USINT from ANY_INT types

■ Function

1. Up/Down counter function block CTUD increases the current value (CV) by 1 with every rising up-counter pulse
input (CU) and decreases CV by 1 with every rising down-counter pulse input (CD).

2. Note that CV is between -32768 and 32767 (INT).
3. When LD is 1, PV is loaded into CV (CV=PV).
4. When the reset input R is 1, CV is cleared (0).
5. When CV reaches PV, the output QU is 1; when CV is 0 or a negative integer, the output QD is 1.
6. The operation for each input signal executes in order of R > LD > CU > CD. Note that if the input signals are fed to

the input (CU, CD, R, and LD) of CTUD at the same time, the operation of CTU follows the above priority.

Function Block PV Description

CTUD_INT INT Increase/decrease as much as INT(-32768 ~ 32767)

CTUD_DINT DINT Increase/decrease as much as DINT(0 ~ 231-1)

CTUD_LINT LINT Increase/decrease as much as LINT(0 ~ 263-1)

CTUD_UINT UINT Increase/decrease as much as UINT(0 ~ 65535)

CTUD_UDINT UDINT Increase/decrease as much as UDINT(0 ∼ 232-1)

CTUD_ULINT ULINT Increase/decrease as much as ULINT(0 ∼ 263-1)

Chapter 9. Basic Function Blocks

9-9

■ Time Chart

■ Program Example

1. LD

CU

CD

QU

QD

CTUD_INT

%IX1.1.0

%IX0.1.0

R%MX0

PVSTACK_MAX

LD%MX1

CV STORED_NUMBER

STACK_EMPTY

STACK_FULL

2. ST

INST_CTUD_INT(CU:=%IX0.1.0, CD:=%IX1.1.0, R:=%MX0, LD:=%MX1, PV:=STACK_MAX, QU=>STACK_FULL,

QD=>STACK_EMPTY, CV=>STORED_NUMBER);

Conditions are: the temporary loading part STACK_MAX is 100; IN is 1 with every material-input signal while OUT is 1

with every material-output signal. If the material input process is faster than the material-output one and every material

is loaded so that the STACK_MAX is equal to or more than 100, then QU is 1 (STACK_FULL = 1); if there's no material

left in the loading part, QD is 1 (STACK_EMPTY = 1). At the STORED_NUMBER, the number of remaining material in

the loading part is shown.

Chapter 9. Basic Function Blocks

9-10

Chapter 9. Basic Function Blocks

9-11

1.3. FF

FF
Reverse output bit

Availability XGI, XGR, XEC, XMC

Flags
FF

Function Block Description

FF

CLKBOOL Q BOOL

Input CLK : input signal

Output Q : reverse output by instruction

■ Function

FF reverses output Q as the input status connected to CLK is changed from 0 to 1.

■ Time Chart

CLK

Q

■ Program Example
 1. LD

2. ST

INST_FF(CLK:=%IX0.0.0, Q=>DETECT);

(1) By watching the status of input variable, %IX0.0.0, when the input is changed from 0 to 1, the DETECT is reversed.

Chapter 9. Basic Function Blocks

9-12

1.4. F_TRIG

F_TRIG
Falling Edge Detection (function block)

Availability XGI, XGR, XEC, XMC

Flags

Function Block Description

BOOL

F_TRIG

QCLK BOOL

Input CLK: input signal

Output Q: falling edge detection result

■ Function

1. The output Q of function block F_TRIG is 1 with the falling pulse input to CLK. And 1 scan later, without further
falling pulse input, the output Q is 0 ever after.

■ Time Chart

■ Program Example
 1. LD

CLK Q

F_TRIG

FALL_DETECT

%IX0.0.0

2. ST

INST_F_TRIG(CLK:=%IX0.0.0, Q=>FALL_DETECT);

(1) If the input variable (%IX0.0.0) changes from 1 to 0, while detecting its state, the output variable FALL_DETECT is 1.

And 1 scan later, the output variable FALL_DETECT is 0.

Chapter 9. Basic Function Blocks

9-13

1.5. RS

RS
Reset Priority Bistable (function block)

Availability XGI, XGR, XEC, XMC

Flags

Function Block Description

BOOL

RS

Q1S

R1

BOOL

BOOL

Input R_1: Reset condition
 S: Set condition

Output Q1: operation result

■ Function

S

Q1

R1 Q1

&

≥1

If R1 is 1, output Q1 is 0 regardless of the state of S. The output variable Q1 is 1 when it maintains the previous state,

R1 is 0, and S is 1, it is 1. The initial state of Q1 is 0.

■ Time Chart

S

Q1

R1

Chapter 9. Basic Function Blocks

9-14

■ Program Example
1. LD

S

R1

Q1

RS

RESET1

SET1

RESULT

2. ST

INST_RS(S:=SET1, R_1:=RESET1, Q=>RESULT);

It outputs the operation results with RESET1 as Reset condition and SET1 as Set condition to RESULT.

Replace the operation conditions; as the above time chart, R_1 to RESET1, S to SET1 and Q1 to RESULT.

(1) If SET1 declared as input variable is on, output variable RESULT is 1.

(2) If RESET1 declared as output variable is on, output variable declared as RESULT is 0.

(3) If SET1 and RESET1 declared as input variables are on, the output variable RESULT is 0.

Chapter 9. Basic Function Blocks

9-15

1.6. RTC_SET

RTC_SET
Writes Time data

Availability XGI, XGR, XEC, XMC

Flags _ERR, _LER

Function Block Description

Input REQ: executes the function with rising pulse input

 DATA: TIME data to input

Output DONE: without an error, it is 1

 STAT: If an error occurs, an error code is written

■ Function

1. It writes RTC data to Clock Device with a rising pulse input.

Variable Content Example Variable Content Example

DATA[0] Year 16#01 DATA[4] Minute 16#30

DATA[1] Month 16#03 DATA[5] Second 16#45

DATA[2] Dates 16#15 DATA[6] No check -

DATA[3] Hours 16#18 DATA[7] Year 16#20

* The above example is “2001-03-15 18:30:45, Thursday”.
 * Day of the week data is not separately entered. The day of the week will be automatically set.

2. The above DATA variables are declared as array Byte variables and set as BCD data.

■ Flag

Flag Description

_ERR
If CPU does not support RTC function or RTC data is out of range, the output is 0 and the error

code is written at STAT.

Error code Description

00 No error

02
Wrong RTC data. Example: 14 (Months) 32 (Dates) 25 (Hours)

* Modify RTC data.

Chapter 9. Basic Function Blocks

9-16

■ Program Example
1. LD

2. ST

INST_RTC_SET(REQ:=%MX0, DATA:=DATA, DONE=>SET, STAT=>ERROR);

Its RTC data is Dec 5, 2006. 10:39:45, Tuesday.

(1) When SET_SW is on, RTC_SET function block renews or modifies the SET_data (RTC data).

(2) Variable setting is shown as below.

Variable Content Example Variable Content Example

DATA[0] Year 16#06 DATA[4] Minute 16#39

DATA[1] Month 16#12 DATA[5] Second 16#45

DATA[2] Date 16#05 DATA[6] No check -

DATA[3] Hour 16#10 DATA[7] Year 16#20

(3) In addition to the method set by allowing initial value to DATA variable, it may be set by saving each preset value to

DATA[] variable, using function MOVE.

(4) Use the following flags to read RTC data.

 e.g. 1998-12-22 19:37:46, Tuesday

Chapter 9. Basic Function Blocks

9-17

Flag Type Content Description Data

_RTC_TOD TOD
Current

time
Current time of RTC TOD#19:37:46

_RTC_WEEK UINT
Current

day

Current day of RTC

*(0: Sun, 1: Mon, 2: Tue, 3: Wed,

4: Thu, 5: Fri, 6: Sat)

2

_RTC_DATE DATE
Current

date

Current date of RTC

(1984-01-01 ~ 2063-06-06)
D#1998-12-22

_HUND_WK WORD
Hundred

year/day

Discriminated by BYTE

16#1902

_TIME_DAY WORD Time/date 16#1922

_MON_YEAR WORD Month/year 16#1298

_SEC_MIN WORD
Second/mi

nute
16#4637

Chapter 9. Basic Function Blocks

9-18

1.7. R_TRIG

R_TRIG
Rising Edge Detection (function block)

Availability XGI, XGR, XEC, XMC

Flags

Function Block Description

BOOL

R_TRIG

QCLK BOOL

Input CLK: input signal

Output Q: rising edge detection result

■ Function

The output Q of function block R_TRIG is 1 with the rising pulse input to CLK. And 1 scan later, without further
rising pulse input, the output Q is 0.

■ Time Chart

■ Program Example

1. LD

CLK Q

R_TRIG

RISE_DETECT

IN_SINGAL

2. ST

INST_R_TRIG(CLK:=IN_SIGNAL, Q=>RISE_DETECT);

If the input variable IN_SIGNAL changes from 0 to 1, while detecting its state, the output variable RISE_DETECT is 1.

And 1 scan later, the output variable RISE_DETECT is 0.

Chapter 9. Basic Function Blocks

9-19

1.8. SEMA

SEMA
Semaphore (System resource allocation)

Availability XGI, XGR, XEC, XMC

Flags

Function Block Description

BOOL

SEMA

BUSYCLAIM

RELEASE

BOOL

BOOL

Input CLAIM: signal to claim a resource monopoly

 RELEASE: release signal

 Output BUSY: waiting signal not to obtain the claimed

resource

■ Function

This function block is used to get an exclusive control right for system resources.

BUSY that is using the resource in other program is 1 when SEMA function executes (CLAIM = 1 or 0, RELEASE = 0).

If you want to obtain the resource control right, wait until BUSY is 0 after executing SEMA function block (CLAIM = 1,

RELEASE = 0). When BUSY is 0, it controls the associate resource and after completing the control, it transfers the

control right executing SEMA function block once again with CLAIM = 0 and RELEASE = 1. (At this time, only the

program that has the control right can execute SEMA function block with CLAIM = 0 and RELEASE = 1)
1. The instance of SEMA must be declared as "GLOBAL" so that its access is available in the programs requiring

the resource.
2. Each program to claim the same resource must be designated as the same priority.
3. Internal execution structure of SEMA function block.

 VAR X : BOOL : = 0 ; END_VAR

 BUSY : = X ;

 IF CLAIM THEN X : = 1 ;

 ELSIF RELEASE THEN BUSY : = 0; X : = 0 ;

 END_IF

Chapter 9. Basic Function Blocks

9-20

■ Time Chart

The access right to control the same resource is transferred between the program block A and the program block B.

■ Program Example

1. LD

2. ST

 INST_SEMA(CLAIM:=%MX0, RELEASE:=0, BUSY=>DONE);

When you want to produce a printer output in different program blocks with the printer attached to the PLC system, you

can easily control it by declaring the instance 'PRINTER' as a ‘GLOBAL' and using SEMA function block named as

'PRINTER' in each program. If you execute SEMA function block (PRINTER), when START is 1 and END is 0, and

claim the right to control the printer, while the printer is used in other program block, BUSY is 1 then outputs 1 to

OT_AVAIL. If the printer is not used in other program block, BUSY is 0, which means you can start the program to

produce the printer output with it. After completing the print control, execute SEMA with START = 0 and END = 1 so

that other program can get the right to control it.

Chapter 9. Basic Function Blocks

9-21

Chapter 9. Basic Function Blocks

9-22

CLAIM_PT

PRINTING

Line10

Line12

Line13

Line15

Line16

S1

S1

S1

S2

S2

S2

PRINT CLAIM_PT

PRINTING

END

END

(S)
S1

PRINT_DONE

Print output done
User FB or Program

Line0

Line1

Line2

Line3

Line4

Line5

Line6

Line7

Line8

Line9

Line11
PRINT_DONE

E END

PRINTER
SEMA

RELEASE

CLAIBUSY

0

PRINTER
SEMA

RELEASE

CLAIBUSY

1

_OFF

Line14

(S)
S2

(R)
S1_ON

(R)
S2

(R)
PRINT

Line17

Line18

Line19

END

()

Chapter 9. Basic Function Blocks

9-23

1.9. SR

SR
Set Priority Bistable (function block)

Availability XGI, XGR, XEC, XMC

Flags

Function Block Description

BOOL

SR

Q1S1

R

BOOL

BOOL

Input S1: set condition

 R: reset condition

 Output Q1: operation result

■ Function

Q1

R

Q1

S1

&

≥1

1. If S1 is 1, output Q1 is 1 regardless of the state of R.
2. The output variable Q1 is 0 and it maintains the previous state when S1 is 0, and R is 1.
3. The initial state of Q1 is 0.

■ Time Chart

R

Q1

S1

Chapter 9. Basic Function Blocks

9-24

■ Program Example

1. LD

S1

R

Q1

SR

RESET1

SET1

RESULT

2. ST

INST_SR(S_1:=SET1, R:=RESET1, Q=>RESULT);

(1) If input variable SET1 becomes on, output variable RESULT is 1.

(2) The output variable RESULT becomes 0 when input variable SET1 becomes off and RESET on.

Chapter 9. Basic Function Blocks

9-25

1.10. TOF

TOF
Off Delay Timer (function block)

Availability XGI, XGR, XEC, XMC

Flags

Function Block Description

BOOL

TOF

QIN

PT

BOOL

TIME ET TIME

Input IN: timer operation condition

 PT: preset time

 Output Q: timer output

 ET: elapsed time

■ Function

1. If IN is 1, Q is 1. And after IN becomes 0 and the preset time (PT) of TOF passes, Q becomes 0.
2. After IN becomes 0, the elapsed time (ET) is shown.
3. If IN becomes 1 before ET reaches the preset time, ET is 0 again.

■ Time Chart

Q

ET

IN

Setting
Time

(PT)

PT

Chapter 9. Basic Function Blocks

9-26

■ Program Example

1. LD

2. ST

INST_TOF(IN:=T_OFF, PT:=T#10S, Q=>TIMER_OK, ET=>ET_TIME);

(1) Output variable TIMER_OK is 1 when input variable T_OFF becomes 1. TIMER_OK is 0 only if 10 seconds

passes after T_OFF becomes 0.
(2) If T_OFF becomes 1 again in 10 seconds after it turned off, TOF is initialized (TIMER_OK is 1).
(3) After T_OFF becomes 0, the elapsed time (ET_TIME) is measured and shown.

Chapter 9. Basic Function Blocks

9-27

1.11. TON

TON
On Delay Timer (function block)

Availability XGI, XGR, XEC, XMC

Flags

Function Block Description

BOOL

TON

QIN

PT

BOOL

TIME ET TIME

Input IN: timer operation condition

 PT: preset time

 Output Q: timer output

 ET: elapsed Time

■ Function

1. Elapsed time (ET) is measured and shown after IN becomes 1.
2. When IN becomes 0 before ET reaches the preset time, ET is 0.
3. If IN becomes 0 after Q is 1, Q is 0.

■ Time Chart

Chapter 9. Basic Function Blocks

9-28

■ Program Example

1. LD

2. ST

INST_TON(IN:=T_ON, PT:=T#10S, Q=>TIMER_OK, ET=>ET_TIME);

(1) The output TIMER_OK = 1 ten seconds later after the input T_ON is asserted (T_ON = 1).

(2) After input variable T_ON is 1, the elapsed time is output to output variable, ET_TIME.

(3) When T_ON = 0 before ET_TIME reaches the preset time (10s), ET_TIME is 0.

(4) If T_ON = 0 after TIMER_OK = 1, then TIMER_OK = 0 and ET_TIME = 0.

Chapter 9. Basic Function Blocks

9-29

1.12. TP

TP
Pulse timer (function block)

Availability XGI, XGR, XEC, XMC

Flags

Function Block Description

BOOL

TP

QIN

PT

BOOL

TIME ET TIME

Input IN: timer operation condition

 PT: preset time

 Output Q: timer output

 ET: elapsed Time

■ Function

1. If IN = 1, Q is 1 only during the preset time PT; if ET reaches PT, Q is 0.
2. If IN = 1, elapsed time ET starts to be measured and maintains its value after when it reaches PT; if IN = 0 after

ET reaches PT, ET = 0.
3. The state of IN doesn't matter while ET is measured (increased).

■ Time Chart

Chapter 9. Basic Function Blocks

9-30

■ Program Example

1. LD

2. ST

INST_TP(IN:=T_TP, PT:=T#10S, Q=>TIMER_OK, ET=>ET_TIME);

(1) TIMER_OK is 1 during 10 seconds after input T_TP was asserted (T_TP = 1). While ET_TIME increases during 10

seconds, the state of input T_TP doesn't affect TIMER_OK.

(2) ET_TIME increases when it reaches T#10S and then it becomes 0 when T_TP = 0.

☆ Note

TP function block keeps operating until its operation is complete even if the contact is changed from on to off. In case of a

variable using array index, array index error occurs only when the contact is on. Therefore, TP function block does not

produce any array index error as long as the contact is off although function block is operating.

Chapter 10. Application Function Blocks

10-1

Chapter 10. Application Function Blocks

This chapter describes the basic function block library mentioned in the previous chapter and other application function

block library.

 Chapter 10. Application Function Blocks

10-2

1.1. CTR

CTR
Ring Counter

Availability XGI, XGR, XEC, XMC

Flags

Function Block Description

CTR
QCD

PV

RST

CV

BOOLBOOL

INT

BOOL
INT

Input CD: pulse input of Ring Counter

 PV: preset value
 RST: reset

 Output Q: Ring Counter output

 CV: current value

■ Function

1. CTR function block (Ring Counter) functions: current value (CV) increases with the rising pulse input (CD) and if, after CV
reaches PV, CD becomes 1, then CV is 1.

2. When CV reaches PV, output Q is 1.
3. If CV is less than PV or reset input (RST) is 1, output Q is 0.

■ Time Chart

Chapter 10. Application Function Blocks

10-3

■ Program Example

Output %QX1.3.1 is on with 10-time rising pulse input of %IX1.1.0 is depicted as follows:

1. LD

CD

PV

Q

CV

CTR

10

%IX1.1.0

COUNT_NUM

RST%IX1.1.10

COUNT_Q

COUNT_Q

()
%QX1.3.0

2. ST

INST_CTR(CD:=%IX1.1.0, PV:=10, RST:=%IX1.1.10, Q=>COUNT_Q, CV=>COUNT_NUM);

 %QX1.3.0 := COUNT_Q;

(1) Define CTR function block as INS_CTR.

(2) Set %IX1.1.0 to the input contact of CD referring to the above.

(3) Set 10 to PV.

(4) Set %IX1.1.10 to RST resetting CV.

(5) Set random variable COUNT_NUM to CV

(6) Set random output variable COUNT_Q to Q.

(7) After a program is complete, compile and write it to PLC.

(8) When ‘Write’ is complete, do ‘Mode Change’ (Stop  Run).

(9) CV (COUNT_NUM) increases by 1 in number with the rising input pulse of %IX1.1.0.

(10) With 10-time rising input pulse of input contact, CV is 10 which is the same as PV and output variable COUNT_Q

is 1.

(11) If Q (COUNT_Q) is 1, output contact %QX1.3.0 is on

(12) If the rising input pulse is loaded into input contact %IX1.1.0, then Q (COUNT_Q) is 0 and output

contact %QX1.3.0 is off.

 Chapter 10. Application Function Blocks

10-4

1.2. DUTY

DUTY
Scan setting On/Off

Availability XGI, XGR, XEC, XMC

Flags

Function Block Description

BOOL

DUTY

DONEREQ

SON

SOFF

OUT

BOOLBOOL

INT

INT

Input REQ: requires to execute the function block

 SON: scan number to turn on
 SOFF: scan number to turn off

 Output DONE: it is 1 when REQ is on and both input

variables are not less than 0.
 OUT: output is 1 during on scan time

■ Function

1. DUTY function block produces a pulse which is on during the SON scan time and off during the SOFF scan time while
REQ is on.

2. If SON = 0, OUT is always off.
3. If SON > 0 and SOFF = 0, OUT is always on.
4. If REQ is off, OUT is off.
5. If SON < 0 or SOFF < 0, then DONE is off and OUT is 0.

■ Time Chart

REQ

TIMING PULSE

OUT

SON SCAN SOFF SCAN

Chapter 10. Application Function Blocks

10-5

■ Program Example

If input contact %IX1.1.0 is set, output contact %QX1.3.0 is on during 3 scan times and off during 4 scan times.

1. LD

REQ

SON

DONE

OUT

DUTY

3

%IX1.1.0

SOFF4

()
%QX1.3.0

2. ST

 INST_DUTY(REQ:=%IX1.1.0, SON:=3, SOFF:=4, OUT=>%QX1.3.0);

(1) Define DUTY function block as DUTY_C.

(2) Set %IX1.1.0 to REQ (the input contact) of DUTY.

(3) Set 3 to SON.

(4) Set 4 to SOFF.

(5) Set %QX1.3.0 to output, OUT.

(6) After a program is complete, compile and write it to PLC.

(7) When ‘Write’ is complete, do ‘Mode Change’ (Stop  Run).

(8) If input contact %IX1.1.0 is on, output contact %QX1.3.0 is on during 3 scan times and off during 4 scan times.

 Chapter 10. Application Function Blocks

10-6

1.3. EBREAD

EBREAD
Write R area data to Flash area

Availability XGI, XEC

Flags

Function Block Description

Input REQ: requires to execute Function Block

 F_NO: Flash block no. when reading data
- 0~1 (XGI-CPUU/D, CPUUN : 0~15)

 R_NO: R area block number

Output DONE: maintains 1 after normally working

 STAT: displaying error info

■ Function

(1) Transfer 1 block (64Kbyte) of a designated R device to a block of flash area to save. DONE is 1 if it is normally

completed.

(2) If R_NO is 2 and over (XGI-CPUU/D, CPUUN : 16 and over), STAT = 1 and if F_NO is 32 and over, STAT = 2, while

_ERR and _LER is on. In addition, if reading data from flash, DONE = 0 and STAT = 5. DONE = 0 and STAT = 10 if

Read/Write operation on a flash area is in progress during the operation is running.

(3) While processing an instruction, the bit corresponds to F_NO of _RBLOCK_RD_FLAG is on.

Chapter 10. Application Function Blocks

10-7

1.4. EBWIRTE

EBWRITE
Write R area data to Flash area

Availability XGI, XEC

Flags

Function Block Description

Input REQ: requires to execute Function Block

 R_NO: block number of R device(internal RAM)
- 0~1 (XGI-CPUU/D, CPUUN : 0~15)

 E_NO: block number of flash area to save

Output DONE: maintains 1 after normally working

 STAT: ERR info

■ Function

(1) Transfer 1 block (64Kbyte) of a configured R device to a block of flash area to save. DONE is 1 if normally completed.

(2) If R_NO is 2 and over (XGI-CPUU/D, CPUUN : 16 and over), STAT = 1 and if F_NO is 32 and over, STAT = 2, while

_ERR and _LER is on. In addition, if writing to flash, DONE = 0 and STAT = 5. DONE = 0 and STAT = 10 if

Read/Write operation on a flash area is in progress during the operation is running.

(3) While processing an instruction, the bit corresponding to F_NO of _RBLOCK_WR_FLAG is on.

 Chapter 10. Application Function Blocks

10-8

1.5. FIFO

FIFO
Load/Unload data to FIFO stack (First In First Out)

Availability XGI, XGR, XEC, XMC

Flags
FIFO

Function Block Description

Input REQ: requires to execute the function block

 IN: input data to be stored at FIFO stack
 LOAD: FB is on the input mode, if it’s on.
 UNLD: FB is On the output mode, if it’s on,
 RST: pointer value reset
 FIFO : Array used as FIFO stack

 Output DONE: it’s 1 after first execution
 OUT: on output mode, it’s the data from FIFO stack

 PNT: pointer for input data of FIFO stack
 FULL: if FIFO stack is full, it is 1

EMTY: if FIFO stack is empty, It is 1

ANY type variable

Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
FIFO ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
OUT ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

*ANY: exclude STRING from ANY types; *ARRAY OF ANY: excluding STRING from ARRAY_ANY type.

■ Function

(1) It loads IN to FIFO or unloads data from FIFO.
(2) If Input and Output mode are set on at the same time, it executes In/Output simultaneously.
(3) If data is unloaded from FIFO, then the output is the lowest element of stack, the rest elements are shifts, PNT value is

decreased by 1, and the element position of PNT is cleared (0).
(4) If RST is loaded to FIFO, PNT is initialized as 0, EMTY is on and all the data of FIFO stack are cleared as 0.
(5) The stack number is the input array number set by In/Output variable FIFO.
(6) If you want to keep the data of FIFO array variables and FIFO function block instance in case that power is off or power failure

occurs, set them as 'RETAIN'.
(7) Reset functions are able to operate without REQ input.
(8) PNT shows the position of IN to be loaded next time, or the number of pointers to be loaded.
(9) If it’s on the input mode, OUT is 0. But OUT at the output mode is retained in the converted input mode after output mode

operation.

Chapter 10. Application Function Blocks

10-9

Function Block FIFO variable type Description

FIFO_BOOL BOOL It functions as FIFO for BOOL-type data

FIFO_BYTE BYTE It functions as FIFO for BYTE-type data

FIFO_WORD WORD It functions as FIFO for WORD-type data

FIFO_DWORD DWORD It functions as FIFO for DWORD-type data

FIFO_LWORD LWORD It functions as FIFO for LWORD-type data

FIFO_SINT SINT It functions as FIFO for SINT-type data

FIFO_INT INT It functions as FIFO for INT-type data

FIFO_DINT DINT It functions as FIFO for DINT-type data

FIFO_LINT LINT It functions as FIFO for LINT-type data

FIFO_USINT USINT It functions as FIFO for USINT-type data

FIFO_UINT UINT It functions as FIFO for UINT-type data

FIFO_UDINT UDINT It functions as FIFO for UDINT-type data

FIFO_ULINT ULINT It functions as FIFO for ULINT-type data

FIFO_REAL REAL It functions as FIFO for REAL-type data

FIFO_LREAL LREAL It functions as FIFO for LREAL-type data

FIFO_TIME TIME It functions as FIFO for TIME-type data

FIFO_DATE DATE It functions as FIFO for DATE-type data

FIFO_TOD TOD It functions as FIFO for TOD-type data

FIFO_DT DT It functions as FIFO for DT-type data

■ Program Example

 Chapter 10. Application Function Blocks

10-10

 1. LD

%IX1.1.0 LOAD

%IX1.1.1 UNLOAD

%IX1.1.15 RESET

LOAD

UNLOAD

%IX1.1.0 LOAD

%IX1.1.1 UNLOAD

%IX1.1.15 RESET

LOAD

REQ

IN

DONE

FIFO_INT

5555

FIFO

LOAD

UNLOAD

RESET

FIFO

LOAD

UNLD

RST

OUT OUTPUT

PNT_INDEX

FULL_FLAG

PNT

FULL

EMTY_FLAGEMTY

UNLOAD

REQ

IN

DONE

FIFO_INT

5555

FIFO

1

0

RESET

FIFO

LOAD

UNLD

RST

OUT OUTPUT

PNT_INDEX

FULL_FLAG

PNT

FULL

EMTY_FLAGEMTY

REQ

IN

DONE

FIFO_INT

0

FIFO

0

1

RESET

FIFO

LOAD

UNLD

RST

OUT OUTPUT

PNT_INDEX

FULL_FLAG

PNT

FULL

EMTY_FLAGEMTY

DONE

DONE

DONE

()P

()P

()P

()P

()P

()P

FIFO_INT function block is used as the above. The two examples of the above execute the same operation. The above

Chapter 10. Application Function Blocks

10-11

figure illustrate a program which executes input and output functions at the same time using only one function block and

following figure illustrates a program which executes input and output functions independently, using input function and

output function, respectively. Note that both instance names must be the same.

(1) If the input conditions (%IX1.1.0, %IX1.1.1, %IX1.1.15) are on, FIFO_INT executes.

(2) If input contact %IX1.1.0 is on, load function is executed. 5555 is loaded to FIFO stack and PNT_INDEX increased

by 1.

(3) If input contact %IX1.1.1 is on, unload function executes. 1111 is unloaded from FIFO stack and PNT_INDEX is

decreased by 1.

(4) If input contact %IX1.1.15 is on, reset function executes. All the stack of FIFO is cleared as 0, PNT_INDEX is

initialized as 0 and EMTY_FLAG is on.

[0] 1111

[1] 2222

[2] 3333

[3] 4444

[4] 0

 FIFO

IN = 5555

PNT=4

[0] 1111

[1] 2222

[2] 3333

[3] 4444

[4] 5555

 FIFO

PNT=5

When LOAD operates
(if %IX1.1.0 is On)

PNT=4 PNT=0

When RESET operates
(if %IX1.1.15 is On)

[0] 0

[1] 0

[2] 0

[3] 0

[4] 0

 FIFO

[0] 2222

[1] 3333

[2] 4444

[3] 5555

[4] 0

 FIFO

OUT = 1111

PNT=5 PNT=4

When UNLOAD operates
(if %IX1.1.1 is On)

[0] 2222

[1] 3333

[2] 4444

[3] 5555

[4] 0

 FIFO

[0] 1111

[1] 2222

[2] 3333

[3] 4444

[4] 5555

 FIFO

 Chapter 10. Application Function Blocks

10-12

2. ST

INST_FIFO_INT(REQ:=LOAD OR UNLOAD, IN:=5555, FIFO:=FIFO, LOAD:=LOAD, UNLD:=UNLOAD,

RST:=RESET, DONE=>DONE, OUT=>OUTPUT, PNT=>PNT_INDEX, FULL=>FULL_FLAG, EMTY=>EMTY_FLAG);

Chapter 10. Application Function Blocks

10-13

1.6. LIFO

LIFO
Load/Unload data to LIFO stack (Last In First Out)

Availability XGI, XGR, XEC, XMC

Flags

Function Block Description

Input REQ: to execute the function block
 IN: input data to be stored at LIFO stack
 LOAD: FB is on, the input mode, if it is on
 UNLD: FB is on the output mode, if it is on
 RST: pointer value reset
 LIFO : Array used as LIFO stack.

Output DONE: it is 1 after first execution
 OUT: on output mode, it is the data from LIFO stack

 PNT: pointer for input data of LIFO stack
 FULL: if LIFO stack is full, it is 1
 EMTY: if LIFO stack is empty, it is 1

ANY type variable

Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

IN ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
LIFO ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
OUT ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

*ANY: exclude STRING from ANY type, *ARRAY OF ANY: exclude STRING from ARRAY OF ANY type.

■ Function

(1) It loads IN to LIFO or unloads data from LIFO.
(2) If LOAD and UNLD are on at the same time, input IN is produced as output ,OUT.
(3) If data is unloaded from LIFO by unload function of LIFO_***, unloaded data is deleted in stack and initialized as 0.
(4) If RST is loaded to LIFO, PNT is initialized as 0, EMTY is on and all the data of LIFO stack are cleared as 0.
(5) The stack number is the array number set by In/Output variable LIFO.
(6) If you want to keep the data of LIFO array variables and LIFO function block instance, in case that power is off or power

failure occurs, set them as 'RETAIN'.
(7) Reset functions are able to operate without REQ input.
(8) PNT shows the position of IN to be loaded next time, or the number of pointers to be loaded.
(9) If it is on the input mode, output ,OUT is 0.
(10) If load and unload signals are entered simultaneously, IN is produced to OUT.
(11) In case of input mode, OUT is 0. However, if the input mode converted after output mode operation, OUT value of output

mode is maintained

 Chapter 10. Application Function Blocks

10-14

Function Block
FIFO

variable type
Description

LIFO_BOOL BOOL It functions as LIFO for BOOL-type data

LIFO_BYTE BYTE It functions as LIFO for BYTE-type data

LIFO_WORD WORD It functions as LIFO for WORD-type data

LIFO_DWORD DWORD It functions as LIFO for DWORD-type data

LIFO_LWORD LWORD It functions as LIFO for LWORD-type data

LIFO_SINT SINT It functions as LIFO for SINT-type data

LIFO_INT INT It functions as LIFO for INT-type data

LIFO_DINT DINT It functions as LIFO for DINT-type data

LIFO_LINT LINT It functions as LIFO for LINT-type data

LIFO_USINT USINT It functions as LIFO for USINT-type data

LIFO_UINT UINT It functions as LIFO for UINT-type data

LIFO_UDINT UDINT It functions as LIFO for UDINT-type data

LIFO_ULINT ULINT It functions as LIFO for ULINT-type data

LIFO_REAL REAL It functions as LIFO for REAL-type data

LIFO_LREAL LREAL It functions as LIFO for LREAL-type data

LIFO_TIME TIME It functions as LIFO for TIME-type data

LIFO_DATE DATE It functions as LIFO for DATE-type data

LIFO_TOD TOD It functions as LIFO for TOD-type data

LIFO_DT DT It functions as LIFO for DT-type data

Chapter 10. Application Function Blocks

10-15

■ Program Example
 1. LD

 Chapter 10. Application Function Blocks

10-16

LIFO_TIME function block is used as the above. The two examples of the above execute the same operation. The

above figure illustrate a program which executes input and output functions at the same time using only one function

block and the below figure illustrates a program which executes input and output functions independently, using input

function and output function, respectively. Note that both instance names must be the same.

(1) If the input conditions (%IX1.1.0, %IX1.1.1, %IX1.1.15) are on, LIFO_TM executes.

(2) If input contact %IX1.1.0 is on, load function executes. T#55S is loaded to LIFO stack and PNT_INDEX is

increased by 1.

(3) If input contact %IX1.1.1 is on, unload function executes. T#55S is unloaded from LIFO stack and PNT_INDEX is

decreased by 1.

(4) If input contact %IX1.1.15 is on, reset function executes. All the stack of LIFO is cleared as T#0S, PNT_INDEX is

initialized as 0 and EMTY_FLAG is on.

PNT=4 PNT=0

When RESET operates
(if %IX1.1.15 is On)

[0] T#0S

[1] T#0S

[2] T#0S

[3] T#0S

[4] T#0S

 LIFO

[0] T#11S

[1] T#22S

[2] T#33S

[3] T#44S

[4] T#0S

 LIFO

[0] T#11S

[1] T#22S

[2] T#33S

[3] T#44S

[4] T#0S

LIFO

IN = T#55S

PNT=4

[0] T#11S

[1] T#22S

[2] T#33S

[3] T#44S

[4] T#55S

 LIFO

PNT=5

When LOAD operates
(if %IX1.1.0 is On)

OUT = T#55S

PNT=5 PNT=4

When UNLOAD operates
(if %IX1.1.1 is On)

[0] T#11S

[1] T#22S

[2] T#33S

[3] T#44S

[4] T#0S

LIFO

[0] T#11S

[1] T#22S

[2] T#33S

[3] T#44S

[4] T#55S

LIFO

Chapter 10. Application Function Blocks

10-17

2. ST

INST_LIFO_TIME(REQ:=LOAD OR UNLOAD, IN:=T#55S, LIFO:=LIFO, LOAD:=LOAD, UNLD:=UNLOAD, RST:=RST,

DONE=>DONE, OUT=>OUTPUT, PNT=>PNT_INDEX, FULL=>FULL_FLAG, EMTY=>EMTY_FLAG);

1.7. S

 Chapter 10. Application Function Blocks

10-18

1.8. CON

SCON
Step Controller (Step in order and jump of step)

Availability XGI, XGR, XEC, XMC

Flags _ERR , _LER

Function Block Description

SCON

DONEREQ

ST_0/JP_1

SET

S

BOOLBOOL

BOOL

INT

ARRAY OF BOOL

CUR_S INT

Input REQ: if it is 1, the function block executes

 S/O: if 0, SET function is enabled;
if 1, OUT function is enabled.

 SET: step number (0 ~ 99)

Output DONE: without an error, it is on. If error is occurred or
there is no request of execution, it is off

 S: produces an set bit array
 CUR_S: produces a current step number

■ Function

(1) Setting of step controller group
The instance name of function block is the name of step controlling group.
(Examples of FB declaration: S00, G01, Manu1, Examples of step contacts: S00.S[1], G01.S[1], Manu1.S[1])

2. In case of SET function (ST_0/JP_1 = 0)
In the same step controller group, the present step number can be on when the previous step number is on.
If the present step number is on, it keeps its state even when the input is off.
Only one step number is on even when several input conditions are on at the same time.
If Sxx.S[0] is on, all the SET output is cleared.

3. In case of JUMP function (ST_0/JP_1 = 1)
In the same step controller group, only one step number is on, even when several input conditions are on.
If input conditions are on at the same time, last programmed one is produced.
If the present step number is on, it keeps its state even when the input is off..
If Sxx.S[0] is on, it returns to its first step.

■ Flag

Flag Description

_ERR
An error occurs when step setting (SET) is out of its range (0 ~ 99).
If an error occurs, DONE is off and step output maintains its previous step.

Chapter 10. Application Function Blocks

10-19

■ In case of SET function (ST_0/JP_1 = 0), using SC1 group

 1. LD

 Chapter 10. Application Function Blocks

10-20

2. ST

INST_SCON(REQ:=%MX1, ST0_JP1:=0, SET:=1, S=>S_BIT);

INST_SCON1(REQ:=%MX2, ST0_JP1:=0, SET:=2, S=>S_BIT);

INST_SCON2(REQ:=%MX3, ST0_JP1:=0, SET:=3, S=>S_BIT);

INST_SCON3(REQ:=%MX4, ST0_JP1:=0, SET:=0, S=>S_BIT);

%QX0.0.0 := S_BIT[0];

%QX0.0.1 := S_BIT[1];

%QX0.0.2 := S_BIT[2];

%QX0.0.3 := S_BIT[3];

S_BIT[1]

Input
condition

clearing SC1

%MX1

%MX2

%MX3

%MX0

S_BIT[2]

S_BIT[3]

Chapter 10. Application Function Blocks

10-21

NO
%MX

1

%MX

2

%MX

3

%MX

4
S_O [1] S_O [23] S_O [98] S_O [0]

1 On Off Off Off ○

2 On On Off Off ○

3 On On On Off ○

4 On On On On ○

 Chapter 10. Application Function Blocks

10-22

1.9. TMR

TMR
Integration Timer

Availability XGI, XGR, XEC, XMC

Flags
TMR

Function Block Description

TIME

TMR

QIN

PT

RST

ET

BOOLBOOL

BOOL

TIME

Input IN: operation condition for Timer

 PT: preset time
 RST: reset

 Output Q: timer output

 ET: elapsed time

■ Function

1. When IN is 1, elapsed time is produced at ET.
2. Even if IN is 0 before ET reaches PT, ET keeps its value. If IN is 1 again, elapsed time is produced at ET integrating its previous

value.
3. If ET reaches PT, Q is 1.
4. If RST is 1, Q and ET are 0.

■ Time Chart

Chapter 10. Application Function Blocks

10-23

■ Program Example

1. LD

2. ST

INST_TMR(IN:=T_TMR, PT:=T#10S, RST:=%IX1.1.12, Q=>TIMER_OK, ET=>ET_TIME);

(1) If 10 seconds passes after input variable T_TMR is 1, output variable TIMER_OK is 1.

(2) Elapsed time is produced at ET_TIME after T_TMR is 1.

(3) ET_TIME keeps its value even if T_TMR is 0 before ET_TIME reaches its preset time 10 seconds.

(4) If T_TMR is 1, elapsed time is produced at ET_TIME integrating its previous value.
(5) If input contact %IX1.1.12 is 1, elapsed time ET_TIME and output variable TIMER_OK are all cleared.

 Chapter 10. Application Function Blocks

10-24

1.10. TMR_FLK

TMR_FLK
TMR with Flicker

Availability XGI, XGR, XEC, XMC

Flags
FLK

Function Block Description

TIME

TMR_FLK

QIN

ON

OFF

ET

BOOL BOOL

TIME

TIME

RSTBOOL

Input IN: operation condition for Timer

 ON: on setting time of timer
 OFF: off setting time of timer
 RST: reset

 Output Q: Timer output

 ET: elapsed time

■ Function

(1) As soon as IN gets 1, Q becomes 1 and Q maintains its value during on setting time.
(2) After setting time which is set by on, Q is 0 during the time which is set by off.
(3) If IN is 0, it stops its function of either on or off operation and keeps its time. If IN is 1 again, it executes with its previous data.
4. Output Q is 0 while IN is 0.
5. If ON is 0, output Q is always 0.

■ Time Chart

IN

ON

OFF

Q

ON TIME

OFF TIME

ON TIME

OFF TIME

Chapter 10. Application Function Blocks

10-25

■ Program Example

1. LD

IN

ON

Q

ET

TMR_FLK

T#5S

T_TMR_FLK

ET_TIME

OFFT#2S

RST%IX1.1.12

()
%QX1.1.5

2. ST

INST_TMR_FLK(IN:=T_TMR_FLK, ON:=T#5S, OFF:=T#2S, RST:=%IX1.1.12, Q=>%QX1.1.5, ET=>ET_TIME);

(1) If input variable T_TMR_FLK is 1, TMR_FLK function block executes.

(2) Output contact %QX1.1.5 is 1 during 5 seconds set by on after input variable T_TMR_FLK is 1.

(3) Output contact %QX1.1.5 is 0 during 2 seconds set by off after 5 seconds set by on.

(4) TON time (On) when Q is 1 and TOF time (Off) when Q is 0 are produced at ET_TIME by turns while T_TMR_FLK is 1.

(5) If input variable T_TMR_FLK is 0, then it keeps its time and output contact %QX1.1.5 is 0. If T_TMR_FLK is 1, it

executes again.

(6) If input %IX1.1.12 is 1, elapsed time ET_TIME and output contact %QX1.1.5 are all cleared.

 Chapter 10. Application Function Blocks

10-26

1.11. TMR_UINT

TMR_UINT
TMR with Integer setting

Availability XGI, XGR, XEC, XMC

Flags

Function Block Description

Input IN: operation condition for Timer

 PT: preset time
 UNIT: time unit of setting time
 RST: reset input

 Output Q: timer output

 ET: elapsed time

■ Function

(1) Elapsed time is produced at ET after IN is 1.
(2) Even if IN is 0 before ET reaches PT, ET keeps its value. If IN is 1 again, elapsed time is increased.
(3) Q is 1 when elapsed time reaches preset time.
(4) If RST is 1, Q and ET are 0.
(5) Setting time is PT x UNIT (ms).

■ Time Chart

Chapter 10. Application Function Blocks

10-27

■ Program Example

1. LD

IN

PT

Q

ET

TMR_UINT

10

T_TMR

UINT1000

RST%IX1.1.5

TIMER_OK

ET_TIME

2. ST

INST_TMR_UINT(IN:=T_TMR, PT:=10, UNIT:=1000, RST:=%IX1.1.5, Q=>TIMER_OK, ET=>ET_TIME);

(1) Setting time is PT x UNIT[ms] = 10 x 1000[ms] = 10[s].

(2) Output variable TIMER_OK is 1, if 10 seconds passes after input variable T_TMR is 1.

(3) Elapsed time is produced at ET_TIME after input variable T_TMR is 1.

(4) Even if T_TMR is 0 before ET_TIME reaches preset time ,10 seconds, ET_TIME keeps its value.

(5) If input variable T_TMR is 1 again, elapsed time is produced at ET integrating its previous value.

(6) If input contact %IX1.1.5 is 1, elapsed time ET_TIME and output contact TIMER_OK are all cleared.

T_TMR

%IX1.1.5

ET_TIME

10 * 1000

Setting Time

(10,000ms)

TIMER_OK

 Chapter 10. Application Function Blocks

10-28

1.12. TOF_RST

TOF_RST
Delay Timer is able to output Off in operation

Availability XGI, XGR, XEC, XMC

Flags

Function Block Description

TIME

TOF_RST

QIN

PT

RST

ET

BOOLBOOL

BOOL

TIME

Input IN: operation condition for Timer

 PT: preset time
 RST: reset

 Output Q: Timer output

 ET: elapsed time

■ Function

(1) Q is 1 when IN is 1 and Q is 0 when preset time (PT) elapses after IN became 0.
(2) Elapsed time is produced at ET after IN is 0.
(3) Elapsed time is 0 if IN is 1 before ET reaches PT.
(4) If RST is 1, Q and ET are 0.

■ Time Chart

Chapter 10. Application Function Blocks

10-29

■ Program Example

1. LD

IN

PT

Q

ET

TOF_RST

T#10S

T_TOF_RST

ET_TIME

RST%IX1.1.15

TIMER_OK

2. ST

INST_TOF_RST(IN:=T_TOF_RST, PT:=T#10S, RST:=%IX1.1.15, Q=>TIMER_OK, ET=>ET_TIME);

(1) If input variable T_TOF_RST is 1, output variable TIMER_OK is 1. And TIMER_OK is 0 when 10 seconds elapse after

T_TOF_RST became 0.

(2) If T_TOF_RST is 1 within 10 seconds after it turns off, TOF_RST is initialized.

(3) Elapsed time is produced at ET_TIME.

(4) If input contact %IX1.1.15 is 1, elapsed time ET_TIME and output contact TIMER_OK are all cleared.

☆ Note

TOF_RST Function Block keeps operating after the contact is on until its operation is complete. In case of a variable

using array index, array index error occurs only when the contact is on. Therefore, TOF_RST Function Block does not

produce any array index error as long as the contact is off ,although function block is operating.

 Chapter 10. Application Function Blocks

10-30

1.13. TOF_UINT

TOF_UINT
Off Timer of Integer setting

Availability XGI, XGR, XEC, XMC

Flags

Function Block Description

TIME

TOF_UINT

QIN

PT

UNIT

ET

BOOLBOOL

UINT

UINT

RSTBOOL

Input IN: operation condition for Timer

 PT: preset time
 UNIT: time unit of setting time
 RST: reset

 Output Q: Timer output

 ET: elapsed time

■ Function

(1) Q is 1 when IN is 1. And Q is 0, if setting time (PT) passes after IN is 0.
(2) Elapsed time is produced at ET after IN is 0.
(3) If IN is 1 before ET reaches PT, ET becomes 0 again.
(4) If RST is 1, Q and ET are 0.
(5) Setting time is PT x UNIT (ms).

■ Time Chart

Chapter 10. Application Function Blocks

10-31

■ Program Example

1. LD

IN

PT

Q

ET

TOF_UINT

10

T_TOF

UINT1000

RST%IX1.1.5

TIMER_OK

ET_TIME

2. ST

INST_TOF_UINT(IN:=T_TOF, PT:=10, UNIT:=1000, RST:=%IX1.1.5, Q=>TIMER_OK, ET=>ET_TIME);

(1) Preset time PT x UNIT[ms] = 10 x 1000[ms] = 10[s].

(2) If input variable T_TOF is 1, output variable TIMER_OK is 1. TIMER_OK is 0, if 10 seconds passes after T_TOF is 0.

(3) If T_TOF becomes 1 again within 10 seconds, TOF_UINT initializes.

(4) Elapsed time is produced at ET_TIME.

(5) If input contact %IX1.1.5 is 1, TIMER_OK and ET_TIME are all cleared

☆ Note

TOF_UINT Function Block keeps operating after the contact is on until its operation is complete. In case of a variable

using array index, array index error occurs only when the contact is on. Therefore, TOF_UINT Function Block does

not produce any array index error as long as the contact is off although function block is operating.

 Chapter 10. Application Function Blocks

10-32

1.14. TON_UINT

TON_UINT
On Timer of Integer setting

Availability XGI, XGR, XEC, XMC

Flags

Function Block Description

TIME

TON_UINT
QIN

PT

UNIT

ET

BOOLBOOL

UINT

UINT

Input IN: operation condition for Timer

 PT: preset time
 UNIT: time unit of setting time

 Output Q: timer output

 ET: elapsed time

■ Function

(1) Elapsed time is produced at ET after IN is 1.
(2) Elapsed time ET is 0, if IN is 0 before ET reaches PT.
(3) Q is 0, if IN is 0 after Q is 1.
(4) Preset time is PT x UNIT[ms].

■ Time Chart

IN

ET

PT * UNIT

Setting Time
(PT* UNIT)

Q

Chapter 10. Application Function Blocks

10-33

■ Program Example

1. LD

IN

PT

Q

ET

TON_UINT

10 ET_TIME

UINT1000

TIMER_OK

T_TON

2. ST

INST_TON_UINT(IN:=T_TON, PT:=10, UNIT:=1000, Q=>TIMER_OK, ET=>ET_TIME);

(1) Preset time is PT x UNIT[ms] = 10 x 1000[ms] = 10[s].

(2) If 10 seconds passes after input variable T_TON is on, output variable TIMER_OK is 1.

(3) Elapsed time is produced at ET_TIME after input variable T_TON is on.

(4) If T_TON is 0 before elapsed time ET_TIME reaches 10 seconds, ET_TIME is 0.

(5) If T_TON is 0 after TIMER_OK is 1, TIMER_OK and ET_TIME are 0.

TP_RST

 Chapter 10. Application Function Blocks

10-34

1.15. TP_RST

TP_RST
Pulse timer is able to Off output of contact.

Availability XGI, XGR, XEC, XMC

Flags

Function Block Description

TIME

TP_RST

QIN

PT

RST

ET

BOOLBOOL

BOOL

TIME

Input IN: operation condition for Timer

 PT: preset time
 RST: reset

 Output Q: timer output

 ET: elapsed time

■ Function

(1) If IN is 1, Q is 1. And if elapsed time reaches preset time, timer output Q is 0.
(2) ET increases its value from when IN is 1, keeps its value at PT and is cleared when IN is 0.
(3) It doesn't matter whether IN changes its state or not while timer output Q is 1 (during a pulse output).
(4) If RST is 1, output Q and ET are 0.

■ Time Chart

Chapter 10. Application Function Blocks

10-35

■ Program Example

1. LD

IN

PT

Q

ET

TP_RST

T#10S ET_TIME

RST%IX1.1.12

TIMER_OK

T_TP_RST

2. ST

INST_TP_RST(IN:=T_TP_RST, PT:=T#10S, RST:=%IX1.1.12, Q=>TIMER_OK, ET=>ET_TIME);

T_TP_RST

%IX1.1.12

ET_TIME 10S

Setting Time
(10S)

TIMER_OK

(1) If input variable T_TP_RST is 1, output variable TIMER_OK is 1. And 10 seconds later, TIMER_OK is 0. Once

TP_RST timer executes, input T_TP_RST doesn't matter during 10 seconds.

(2) ET_TIME value increases and stops at 10S. And if T_TP_RST is 0, ET_TIME becomes 0.

(3) If input contact %IX1.1.12 is 1, TIIMER_OK and ET_TIME are all cleared.

☆ Note

TP_RST Function Block keeps operating after the contact is on until its operation is complete. In case of a variable

using array index, array index error occurs only when the contact is on. Therefore, TP_RST Function Block does not

produce any array index error as long as the contact is off although function block is operating.

 Chapter 10. Application Function Blocks

10-36

1.16. TP_UINT

TP_UINT
Pulse Timer with Integer setting

Availability XGI, XGR, XEC, XMC

Flags

Function Block Description

TIME

TP_UINT

QIN

PT

UNIT

ET

BOOLBOOL

UINT

UINT

RSTBOOL

Input IN: operation condition for Timer

 PT: preset time
 UNIT: time unit of setting time
 RST: reset

 Output Q: timer output

 ET: elapsed time

■ Function

(1) If IN is 1, Q is 1. And if elapsed time reaches preset time, timer output Q is 0.
(2) ET increases its value from when IN is 1, keeps its value at PT and is cleared when IN is 0.
(3) It does not matter whether IN changes its state or not while timer output Q is 1 (during a pulse output).
(4) If RST is 1, output Q and ET are 0.
(5) Preset time is PT x UNIT[ms].

■ Time Chart

IN

RST

ET PT*UNIT

Setting Time
(PT*UNIT)

Q

Chapter 10. Application Function Blocks

10-37

■ Program Example

1. LD

IN

PT

Q

ET

TP_UINT

10

T_TP

UINT100

RST%IX1.1.5

TIMER_OK

ET_TIME

2. ST

INST_TP_UINT(IN:=T_TP, PT:=10, UNIT:=100, RST:=%IX1.1.5, Q=>TIMER_OK, ET=>ET_TIME);

(1) Preset time is PT x UNIT[s] = 10 x 100[ms] = 1[s].

(2) If input variable T_TP is 1, output variable TIMER_OK is 1. And 10 seconds later, TIMER_OK is 0. Once TP_UINT timer

executes, input T_TP does not matter.

(3) ET_TIME value increases and stops at 1,000. And if T_TP is 0, it is 0.

(4) If input contact %IX1.1.5 is 1, TIMER_OK and ET_TIME are all cleared.

☆ Note

TP_UINT Function Block keeps operating after the contact is on until its operation is complete. In case of a variable

using array index, array index error occurs only when the contact is on. Therefore, TP_UINT Function Block does not

produce any array index error as long as the contact is off although function block is operating.

 Chapter 10. Application Function Blocks

10-38

1.17. TRTG

TRTG
Retriggerable Timer

Availability XGI, XGR, XEC, XMC

Flags

Function Block Description

Input IN: operation condition for Timer

 PT: preset time
 RST: reset

 Output Q: timer output

 ET: elapsed time

■ Function

(1) Q is 1 as soon as IN becomes 1. And if elapsed time reaches preset time, timer output Q is 0.
(2) If IN turns on again before elapsed time reaches preset time, then elapsed time is set as 0 and increased again. And if it

reaches PT, Q is 0.
(3) If RST is 1, timer output Q and elapsed time ET are 0.

■ Time Chart

Chapter 10. Application Function Blocks

10-39

■ Program Example

1. LD

IN

PT

Q

ET

TRTG

10

T_TRTG

RST%IX1.1.5

TIMER_OK

ET_TIME

2. ST

INST_TRTG(IN:=T_TRTG, PT:=10, RST:=%IX1.1.5, Q=>TIMER_OK, ET=>ET_TIME);

(1) TIMER_OK is 1 during 10 seconds after input variable T_TRTG becomes 1 from 0. If T_TRTG becomes 1 from 0 after

timer executes, ET_TIME is set as 0 and increased again.

(2) TIMER_OK is 1 during 10 seconds even when T_TRTG becomes 0 from 1.

(3) ET_TIME value increases and stops at T#10S. And it is 0 when T_TRTG is 0.

(4) If input contact %IX1.1.15 is 1, TIMER_OK and ET_TIME are all cleared.

☆ Note

TRTG Function Block keeps operating after the contact is on until its operation is complete. In case of a variable using

array index, array index error occurs only when the contact is on. Therefore, TRTG Function Block does not produce

any array index error as long as the contact is off although function block is operating.

 Chapter 10. Application Function Blocks

10-40

1.18. TRTG_UINT

TRTG_UINT
Retriggerable Timer with Integer setting

Availability XGI, XGR, XEC, XMC

Flags

Function Block Description

Input IN: operation condition for Timer

 PT: preset time
 UNIT: time unit of setting time
 RST: reset

 Output Q: timer output

 ET: elapsed time

■ Function

(1) Q is 1 as soon as IN becomes 1. And if elapsed time reaches preset time, timer output Q is 0.
(2) If IN turns on again before elapsed time reaches preset time, then elapsed time is set as 0 and increased again. And if it

reaches PT, Q is 0.
(3) If RST is 1, timer output Q and elapsed time ET are 0.
(4) Preset time is PT x UNIT[ms].

■ Time Chart

Chapter 10. Application Function Blocks

10-41

■ Program Example

1. LD

IN

PT

Q

ET

TRTG_UINT

10

T_TRTG

UINT100

RST%IX1.1.5

TIMER_OK

ET_TIME

2. ST

INST_TRTG_UINT(IN:=T_TRTG, PT:=10, UNIT:=100, RST:=%IX1.1.5, Q=>TIMER_OK, ET=>ET_TIME);

(1) Preset time is PT x UNIT[ms] = 10 x 1000[ms] = 10[s].

(2) TIMER_OK is 1 during 10 seconds after input variable T_TRTG becomes 1 from 0. If T_TRTG becomes 1 from 0 after

timer executes, ET_TIME is set as 0 and increased again.

(3) TIMER_OK is 1 during 10 seconds even when T_TRTG becomes 0 from 1.

(4) ET_TIME value increases and stops at 10000. And it is 0 when T_TRTG is 0.

(5) If input contact %IX1.1.5 is 1, TIMER_OK and ET_TIME are all cleared.

☆ Note

TRTG_UINT Function Block keeps operating after the contact is on until its operation is complete. In case of a variable

using array index, array index error occurs only when the contact is on. Therefore, TRTG_UINT Function Block does

not produce any array index error as long as the contact is off, although function block is operating.

 Chapter 10. Application Function Blocks

10-42

MST_CHG
Converting master by program

Availability XGR

Flags _MASTER_CHG

Function Block Description

Input REQ : requests converting master by program

Output DONE : keeps on after conversion
 STAT : indicates result. 0 means no error.

■ Function

(1) If REQ (requests converting master by program) becomes 0  1, master is converted after finishing currently

executed scan.
(2) DONE keeps on from when master is converted until REQ becomes off.
(3) STAT yields the following information after finishing execution of FB

- 0 : normal
- 1 : stand - by CPU power is off
- 2 : stand - by CPU power is stop
- 3 : stand - by CPU power is error
- 4 : Online Editing status

■ Flag

Flag Description

_MASTER_CHG Write-able bit flag

In case of On, master is converted and flag becomes off.

■ Program example

1. LD

Chapter 10. Application Function Blocks

10-43

2. ST

INST_MST_CHG(REQ:=M_REQ, DONE=>M_DONE, STAT=>M_STAT);

(1) M_REQ becomes 01, master is converted.

(2) After conversion, M_DONE becomes on. If error occurs, error code is displayed in M_STAT.

 Chapter 10. Application Function Blocks

10-44

SYNC
Synchronizing data between master CPU and stand-by CPU

Availability XGR

Flags _MASTER_CHG

Function Block Description

Input

REQ : requests execution of FB
DIRC : 0: synchronizes data of master CPU to stand-by CPU
 1: synchronizes data of stand-by CPU to master CPU
SRC32 : direct variable to send data. DWORD type
DST32 : direct variable to receive data. DWORD type
DSIZE : number of DWORD data to synchronize

Output

DONE : in case of normal execution, on
STAT : indicates result of execution. 0 means no error

■ Function

(1) It is used to synchronize device area between master CPU and stand-by CPU.
(2) If DIRC variable is off, DWORD data as many as number set in DSIZE are moved promptly from master CPU’s

device set in SRC32 to stand-by CPU’s device set in DST32
(3) If DIRC variable is on, DWORD data as many as number set in DSIZE are moved promptly from stand-by CPU’s

device set in SRC32 to master CPU’s device set in DST32
(4) Only direct variable can be declared in the location of SRC32 and DST32.
(5) Synchronization is done tough stand-by CPU is STOP, ERROR status.
(6) STAT yields the following information after finishing execution of FB

- 0 : normal
- 1 : device area of destination is exceeded when moving DWORD data
- 2 : There is no stand-by CPU or SYNC FB can not be executed.

Chapter 10. Application Function Blocks

10-45

■ Program example

1. LD

2. ST

INST_SYNC(REQ:=S_REQ, DIRC:=0, SRC32:=%MD0, DST32:=%MD100, DSIZE:=100, DONE=>S_DONE,

STAT=>S_STAT);

(1) If S_REQ becomes 01, data synchronization executes between master CPU and stand-by CPU

(2) 200 DWORD data is copied from %MD0 of master CPU to %MD100 of stand-by CPU.

(3) After synchronization, S_DONE becomes on. If error occurs, error code is displayed in S_STAT.

 Chapter 10. Application Function Blocks

10-46

HS_FB

Synchronizing data between master CPU and stand-by CPU

Availability XGI, XGR

Flags
_HSn_STATEm

[n:1~12, m:0~127]

Function Block Description

Input REQ : requests execution of FB

 MOD_A: HS link STATE flag of A side

MOD_B: HS link STATE flag of B side

RX_SRI_A: SEQ no. of A side

 RCV_AI: array variable to save A side data

RX_SRI_B: B side SEQ no.

RCV_BI: array variable to save B side data

RCV_DATA : array variable to save input data

Output

DONE : in case of normal execution, on
STAT : indicates result of execution. 0 means no error

■ Function

(1) If REQ of FB for executing redundant HS link service becomes 0  1, instruction is executed.
(2) DONE is kept on until REQ is off.
(3) Input HS link flag (_HSn_STATEm: total status display flag) into MOD_A, MOD_B according to block index and

parameter no. of HS link set in XG-PD.
(4) Set SEQ number increased by one every scan at transmission side
(5) Input SEQ no. storage area set in XG-PD into RX_SRI_A, RX_SRI_B (SEQ no. uses 1 WORD).
(6) Input DATA storage area set in XG-PD into RCV_AI, RCV_BI.
(7) Input data storage area according to array type and number set in RCV_AI, RCV_BI.
(8) STAT provides the following information during execution.

(1) 0 : Normal
(2) 1 : The number of array of input side is different (RCV_AI, RCV_BI, RCV_DATA)
(3) 2 : HS links of A/B side are in error

■ Related flag

Flag Desciprition

_HSn_STATEm
[n:1~12, m:0~127] Total status display of HS link Nth Mth block

Chapter 10. Application Function Blocks

10-47

■ Program example

1. LD

2. ST

INST_HS_FB(REQ:=HS_REQ, MOD_A:=_HS1_STATE001, MOD_B:=_HS2_STATE001, RX_SRI_A:=%MW10,

RCV_AI:=%MW100, RX_SRI_B:=%MW20, RCV_BI:=%MW200, RCV_DATA:=RCV_DATA);

(1) If HS_REQ becomes 01, HS_FB executes.

(2) SEQ no. of A side is received into %MW10 and SEQ no. of B side is received into %MW20. (Set in XG-PD)

(3) Data of A side is received into %MW100 and data of B side is received into %MW200. (Set in XG-PD)

(4) In case communication module error of A side occurs, B side data is saved in RCV_DATA.

(5) In case communication module error of B side occurs, A side data is saved in RCV_DATA.

 Chapter 10. Application Function Blocks

10-48

ET_IP

SPA Applied model
Occurrence

flag

 Solar tracking algorithm
XEC

(U, XEMH2, XEMHP)
-

Function block Explanation

input REQ: Execution of Function Block at Rising Edge

Year: year
Month: month
Day: days
Hour: hour
Minute: minute
Second: second
Timezone: Local time zone
Delta_t: TT-UT
Longitude: Local longitude
Latitude: Local latitude
Elevation: Local altitude
Pressure: Annual average pressure
Temperature: Average annual temperature
Slope: Surface slope based on horizontal plane
Azm_rotation: Rotational azimuth
Atmos_refract: Atmospheric refraction angle
Functioncode: select function

output DONE: Outputs 1 if SPA command is normally
executed

STAT: Error code in case of error
Zenith: Zenith angle
AzinuthNavi: azimuth
AzinuthAstro: azimuth
Incidence: angle of incidence
Suntransit: Culmination of the Sun
Sunrise: Sunrise time
Sunset: Sunset time

Chapter 10. Application Function Blocks

10-49

■ Detailed input / output

division Contents Detailed description

input

Year Year (> 6000)

Month Month (1 to 12)

Day Days (1 to 31)

Hour Hour (0-24)

Minute Minute (0 ~ 59)

Second Seconds (0 to 59)

Timezone Local time zone (difference from Greenwich (London) Standard Time)

Delta_t Difference between Earth Rotation Time and Ground Time

Delta_t = Terrestrial Time (TT) - Universal Time (UT) difference

[unit: Seconds]

Longitude Local longitude

[unit: Degrees]

Yes)
 Longitude Latitude

Sydney, Australia 151.2 [deg.] -33.9 DEG

New York, USA -74.0 [deg.] 40.7 [deg.]

London, England -0.1 ° 51.5 DEG

Seoul, South Korea 127 ° 37.6 [deg.]

Latitude Local latitude

[unit: Degrees]

Elevation Area altitude[Unit: Meters]

Pressure Average annual pressure [Unit: Millibars]

Temperature Average annual temperature [Unit: Degrees Celsius]

Slope Surface slope based on horizontal plane [Unit: Degrees]

Azm_rotation Rotating azimuth [Unit: Degrees]

Atmos_refreact Atmospheric Refraction [Unit: (Degrees)

- Standard value: 0.5667 °

Functioncode Select function

1. Solar zenith angle / azimuth calculation

2. Solar zenith angle / Azimuth calculation + Incident angle calculation

3. Solar zenith angle / Azimuth calculation + Sun sunrise / Sunset / Moon hour

calculation

4. Full function execution (1 to 3)

 Chapter 10. Application Function Blocks

10-50

division Contents Detailed description

Print

Zenith The zenith of the sun:

[unit: Degrees]

Definition of the angle

between the connecting line

of the sun and the station

Azinuthnavi Azimuth of the sun

[unit: Degrees]

(North = 0 °, east = 90 °,

south = 180 °, west = 270 °)

AzinuthAstro Azimuth of the Sun (Azimuth-180 ° = AzinuthAstro)

[unit: Degrees]

Incidence Surface and incident angle of the sun

[unit: Degrees]

■ Error

 If the input parameter is out of the allowable range, the following error may occur.

STAT Contents Detailed description

0 Normal performance Command execution complete

1 Year setting error Occurs when a value other than Year (0 ~ 6000) is set.

2 Month setting error Occurs when a value other than Month (1 to 12) is set.

3 Setting error Occurs when a value other than Day (1 ~ 31) is set.

4 Time setting error Occurs when a value other than Hour (0 to 24) is set.

5 Minute setting error Occurs when a value other than Minute (0 ~ 59) is set.

6 Second setting error Occurs when a value other than Second (0 ~ 59) is set.

7 Delta_t setting error Occurs when a value other than Delta_t (-8000 ~ 8000) is set.

8 Timezone setting error Occurs when a value other than Timezone (-18 ~ 18) is set.

9 Longitude setting error Occurs when a value other than Longitude (-180 ~ 180) is set.

10 Latitude setting error Occurs when a value other than Latitude (-90 ~ 90) is set.

11 Elevation setting error Occurs when setting the Elevation value (less than -6500000)

12 Pressure setting error Occurs when a value other than Pressure (0 ~ 5000) is set.

13 Temperature setting error Occurs when setting a value other than Temperature (-273 ~ 6000)

14 Slope setting error Occurs when setting a value other than Slope (-360 ~ 360)

15 Azm_rotation setting error Occurs when a value other than Azm_rotation (-360 ~ 360) is set.

Chapter 10. Application Function Blocks

10-51

STAT Contents Detailed description

16 Atomos_refract setting error Occurs when a value other than Atomos_refract (-5 to 5) is set.

17 Functioncode setting error Occurs when setting a value other than Functioncode (0 ~ 3)
■ Features

1. You can estimate the solar zenith angle, azimuth, angle of incidence, and solar time in the local area with the SPA command.

2. SPA commands are available only for XECSU, XECH, XECU, XEMH2, and XEMHP among the XEC models.

3. This algorithm is based on the technical report (NREL / TP-560-34302) of the National Renewable Energy Laboratory
(NREL) of the United States. The solar angle error is +/- 0.0003 °.

4. You can set the command time input value through the PLC clock information flag area. (See Program Example 1)

(XECU, XEMH2, XEMHP: RTC built-in, XECSU: Optional board mounting required.)
5. When external clock data is used, it is necessary to convert it to the command input data type.

6. Through the type conversion instruction, Suntransit, Sunrise, and Sunset output values can be converted to clock data
types. (See Program Example 2)

7. DONE is set to 1 when command execution is completed without error, and output value is updated according to
Functioncode setting value. (1Scan)

8. If an error occurs, the previous output value is maintained, but DONE is set to 0 and STAT is output to the error number.

■ Program Example
(1) Time data setting using PLC clock flag value

- When input condition% MX0 is On, type conversion instruction is executed.
- Converts the PLC clock flags (% FW53 to% FW56) to YEAR, MONTH, DAY, HOUR, MINUTE and SECOND
respectively according to the SPA input data type.

(2) Solar time conversion through type conversion instruction

- When input condition% MX0 is On, the type conversion instruction is executed.
- You can multiply 3600000 by the output time value (LREAL data type) and execute the conversion instruction to check

 Chapter 10. Application Function Blocks

10-52

the value by clock data type. (Final conversion value: 11:49:04)

(3) Executing a command
 - REQ is Off  If it is On, SPA function block is executed. DONE is set to 1 after completion of command execution and

output value is updated.

Chapter 11. Communication and Special Function Blocks

11-1

Chapter 11. Communication and Special Function Blocks

This chapter describes communication function blocks, special function blocks, motion control function blocks and

positioning function blocks.

For the details of communication function blocks, refer to User’s Manual about each communication block. For the directions

of special function blocks, motion control function blocks and positioning function blocks, refer to User’s Manual of each

special module, motion control module and positioning module.

11.1 Communication Function Blocks

It describes each communication function block.

 Chapter 11. Communication and Special Function Blocks

11-2

1.1. PSPSN

P2PSN
 Station No. setting

Availability XGI, XGR

Flags

Function Block Description

P2PSN

STAT

BL_NUM

P_NUM

DONEREQ

NUMUSINT

USINT

USINT

BOOL

BOOL

BOOL

Input REQ: to execute the function block

P_NUM: P2P number
BL_NUM: block number
NUM: station number

Output DONE: maintains 1 after the first operation

 STAT: completion and ERR info

■ Function

(1) You can change the station number of P2P destination while running by using P2PSN instruction.
(
(2) Change the block station number of P2P BL_NUM block of P_NUM to NUM.
Communication modules: FDEnet, Cnet.

■ Error

1. If an error occurs, it displays the error number in STAT.

STAT_NUM Message Description

1 P2P no. setting If a value except P_NUM(1~8) is set

2 Block No. setting
If a value except BL_NUM(0~63) is set

< In case of Cnet, 0~31 >

4 No slot -

5 Module inconsistency Not a communication module

6 Module inconsistency communication module not available in the instruction

7 Error of station No. setting It is occurred, when it is set out of value NUM(0~63)

< In case of Cnet, 0~31 >

■ Program example

1. ST
INST_P2PSN(REQ:=REQ_BOOL, P_NUM:=P_NUM_USINT, BL_NUM:=BL_NUM_USINT, NUM:=NUM_USINT,
DONE=>DONE_BOOL, STAT=>STAT_USINT);

Chapter 11. Communication and Special Function Blocks

11-3

1.2. PSPRD

P2PRD
 Read area setting

Availability XGI, XGR

Flags

Function Block Description

P2PRD

STAT

BL_NUM

P_NUM

DONEREQ

VAL_NUMUSINT

USINT

USINT

BOOL

USINT

BOOL

VAL_SIZE

DEV

USINT

ANY_BIT

Input REQ: requires to execute the function block
 P_NUM: P2P number
 BL_NUM: block number
 VAL_NUM: variable number
 VAL_SIZE: variable size
 DEV: device(input only for a direct variable)

Output DONE: maintains 1 after the first operation

 STAT: completion and ERR info

ANY Type Variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

DEV ○ ○ ○ ○ ○

■ Function

(1) P2PRD instruction changes the variable size and READ device area of P2P parameter block.
 (both individual/continuous reads are changeable)
(2) After designating P2P parameter, block and variable by using P_NUM, BL_NUM, VAL_NUM, it changes the
variable size and device to VAL_SIZE(if continuous, VAL_SIZE means variable size and if individual, it means the
size of variable type), where DEV can be input only for a direct variable(ex, %MW100).
 Communication modules: FEnet, FDEnet, Cnet.

■ Error

 If it is out of the allowable scope of P2P parameter set in PD, the error number occurs as follows.

STAT Message Description

1 P2P number setting error If a value except P_NUM(1~8) is set

2 Block number setting error
If a value except BL_NUM(0~63) is set

< In case of Cnet, 0~31 >

3 Variable number setting error If a variable number not allowed in P2P parameter set in PD is input

4 No slot -

5 Module inconsistency No communication module

 Chapter 11. Communication and Special Function Blocks

11-4

STAT Message Description

6 Module inconsistency Communication module not available in the instruction

10 MODBUS setting error
MODBUS offset can not be input(ex, h10000). Because DEV can be

input only for a direct variable

11 Variable size setting error If a variable size not allowed in P2P parameter set in PD is input

12 Data type setting error If a variable type not allowed in P2P parameter set in PD is input

■ Program example

 ST

 INST_P2PRD_BOOL(REQ:=REQ_BOOL, P_NUM:=P_USINT, BL_NUM:=BL_USINT, VAL:=VAL_USINT,
VAL_SIZE:=SIZE_UINT, DEV_NUM:=DEV_BOOL, DONE=>DONE_BOOL, STAT=>STAT_USINT);

Chapter 11. Communication and Special Function Blocks

11-5

1.3. P2PWR

P2PWR
 Write area setting

Availability XGI, XGR

Flags

Function Block Description

P2PWR

STAT

BL_NUM

P_NUM

DONEREQ

VAL_NUMUSINT

USINT

USINT

BOOL

USINT

BOOL

VAL_SIZE

DEV

USINT

ANY_BIT

Input REQ: requires to execute the function block
 P_NUM: P2P number
 BL_NUM: block number
 VAL_NUM: variable number
 VAL_SIZE: variable size
 DEV: device(input only for a direct variable)

Output DONE: maintains 1 after the first operation

 STAT: completion and ERR info

ANY Type Variable
Variable

BO
O

L

BY
TE

W
O

RD

DW
O

RD

LW
O

RD

SI
NT

IN
T

DI
NT

LI
NT

US
IN

T

UI
NT

UD
IN

T

UL
IN

T

RE
AL

LR
EA

L

TI
M

E

DA
TE

TO
D

DT

ST
RI

NG

DEV ○ ○ ○ ○ ○

■ Function

(1) P2PRD instruction changes the variable size and WRITE device area of P2P parameter block.
 (both individual/continuous reads are changeable)
(2) After designating P2P parameter, block and variable by using P_NUM, BL_NUM, VAL_NUM, it changes the
variable size and device to VAL_SIZE(if continuous, VAL_SIZE means variable size and if individual, it means the
size of variable type), where DEV can be input only for a direct variable(ex, %MW100).
 Communication modules: FEnet, FDEnet, Cnet.

■ Error

If it is out of the allowable scope of P2P parameter set in PD, the error number occurs as follows.

STAT Message Description

1 P2P number setting error If a value except P_NUM(1~8) is set

2
Block number setting

error

If a value except BL_NUM(0~63) is set

<In case of Cnet, 0~31>

3
Variable number setting

error

If a variable number not allowed in P2P parameter set in PD is input

4 No slot -

 Chapter 11. Communication and Special Function Blocks

11-6

STAT Message Description

5 Module inconsistency No communication module

6 Module inconsistency Communication module not available in the instruction

10 MODBUS setting error
MODBUS offset can not be input(ex, h10000). Because DEV can be

input only for a direct variable

11 Variable size setting error If a variable size not allowed in P2P parameter set in PD is input

12 Data type setting error If a variable type not allowed in P2P parameter set in PD is input

■ Program example

 ST

INST_P2PWR_BOOL(REQ:=REQ_BOOL, P_NUM:=P_USINT, BL_NUM:=BL_USINT, VAL:=VAL_USINT,
VAL_SIZE:=SIZE_UINT, DEV_NUM:=DEV_BOOL, DONE=>DONE_BOOL, STAT=>STAT_USINT);

Chapter 11. Communication and Special Function Blocks

11-7

1.4. PSPRD_OFF

P2PRD_OFFSET
 Read area offset setting

Availability XGI, XGR

Flags

Function Block Description

Input REQ: requires to execute the function block
 P_NUM: P2P number
 BL_NUM: block number
 VAL_SIZE: variable size
 OFFSET: offset value

Output DONE: maintains 1 after the first operation

 STAT: completion and ERR info

■ Function

(1) P2PRD_OFFSET instruction changes the read area’s offset value and READ data size of P2P parameter block.
 (both individual/continuous reads are changeable)
(2) After designating P2P parameter, block and variable by using P_NUM, BL_NUM, it changes read area’s offset
value to read data size(VAL_SIZE) and read area offset(OFFSET). (when it is set as individual read, set VAL_SIZE=1)
 Communication modules: FEnet, Cnet.

 (3) Range of read area’s offset value

Data

type

P2P

mode

Maximum data size

OFFSET range remark Modbus

ASCII

Modbus

TCP/RTU

BOOL

READ 976 2000 0x00000 ~ 0x1FFFF -

WRITE 944 1968 0x00000 ~ 0x0FFFF
P2PWR_OFFSET

use

WORD

READ 61 125 0x30000 ~ 0x4FFFF -

WRITE 59 123 0x40000 ~ 0x4FFFF
P2PWR_OFFSET

use

 * In case of read mode, bit read area(0x1XXXX), it can access to P2P server’s bit write area(0x0XXXX), word read

area(0x3XXXX), word write area(0x4XXXX)

 Chapter 11. Communication and Special Function Blocks

11-8

■ Error

 If it is out of the allowable scope of P2P parameter set, the error number occurs as follows.

STAT Message Description

1 P2P number setting error If a value except P_NUM(1~8) is set

2 Block number setting error If a value except BL_NUM(0~63) is set

3 Variable number setting error If a variable number not allowed in P2P parameter set is input

4 No slot -

5 Module inconsistency No communication module

6 Module inconsistency Communication module not available in the instruction

10 MODBUS setting error
MODBUS offset can not be input(ex, h10000). Because DEV can be

input only for a direct variable

11 Variable size setting error If a variable size not allowed in P2P parameter set is input

12 Data type setting error If a variable type not allowed in P2P parameter set is input

13 Offset setting error If read area’s offset value is exceed the range

■ Program example

 ST

 INST_P2PRD_OFFSET(REQ:=REQ_BOOL, P_NUM:=P_USINT, BL_NUM:=BL_USINT, VAL_SIZE:=SIZE_UINT,
OFFSET:=OFFSET_DWORD, DONE=>DONE_BOOL, STAT=>STAT_USINT);

Chapter 11. Communication and Special Function Blocks

11-9

1.5. PSPRD_OFF

P2PWR_OFFSET
 Read area offset setting

Availability XGI, XGR

Flags

Function Block Description

Input REQ: requires to execute the function block
 P_NUM: P2P number
 BL_NUM: block number
 VAL_SIZE: variable size
 OFFSET: offset value

Output DONE: maintains 1 after the first operation

 STAT: completion and ERR info

■ Function

(1) P2PWR_OFFSET instruction changes the write area’s offset value and write data size of P2P parameter block.
 (both individual/continuous writes are changeable)
(2) After designating P2P parameter, block and variable by using P_NUM, BL_NUM, it changes write area’s offset
value to write data size(VAL_SIZE) and write area offset(OFFSET). (when it is set as individual write, set VAL_SIZE=1)
 Communication modules: FEnet, Cnet.

 (3) Range of write area’s offset value

Data

type

P2P

mode

Maximum data size

OFFSET range remark Modbus

ASCII

Modbus

TCP/RTU

BOOL

READ 976 2000 0x00000 ~ 0x1FFFF -

WRITE 944 1968 0x00000 ~ 0x0FFFF
P2PWR_OFFSET

use

WORD

READ 61 125 0x30000 ~ 0x4FFFF -

WRITE 59 123 0x40000 ~ 0x4FFFF
P2PWR_OFFSET

use

 * In case of read mode, bit read area(0x1XXXX), it can access to P2P server’s bit write area(0x0XXXX), word read

area(0x3XXXX), word write area(0x4XXXX)

 Chapter 11. Communication and Special Function Blocks

11-10

■ Error

 If it is out of the allowable scope of P2P parameter set, the error number occurs as follows.

STAT Message Description

1 P2P number setting error If a value except P_NUM(1~8) is set

2 Block number setting error If a value except BL_NUM(0~63) is set

3 Variable number setting error If a variable number not allowed in P2P parameter set is input

4 No slot -

5 Module inconsistency No communication module

6 Module inconsistency Communication module not available in the instruction

10 MODBUS setting error
MODBUS offset can not be input(ex, h10000). Because DEV can be

input only for a direct variable

11 Variable size setting error If a variable size not allowed in P2P parameter set is input

12 Data type setting error If a variable type not allowed in P2P parameter set is input

13 Offset setting error If write area’s offset value is exceed the range

■ Program example

 ST

INST_P2PRD_OFFSET(REQ:=REQ_BOOL, P_NUM:=P_USINT, BL_NUM:=BL_USINT, VAL_SIZE:=SIZE_UINT,

OFFSET:=OFFSET_DWORD, DONE=>DONE_BOOL, STAT=>STAT_USINT);

Chapter 11. Communication and Special Function Blocks

11-11

1.6. SEND_UDATA

SEND_UDATA
 User defined data send

Availability XGI, XGR

Flags

Function Block Description

Input REQ: requires to execute the function block
 BASE : base number
 SLOT: slot number
 CH: channel(1 or 2)
 DATA: data area to send
 SIZE: data size to send

Output DONE: maintains 1 after operation

 STAT: completion and ERR info

■ Function

(1) SEND_UDATA instruction sends user defined data(UDATA).
(2) For BASE and SLOT, input the base and slot number where the current communication module (Cnet, FEnet) is
installed
(3) CH means the channel number. In case of Cnet, only 1 or 2 should be set, and FEnet should input P2P channel
set as user defined.
(4) DATA represents an array in which UDATA is stored, and must be declared as ARRAY OF BYTE type.
(5) The size of the array declared as SIZE is 1~1024. (Unit: Byte)
(6) From DATA[0], store data as many as SIZE in the transmission buffer. (The data size that can be sent at one time
is limited to 1024)
(7) f it is executed normally, 1 is outputted to DONE and STAT, and if an error occurs, status information is displayed
on STAT. In the case of FEnet module, the upper 1 byte indicates the Ethernet connection status, and the lower 1
byte indicates the status information of the command. Display. In case of Cnet module, it is displayed as '00'.

■ Error

1. HIGH BYTE

STAT Message Description

0 Initial state Before command execution

1 Disconnection No Ethernet connection

2 connect Ethernet connection is complete

3 Waiting for connection Waiting for a response for an Ethernet connection

4 Connecting Ethernet connecting

 Chapter 11. Communication and Special Function Blocks

11-12

STAT Message Description

5 Disconnecting Ethernet disconnecting

2. LOW BYTE

STAT Message Description

0 Initial state Initial state before instruction operation

1 No error normal operation

2 Module setting error
Occurs when the module is not installed in the base slot or is not a

communication module (Cnet, FEnet).

3
Channel setting error Cnet: In case of exceeding input range (1, 2)

FEnet: When the P2P channel setting is not user-defined

4 Array size error Transmit data size exceed 1024

5 Parameter setting error When the communication parameter of communication module (Cnet,

FEnet) is not set as user definition or when link enable is not performed.

6 Instruction timeout error No response from module or maximum scan time is exceeded(10 scan)

7 Version mismatch error

Cnet: XGI CPU version is less than V3.9, XGR CPU version is less than

V2.6 or When Cnet version is less than V3.2.

FEnet: When XGI CPU version is less than V4.11 and FEnet version is

less than V8.0.(XGR-CPU is not supported)

■ Program example

Chapter 11. Communication and Special Function Blocks

11-13

Command to transmit max. 1024 bytes by using communication module (Cnet, FEnet) installed in BASE SLOT

 Chapter 11. Communication and Special Function Blocks

11-14

1.7. RCV__UDATA

RCV_UDATA
 User defined data receive

Availability XGI, XGR

Flags

Function Block Description

Input REQ: requires to execute the function block
 BASE : base number
 SLOT: slot number
 CH: channel(1 or 2)
 DATA: data area to save

Output DONE: maintains 1 after operation

 STAT: completion and ERR info
 SIZE: received data size

■ Function

(1) This command is to save the data of the frame received through CNET and FEnet module.
(2) For BASE and SLOT, input the base and slot number where the current communication module (Cnet, FEnet) is
installed.
(3) CH means the channel number. In case of Cnet, only 1 or 2 should be set, and FEnet should input P2P channel
set as user defined.
(4) Output DATA represents an array to store UDATA, and must be declared as ARRAY OF BYTE type.
(5) Output SIZE indicates the size of received data.
(6) If it is executed normally, 1 is outputted to DONE and STAT, and if an error occurs, status information is displayed
on STAT. In the case of FEnet module, the upper 1 byte indicates the Ethernet connection status, and the lower 1
byte indicates the status information of the command. Display. In case of Cnet module, it is displayed as '00'.

■ Error

1. High BYTE

STAT Message Description

0 Initial state Before command execution

1 Disconnection No Ethernet connection

2 connect Ethernet connection is complete

3 Waiting for connection Waiting for a response for an Ethernet connection

4 Connecting Ethernet connecting

Chapter 11. Communication and Special Function Blocks

11-15

STAT Message Description

5 Disconnecting Ethernet disconnecting

2. Low BYTE

STAT Message Description

0 Initial state Initial state before instruction operation

1 No error normal operation

2 Module setting error Module is not installed or CNET module trouble

3 Channel setting error Input range(1, 2) is exceeded

4 No data received Occurs when there is no data received

5 Parameter setting error CNET module’s parameter is not set as User defined or link enable is

not set

6 Instruction timeout error No response from module or maximum scan time is exceeded(10 scan)

7 Version mismatch error
XGI CPU version is under V3.9, XGR CPU version is under V2.6 or

CNET module version is under V3.2

8 Receiving size exceeded
Occurs when the size of received data exceeds 1024 bytes

(If exceeded, only 1024 bytes of data are stored in the device memory)

 Chapter 11. Communication and Special Function Blocks

11-16

1.8. SEND_DTR

SEND_DTR
 User defined data send

Availability XGI, XGR

Flags

Function Block Description

Input REQ: requires to execute the function block
 BASE : base number
 SLOT: slot number
 CH: channel(1 or 2)
 DTR: 0 or 1

Output DONE: maintains 1 after operation

 STAT: completion and ERR info

■ Function

(1)SEND_DTR instruction send DTR(Data Terminal Ready) signal that means communication ready complete.

■ Error

STAT Message Description

0 Initial state Initial state before instruction operation

1 No error normal operation

2 Module setting error Module is not installed or CNET module trouble

3 Channel setting error Input range(1, 2) is exceeded

4 DTR setting error Input range(0, 1) is exceeded

5 Parameter setting error CNET module’s parameter is not set as User defined or link enable is

not set

6 Instruction timeout error No response from module or maximum scan time is exceeded(10 scan)

7 Version mismatch error
XGI CPU version is under V3.9, XGR CPU version is under V2.6 or

CNET module version is under V3.2

Chapter 11. Communication and Special Function Blocks

11-17

1.9. SEND_RTS

SEND_RTS
 User defined data send

Availability XGI, XGR

Flags

Function Block Description

Input REQ: requires to execute the function block
 BASE : base number
 SLOT: slot number
 CH: channel(1 or 2)
 RTS: 0 or 1

Output DONE: maintains 1 after operation

 STAT: completion and ERR info

■ Function

(1)SEND_RTS instruction send RTS(Request To Send) signal that means state of receive buffer.

■ Error

STAT Message Description

0 Initial state Initial state before instruction operation

1 No error normal operation

2 Module setting error Module is not installed or CNET module trouble

3 Channel setting error Input range(1, 2) is exceeded

4 RTS setting error Input range(0, 1) is exceeded

5 Parameter setting error CNET module’s parameter is not set as User defined or link enable is

not set

6 Instruction timeout error No response from module or maximum scan time is exceeded(10 scan)

7 Version mismatch error
XGI CPU version is under V3.9, XGR CPU version is under V2.6 or

CNET module version is under V3.2

 Chapter 11. Communication and Special Function Blocks

11-18

1.8. GET_IP

GET_IP Applied model Occurrence flag

 Read local Ethernet IP, SUBNET MASK,

GATEWAY
XGI-CPUUN -

Function block Explanation

Input REQ: Function block execution request

Output DONE: Maintain 1 after initial operation

STAT: Complete and ERR information
IP: Local Ethernet IP address
SUBNET MASK: Local Ethernet subnet mask
GATEWAY: Local Ethernet gateway

■ Features

1. The GET_IP command allows you to read the IP address, subnet mask, and gateway information of the local Ethernet.
2. Only available with XGI-CPUUN with local Ethernet.
3. After executing the command, the IP address of the local Ethernet is displayed as follows.

Chapter 11. Communication and Special Function Blocks

11-19

■ Error

 If the local Ethernet parameter is abnormal or the command is duplicated, the following error may occur.

STAT Contents Detailed description

0 Normal performance Command execution complete

11 Above user setting value User set IP / SUBNET / GATEWAY setting value is not valid

12

Above the default setting Above existing local Ethernet parameter setting

(Local Ethernet parameters have never been downloaded or parameter

errors are present)

13
Duplicate request error If the instruction is already being executed

(The instruction can not be duplicated)

14 Timeout Timeout processed because command execution is not completed

■ Program Example

1. ST

INST_GET_IP (REQ: REQ_BOOL, DONE => DONE_BOOL, STAT => STAT_USINT, IP => ARY_IP, SUBNET =>
ARY_SUBNET, GATEWAY => ARY_GATEWAY)

 Chapter 11. Communication and Special Function Blocks

11-20

1.9. SET_IP

SET_IP Applied model Occurrence flag

Local Ethernet IP, SUBNET MASK,

GATEWAY settings
XGI-CPUUN -

Function block Explanation

Input REQ: Function block execution request

IP ADDRESS: Local ethernet IP address to set
SUBNET MASK: Local ethernet subnet mask to set
GATEWAY: Local ethernet gateway to set

Output DONE: Maintain 1 after initial operation

STAT: Complete and ERR information

■ Features

1. The SET_IP command allows you to set the IP address, subnet mask, and gateway of the local Ethernet.
2. Only available with XGI-CPUUN with local Ethernet.
3. When setting the IP address, subnet mask, and gateway, you need to set the IP address, subnet mask, and gateway as shown
below.

■ Error

 If the local Ethernet parameter is abnormal or the command is duplicated, the following error may occur.

Chapter 11. Communication and Special Function Blocks

11-21

STAT Contents Detailed description

0 Normal performance Command execution complete

11 Above user setting value User set IP / SUBNET / GATEWAY setting value is not valid

12

Above the default setting Above existing local Ethernet parameter setting

(Local Ethernet parameters have never been downloaded or parameter

errors are present)

13
Duplicate request error If the instruction is already being executed

(The instruction can not be duplicated)

14 Timeout Timeout processed because command execution is not completed

■ Program Example

1. ST

INST_SET_IP (REQ: = REQ_BOOL, IP: = ARY_IP, SUBNET: = ARY_SUBNET, GATEWAY: = ARY_GATEWAY, DONE =>
DONE_BOOL, STAT => STAT_USINT)

 Chapter 11. Communication and Special Function Blocks

11-22

1.10. M_NET_INFO

M_NET_INFO Availability Flag

Read FENET module Ethernet IP, SUBNET

MASK, GATEWAY, MAC
XGI-CPUUN -

Function block Explanation

BOOL

UINT

BOOL
M_NET_INFO

REQ DONE

STATBASE

SLOT

VER
SION

USINT

USINT

USINT

ARRAY[4] OF WORDIP

ARRAY[4] OF WORDSUBNET

ARRAY[4] OF WORDGATEWAY

ARRAY[6] OF WORDMAC

Input REQ: Function block execution request

BASE: Base Number
SLOT: Slot Number
VERSION: Version of diagnostic information

(Version information: Enter 1)

Output DONE: Maintain 1 after initial operation
STAT: Complete and ERR information
IP ADDRESS: IP address of the FENET module
SUBNET MASK: Subnet Mask of the FENET module
GATEWAY: Gateway of the FENET module
MAC: MAC address of the FENET module

■ Features

1. The M_NET_INFO command allows you to read the IP address, subnet mask, and gateway information of the FENET module.
2. VERSION is scheduled to be added in the future diagnostic information version, but currently only version information 1 can be

entered and used.
3. After executing the command, the IP address of the FENET module is displayed as follows.

Ex)
IP Address : 192.168.0.100
Subnet : 255.255.255.0
Gateway : 192.168.0.1
MAC Address : 00-16-EA-50-AB-CD

IP[0] : 192 (0x00C0)
IP[1] : 168 (0x00A8)
IP[2] : 0 (0x0000)
IP[3] : 100 (0x00C8)

SUBNET[0] : 255 (0x00FF)
SUBNET[1] : 255 (0x00FF)
SUBNET[2] : 255 (0x00FF)
SUBNET[3] : 0 (0x0000)

GATEWAY[0] : 192 (0x00C0)
GATEWAY[1] : 168 (0x00A8)
GATEWAY[2] : 0 (0x0000)

Chapter 11. Communication and Special Function Blocks

11-23

GATEWAY[3] : 1 (0x0001)

MAC[0] : 0x0000
MAC[1] : 0x0016
MAC[2] : 0x00EA
MAC[3] : 0x0050
MAC[4] : 0x00AB
MAC[5] : 0x00CD

■ Error

Status

code
Status information Meaning

00 Initial status Before command execution

01 Complete If the command has been executed normally

02 Module setting error When the sl value is set to the base or slot where FEnet module is not installed.

03
Version compatibility

error

If the FEnet version is below V8.1 and the relevant command is not supported

(If the CPU version is below V1.5, program download will not be available.)

04 User set value error When version information is 0

05 Timeout error If there is no response to the command due to FEnet module F module error

06
Performing previous

command

When the start condition is met before execution of the previous command is

completed for the same slot.

08 IO Skip setting error The user has skipped the module.

09 Module detach error The module is dropped out during execution

■ Program Example

1. ST

INST_M_NET_INFO(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), VERSION:=(*USINT*), DONE=>(*BOOL*),
STAT=>(*UINT*), IP=>(*ARRAY[0..3]_OF_WORD*), SUBNET=>(*ARRAY[0..3]_OF_WORD*),

GATEWAY=>(*ARRAY[0..3]_OF_WORD*),
MAC=>(*ARRAY[0..5]_OF_WORD*))

 Chapter 11. Communication and Special Function Blocks

11-24

1.11. M_SET_IP

M_SET_IP Availability Flag

FENET module Ethernet IP, SUBNET MASK,

GATEWAY, MAC settings
XGI-CPUUN -

Function block Explanation

BOOL

UINT

BOOL
M_SET_IP

REQ DONE

STATBASE

SLOT

IP

USINT

USINT

ARRAY[4] OF WORD

SUBNET

GATEWAY

ARRAY[4] OF WORD

ARRAY[4] OF WORD

Input REQ: Function block execution request

BASE: Base Number
SLOT: Slot Number
IP ADDRESS: FENET module IP address to set
SUBNET MASK: FENET module subnet mask to set
GATEWAY: FENET module gateway to set

Output DONE: Maintain 1 after initial operation

STAT: Complete and ERR information

■ Features

1. The SET_IP command allows you to set the IP address, subnet mask, and gateway of the FENET module.
2. When setting the IP address, subnet mask, and gateway, you need to set the IP address, subnet mask, and gateway as shown
below.

IP Address

SUBNET MASK

GATEWEAY

GATEWEAYSUBNET MASKIP Address

Chapter 11. Communication and Special Function Blocks

11-25

■ Error

Status

code
Status information Meaning

00 Initial status Before command execution

01 Complete If the command has been executed normally

02 Module setting error
When the ‘sl’ value is set to the base or slot where FEnet module is not

installed.

03
Version compatibility

error

If the FEnet version is below V8.1 and the relevant command is not supported

(If the CPU version is below V1.5, program download will not be available.)

04 User set value error

When the IP, subnet, and gateway values set by the user are out of range
1) When IP is out of the setting range (1~223)
2) When SBNET is all 0 or 255
3) When GATEWAY[3] is out of the setting range (1~254)

05 Timeout error If there is no response to the command due to FEnet module F module error

06
Performing previous

command

When the start condition is met before execution of the previous command is

completed for the same slot.

07
Communication

setting value error

Communication parameter setting error

(If communication Ethernet parameters were not downloaded)

08 IO Skip setting error The user has skipped the module.

09 Module detach error The module is dropped out during execution

■ Program Example

1. ST

INST_M_SET_IP(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), IP:=(*ARRAY[0..3]_OF_WORD*),
SUBNET:=(*ARRAY[0..3]_OF_WORD*), GATEWAY:=(*ARRAY[0..3]_OF_WORD*), DONE=>(*BOOL*), STAT=>(*UINT*))

 Chapter 11. Communication and Special Function Blocks

11-26

1.12. L_NET_INFO

L_NET_INFO Availability Flag

 Read local Ethernet IP, SUBNET MASK,

GATEWAY
XGI-CPUUN -

Function block Explanation

BOOL BOOL
L_NET_INFO

EN ENO

ARRAY[4] OF WORDIP

ARRAY[4] OF WORDSUBNET

ARRAY[4] OF WORDGATEWAY

ARRAY[6] OF WORDMAC

Input EN: Function execution when 1

Output ENO: Output 1 when executed without error

IP: Local Ethernet IP address
SUBNET MASK: Local Ethernet subnet mask
GATEWAY: Local Ethernet gateway
MAC: Local Ethernet Mac address

■ Features

1. The L_NET_IP command allows you to read the IP address, subnet mask, and gateway information of the local Ethernet.
2. After executing the command, the IP address of the local Ethernet is displayed as follows.

Ex)
IP Adress : 192.168.0.100
Subnet : 255.255.255.0
Gateway : 192.168.0.1
MAC Adress : 00-16-EA-50-AB-CD

IP[0] : 192 (0x00C0)
IP[1] : 168 (0x00A8)
IP[2] : 0 (0x0000)
IP[3] : 100 (0x00C8)

SUBNET[0] : 255 (0x00FF)
SUBNET[1] : 255 (0x00FF)
SUBNET[2] : 255 (0x00FF)
SUBNET[3] : 0 (0x0000)

GATEWAY[0] : 192 (0x00C0)
GATEWAY[1] : 168 (0x00A8)
GATEWAY[2] : 0 (0x0000)
GATEWAY[3] : 1 (0x0001)

MAC[0] : 0x0000
MAC[1] : 0x0016

Chapter 11. Communication and Special Function Blocks

11-27

MAC[2] : 0x00EA
MAC[3] : 0x0050
MAC[4] : 0x00AB
MAC[5] : 0x00CD

■ 프로그램 예

1. ST

L_NET_INFO(IP=>(*ARRAY[0..3]_OF_WORD*), SUBNET=>(*ARRAY[0..3]_OF_WORD*),
GATEWAY=>(*ARRAY[0..3]_OF_WORD*),

MAC=>(*ARRAY[0..5]_OF_WORD*))

 Chapter 11. Communication and Special Function Blocks

11-28

1.13. M_GET_LED

M_GET_LED Availability Flag

Reading LED information of communication

module

XGI-CPUUN(V1.61)

XG5000(V4.51)
-

Function block Explanation

Input REQ : execute the function in case of 1
BASE : Base number on which communication module

is installed
SLOT : Slot number on which communication module

is installed

Output DONE : Output 1 if executed without error

STAT : Status code
OUT : LED information of communication module

■ Function

1. This function is a command to read the LED information of FEnet module.
2. For BASE and SLOT, input the base and slot number where the FEnet module is currently installed.
3. Output OUT indicates LED information of communication module.

 0 1
Bitmap of upper word Off or On Blinking
Bitmap of lower word Off On
The upper word displays the blinking bitmap, and the lower word displays the ON/OFF bitmap.
Ex1) When ACT0 is blinking, the upper word becomes 16#0100, and the lower word becomes 16#0100 (lit),

16#0000 (off) is repeated.

Ex2) When ACT1 blinks, the upper word becomes 16#0400, the lower word becomes 16#0000(Off),
16#0400(On) is repeated.

Upper

Upper Low

Low (On)

(Off)

8th 8th

8th8th

Chapter 11. Communication and Special Function Blocks

11-29

Ex3) When LINK0 is ON, the upper word is not blinking, so it becomes 16#0000.
The lower word becomes 16#0200.

Bitmap LED
Number LED Information Number LED Infomation
0 HS 8 ACT0
1 P2P 9 LINK0
2 PADT 10 ACT1
3 ERR 11 LINK1
4 SVR 12 RUN
5 RELAY 13 -
6 CHK 14 -
7 FAULT 15 -

4. Status code

Status Description
0 Initial state, before command execution
1 When the command is executed normally
2 When the FEnet module is not installed at the location set in the base/slot
3 When FEnet version is less than V8.3 and does not support commands

(If the CPU version is less than V1.5, it will not operate normally.)
5 If the FEnet module does not respond
6 When the previous command is executed again before the execution of the

previous command is completed for the same slot
(It may occur even when a command to read the IP/MAC information of the
FEnet module is being executed)

7 When the requested memory buffer is full
8 When I/O skip is applied to the module
9 When the module is detached during execution

■ Program example

In case of checking the operation information of FEnet LED in Slot 3 of Base 0

- Enter base and slot information.
- FEnet information display according to operation in RUN state.
- When the function operates normally, DONE item and STAT item indicate normal operation (16#01 or 1).
- OUT displays the operation information of the module.
Example) In case of 16#00001001

 Chapter 11. Communication and Special Function Blocks

11-30

Number LED Infomation Number LED Infomation
0 HS 8 ACT0
1 P2P 9 LINK0
2 PADT 10 ACT1
3 ERR 11 LINK1
4 SVR 12 RUN
5 RELAY 13 -
6 CHK 14 -
7 FAULT 15 -

Refer to lower word 1001 (16bit is displayed)

Chapter 11. Communication and Special Function Blocks

11-31

1.14. FCS

FCS Availability Flag

Runs the Frame Check Sequence
XGI-CPUUN(V1.50)

XG5000(V4.50)
-

Function block Explanation

BOOL BOOL

FCS

REQ DONE

USINTSTAT

RESULT

ARRAY OF BYTE DATA

UDINTSIZE

TYPE

ASCII

USINT

UINT

BOOL

Input REQ : execute the function in case of 1
(pulse operation)

DATA : Area where the data to be checked is stored.
SIZE : The size of the data to be checked
TYPE : Check Type (BCC, CRC, …)
ASCII : Return Value ASCII setting

Output DONE : Output 1 if executed without error

STAT : Status code
RESULT : FCS Result Value

■ Function

1. This command runs the Frame Check Sequence (FCS)
2. 'DATA' indicates the array in which the data to be checked is stored, and must be declared as ARRAY OF BYTE type.
3. SIZE indicates the size of the data to be checked (unit: BYTE)
4. TYPE specifies the type of FCS.
5. ASCII specifies the ASCII setting of Return Value.
6. STAT indicates 1 when normal operation, 2 when SIZE input range is exceeded, and 3 when TYPE input range is exceeded.
7. RESULT indicates the device number to save the result of FCS.
8. If Word units of FCS Type must be entered to match the Word Align.
If the alignment is not correct, it is calculated as follows. (In case of Word Align, no error occurs)
Ex) In case of size 5 Byte from address 0x10 -> Count 4 bytes from address 0x10 (1 Byte not included)

■ FCS TYPE
S1 Operand Number FCS Type Unit

1 BYTE SUM Byte
2 WORD SUM Word
3 BYTE XOR Byte
4 DLE AB Byte
5 DLE SIEMENS Byte
6 LSIS CRC Word
7 BYTE SUM 2’s COMP Byte
8 CRC 8 Byte
9 CRC 16 Word

 Chapter 11. Communication and Special Function Blocks

11-32

10 BYTE SUM 1’s COMP Byte
11 7BIT SUM Byte
12 7BIT XOR Byte
13 CRC 16 IBM Word
14 CRC 16 CCITT Word
15 MODBUS CRC Word
16 MODBUS ASCII Byte
17 BYTE SUM NIBBLE ASCII Byte

Chapter 11. Communication and Special Function Blocks

11-33

1.15. GET

GET
Read special module data

Availability XGI, XGR, XEC

Flags

Function Block Description

UINT

GET

DONE

BASE

SLOT

MADDR

STAT

BOOL

USINT

UINT

USINT *ANYDATA

REQBOOL

Input REQ: executes the function in case of 1

 BASE: Base position setting

 SLOT: Slot position setting

 MADDR: Module address

512(h200) ~ 1023(h3FF)

Output DONE: 1 output in case of normal execution

 STAT: Error information

 DATA: Data read from a module

*ANY: Among ANY types, WORD, DWORD, INT, UINT, DINT and UDINT types are available

■ Function

Read data from a configured special module.

Function
Block

Output(ANY)
type

Description

GET_WORD WORD Read data as much as WORD from the configured module address (MADDR).

GET_DWORD DWORD
Read data as much as DWORD from the configured module address
(MADDR).

GET_INT INT Read data as much as INT from the configured Module address (MADDR).
GET_UINT UINT Read data as much as UNIT from the configured module address (MADDR).
GET_DINT DINT Read data as much as DINT from the configured module address (MADDR).

GET_UDINT UDINT Read data as much as UDINT from the configured module address (MADDR).

■ Program example

 ST

INST_GET_WORD(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, MADDR:=MADDR_UINT,

DONE=>DONE_BOOL, STAT=>STAT_UINT, DATA=>DATA_WORD);

 Chapter 11. Communication and Special Function Blocks

11-34

SET_CNET_PARAM Applied model Occurrence flag

Write CNET module parameters XGI-CPUUN, XEC-U Built-in(V2.2),

XEM-HP/H2 Built-in(V2.3)
-

Function Block Description

 SET_CNET_PARAM

DONEREQ

BASE

SLOT

STAT

BOOLBOOL

USINT

USINT

USINT

CHUSINT

USINT

BPSUSINT

TERMI_REGBOOL

STATIONUSINT

DATA_BITUSINT

COMM_TYPE

STOP_BITUSINT

PARITY_BITUSINT

PARITY_ERBOOL

RES_TIMEUSINT

DELAY_TIMEUSINT

CHAR_TIMEUSINT

M_RSTBOOL

Input

REQ(XGI) : execute the function (applied after reset)

REQ(XEC/XEM) : execute the function

(applied immediately)

BASE : base number

SLOT : slot number

CH : channel (1 or 2)

COMM_TYPE(XGI): 1(RS232C), 2(RS422), 3(RS485)

COMM_TYPE(XEC/XEM): 1(RS232C), 2(RS485)

BPS(XGI) : 1(300), 2(600), 3(1200), 4(1800),

5(2400), 6(3600), 7(4800), 8(7200),

9(9600), 10(19200), 11(38400),

12(57600), 13(64000), 14(76800),

15(115200)

BPS(XEC/XEM) : 1(1200), 2(2400), 3(4800),

4(9600), 5(19200), 6(38400), 7(57600),

8(76800), 9(115200)

TERMI_REG(XGI Only) : 0 (terminating resister disable),

1 (terminating resister enable),

STATION : staion number (0~31)

DATA_BIT : 7 (7bit), 8 (8bit)

STOP_BIT : 1 (1bit), 2 (2bit)

PARITY_BIT : 1(NONE), 2(EVEN), 3(ODD)

PARITY_ER(XGI Only) : 0(Diable), 1(Enable)

RES_TIME : response waiting time (0~50) (*100ms)

DELEAY_TIME : delay time (0~255) (*10ms)

CHAR_TIME : inter-character waiting time

 (0~255) (*10ms)

M_RST(XGI Only) : 1(module reset)

Output

DONE : keep 1 after the first operation

STAT : status code of function block

Chapter 11. Communication and Special Function Blocks

11-35

(1) This is the command to set the parameters of the CNET module designated as BASE and SLOT.

(2) COMM_TYPE (communication type) has different settable communication types depending on the module type. In case

of XGL-C22A/B, only RS232C can be set for both channels, and for XGL-C42A/B, only RS422/RS485 can be set for both

channels.

(3) In case of XGL-CH2A/B, channel 1 can be set to RS232C and channel 2 can be set to RS422/RS485.

(If the type does not match, STAT will display 7)

(4) TERMI_REG (terminating resistor) can be set only in RS422 / RS485 communication type and only in B type like XGL-

CH2B. (9 is displayed in STAT when terminating resistor is set for RS232C type)

(5) STATION (station number) can be set from 0 to 31.

(6) PARITY_ER (parity reception error) is only applied when PARITY_BIT is set.

(If PARITY_BIT is NONE and PARITY_ER is allow, STAT will display 13.)

(7) RES_TIME (response waiting time) can be set to a value of 0~50 (*100ms) only when the channel's operation mode is

P2P use. (If the operation mode is not P2P mode, RES_TIME is not applied.)

(8) DELAY_TIME (delay time) can be set as a value of 0~255 (*10ms) only when the communication type is RS422/RS485.

(In case of RS232C, delay time is not applied.)

(9) CAHR_TIME(inter-character waiting time) can be set from 0 to 255 (*10ms).

(10) M_RST resets each CNET module at the BASE/SLOT designated location.

- CNET parameters are applied when CNET module performs individual module reset.

Ex1) When SET_CNET_PARAM command is executed with M_RST 0

- The parameter area of the CPU module is changed and applied, but it is not reflected in the module because the module

reset is not performed.

Ex2) When SET_CNET_PARAM command is executed with M_RST 1

- Parameter area change and module parameter change are performed.

Waring) When each module is reset, the system history of the failure mask setting of the module and skip setting after

skip setting occurs.

 Chapter 11. Communication and Special Function Blocks

11-36

Program example) As shown below, when SET_CNET_PARAM command is written as OR, CNET parameters of 2 channels

can be modified at once. However, the first command is available when M_RST is set to 0 and M_RST of the second

command is set to 1..

Chapter 11. Communication and Special Function Blocks

11-37

As shown below, when setting M_RST 1 for each channel in one scan, the first command performs individual module

reset, so in the case of the SET_CNET_PARAM command of channel 2, STAT 4 occurs (the module is in skip state)

Program example) When used as below, the command of CH1_CHG maintains Done as 1 after execution. Therefore, even if

PARAM_CHG contact On/Off is repeated, CH2_CHG instruction does not operate after the first execution, so please use OR

logic.

 Chapter 11. Communication and Special Function Blocks

11-38

Avoid using fixed cycle and scan program at the same time

- If M_RST of the SET_CNET_PARAM instruction is set to 1, the instruction is not completed in one scan.

- Since it may malfunction when used simultaneously in scan program and fixed cycle task, please design it to be

executed in another program after Done in one program.

When setting parameters through commands, the parameters applied to the CPU and the values in the project

parameter setting window may be different. (This applies when reading from PLC.)

After setting BPS 15(115200), when executing a command, it is read from PLC and reflected in the parameter window.

<XGI STATUS>

STAT Message Description

0 Initial state Before command excution

1 Normal operation Command execution completion

2 Module setting error When the CNET module is not installed in the designated base/slot

3 Timeout In case the command execution is not completed with timeout.

(5 seconds) (check only when M_RST is set to 1)

4 IO skip setting error /

Individual module reset

in progress

Module is skpped.

CNET module is performing reset due to SET_CNET_PARAM

command execution request

5 Module detach error Module detach error

6 Channel setting error When the value entered in CH is other than 1~2

7 Communication type

settingerror

When the value entered in COMM_TYPE is other than 1~2

8 Baurate setting error When the value entered in BPS is other than 1~15

9 Terminating resistor setting

error

When a terminating resistor is set for RS232C communication type

If the CNET module OS version is less than V5.0

10 Station number setting error When the value entered in STATION is other than 0~31

11 Data bit setting error When the value entered in DATA_BIT is other than 7~8

12 Stop bit setting error When the value entered in STOP_BIT is other than 1~2

13 Parity bit setting error When the value entered in PARITY_BIT is other than 1~3

When the PARITY_BIT is NONE and PARITY_ERR is enable

14 Response waiting time When the value entered in RES_TIME is other than 0~50

Chapter 11. Communication and Special Function Blocks

11-39

setting error

15 CNET parameter error When there are no CNET parameters

16 BP communication timeout When the module is not reset normally during module reset

< XEC/XEM STATUS>

STAT Message Description

0 Initial state Before command excution

1 Normal operation Command execution completion

2 Base, slot setting error When the CNET module is not installed in the designated base/slot

In case of XGB series, It can only be used with built-in Cnet. (Base: 0, Slot: 0)

3 Channel sertting error When the value entered in CH is other than 1~2

4 Communication type setting error When the value entered in COMM_TYPE is other than 1~2

5 Channel and communication

type mismatch

In case of XGB series built-in Cnet, it is fixed as CH1_RS-232C, CH2_RS-485

6 Baurate setting error When the value entered in BPS is other than 1~9

7 Station number setting error When the value entered in STATION is other than 0~31

8 Data bit setting error When the value entered in DATA_BIT is other than 7~8

9 Stop bit setting error When the value entered in STOP_BIT is other than 1~2

10 Parity bit setting error When the value entered in PARITY_BIT is other than 1~3

11 Response waiting time

setting error

When the value entered in RES_TIME is other than 0~50

12 Delay time setting error When the value entered in DELAY_TIME is other than 0~255

13 Inter-character waiting time

sertting error

When the value entered in CHAR_TIME is other than 0~255

 Chapter 11. Communication and Special Function Blocks

11-40

GET_CNET_PARAM Applied model Occurrence flag

READ CNET module parameters XGI-CPUUN, XEC-U Built-in(V2.2),

XEM-HP/H2 Built-in(V2.3)
_ERR, _LER

Function Description

GET_CNET_PARAM

ENOEN

BASE

SLOT

BOOLBOOL

USINT

USINT

CHUSINT

USINT

BPS USINT

TERMI_REG BOOL

STATION USINT

DATA_BIT USINT

COMM_TYPE

STOP_BIT USINT

PARITY_BIT USINT

PARITY_ER BOOL

RES_TIME USINT

DELAY_TIME USINT

CHAR_TIME USINT

Input

EN : executes the function in case of 1.

BASE : base number

SLOT : slot number

CH : channel (1 or 2)

Output

ENO : outputs EN value as it is

COMM_TYPE(XGI): 1(RS232C), 2(RS422), 3(RS485)

COMM_TYPE(XEC/XEM): 1(RS232C), 2(RS485)

BPS(XGI) : 1(300), 2(600), 3(1200), 4(1800),

5(2400), 6(3600), 7(4800), 8(7200),

9(9600), 10(19200), 11(38400),

12(57600), 13(64000), 14(76800),

15(115200)

BPS(XEC/XEM) : 1(1200), 2(2400), 3(4800),

 4(9600), 5(19200), 6(38400), 7(57600),

 8(76800), 9(115200)

TERMI_REG(XGI Only) : 0 (terminating resister disable),

1 (terminating resister enable),

STATION : staion number (0~31)

DATA_BIT : 7 (7bit), 8 (8bit)

STOP_BIT : 1 (1bit), 2 (2bit)

PARITY_BIT : 1(NONE), 2(EVEN), 3(ODD)

PARITY_ER(XGI Only) : 0(Diable), 1(Enable)

RES_TIME : response waiting time (0~50) (*100ms)

DELEAY_TIME : delay time (0~255) (*10ms)

CHAR_TIME : inter-character waiting time

 (0~255) (*10ms)

(1) This is the parameter reading command of the CNET module designated as BASE and SLOT.

(2) If there is no CNET module in the designated base/slot, an error occurs. (XEC/XEM only supports base 0 and slot 0)

(3) An error occurs when reading the parameters of the CNET module without downloading parameters.

Chapter 11. Communication and Special Function Blocks

11-41

(4) If the input CH value is not 1 or 2, an error occurs.

(5) If an error occurs, _ERR and _LER are set.

 Chapter 11. Communication and Special Function Blocks

11-42

PUT

PUT
Write data to a special module

Availability XGI, XGR, XEC

Flags

Function Block Description

UINT

PUT

DONE

BASE

SLOT

MADDR

STAT

BOOL

USINT

UINT

USINT

*ANY DATA

REQBOOL

Input REQ: execute the function in case of 1

 BASE: Base position setting

 SLOT: Slot position setting

 MADDR: Module address

 DATA: data to save into a module

Output DONE: 1 output in case of normal execution

 STAT: Error information

*ANY: Among ANY types, WORD, DWORD, INT, USINT, DINT and UDINT types are available

■ Function

Read data from the designated special module.

Function Block Input(ANY) type Description
PUT_WORD WORD Save WORD data into the configured module address (MADDR).

PUT_DWORD DWORD Save DWORD data into the configured module address (MADDR).
PUT_INT INT Save INT data into the configured module address (MADDR).

PUT_UINT UINT Save UNIT data into the configured module address (MADDR).
PUT_DINT DINT Save DINT data into the configured module address (MADDR).

PUT_UDINT UDINT Save UDINT data into the configured module address (MADDR).

■ Program example

 ST

INST_PUT_WORD(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, MADDR:=MADDR_UINT,

DATA:=DATA_WORD, DONE=>DONE_BOOL, STAT=>STAT_UINT);

Chapter 11. Communication and Special Function Blocks

11-43

1.16. ARY_GET

ARY_GET
Read special module data(Array)

Availability XGI, XGR, XEC

Flags

Function Block Description

UINT

ARY_GET

DONE

BASE

SLOT

MADDR

STAT

BOOL

USINT

UINT

USINT

REQBOOL

M_IDXUINT

D_IDXUINT
CNTUINT

DEST
*ARRAY
OF ANY

Input REQ: execute the function in case of 1

 BASE: Base position setting

 SLOT: Slot position setting

 MADDR: Module address

 M_IDX: distance away from MADDR

 DEST: array variable to save read data

 D_IDX: Start index of DEST variable

 CNT: Number of data to read

Output DONE: 1 output in case of normal execution

 STAT: Error information

*ARRAY OF ANY: among ANY types, WORD, DWORD, INT, UINT, DINT and UDINT types are available

■ Function
Read data from the designated special module.

Function Block
Output(DEST)

Type
Description

ARY_GET_WORD WORD Read data as much as CNT in WORD from the configured module
address (MADDR)

ARY_GET_DWOR
D

DWORD Read data as much as CNT in DWORD from the configured module
address (MADDR)

ARY_GET_INT INT Read data as much as CNT in INT from the configured module address
(MADDR).

ARY_GET_UINT UINT Read data as much as CNT in UINT from the configured module address
(MADDR).

ARY_GET_DINT DINT Read data as much as CNT in DINT from the configured module address
(MADDR).

ARY_GET_UDINT UDINT Read data as much as CNT in UDINT from the configured module
address (MADDR).

■ Program example
ST

INST_ARY_GET_WORD (REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT,

MADDR:=MADDR_UINT, M_IDX:=M_UINT, DEST:=ARY_DEST, D_IDX:=D_UINT, CNT:=CNT_UINT,

DONE=>DONE_BOOL, STAT=>STAT_UINT);

 Chapter 11. Communication and Special Function Blocks

11-44

ARY_PUT

ARY_PUT
Write special module data(Array)

Availability XGI, XGR, XEC

Flags

Function Block Description

Input REQ: execute the function in case of 1

 BASE: Base position setting

 SLOT: Slot position setting

 MADDR: Module address

 M_IDX: distance away from MADDR

 DEST: Data array variable to save

 D_IDX: Start index of DEST variable

 CNT: Number of data to read

Output DONE: 1 output in case of normal execution

 STAT: Error information

*ARRAY OF ANY: among ANY types, WORD, DWORD, INT, UINT, DINT and UDINT types are available

■ Function
Read data from the designated special module.

Function Block
Input(DEST)

type
Description

ARY_PUT_WORD WORD
Save data as much as CNT in WORD into the configured module
address (MADDR)

ARY_PUT_DWORD DWORD
Save data as much as CNT in DWORD into the configured module
address (MADDR)

ARY_PUT_INT INT
Save data as much as CNT in INT into the configured module address
(MADDR).

ARY_PUT_UINT UINT
Save data as much as CNT in UINT into the configured module address
(MADDR)

ARY_PUT_DINT DINT
Save data as much as CNT in DINT into the configured module address
(MADDR)

ARY_PUT_UDINT UDINT
Save data as much as CNT in LDINT into the configured module address
(MADDR)

■ Program example

 ST

INST_ARY_PUT_WORD(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, MADDR:=MADDR_UINT,
M_IDX:=M_UINT, DEST:=ARY_DEST, D_IDX:=D_UINT, CNT:=CNT_UINT, DONE=>DONE_BOOL,
STAT=>STAT_UINT);

Chapter 11. Communication and Special Function Blocks

11-45

GETE
Read special module data(Access upper word)

Availability XGI, XGR

Flags

Function Block Description

Input REQ: executes the function in case of 1

 BASE: Base position setting

 SLOT: Slot position setting

 MADDR: Module address

0~1023

 MASK: Word position setting

 0(Lower word), 1(Upper word)

Output DONE: 1 output in case of normal execution

 STAT: Error information

 DATA: Data read from a module(WORD/DWORD)

■ Function

1) Read data from a configured special module.
2) Select WORD / DWORD type according to data type.
3) Position of data selected according to MASK setting.
 0 -> Lower word of module address at MADDR
 1 -> Upper world of module address at MADDR

Function Block Output type Description

GETE_WORD WORD Read WORD data from the configured module address (MADDR).
GETE_DWORD DWORD Read DWORD data from the configured module address (MADDR).

■ Program example

ST

INST_GETE_WORD(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, MADDR:=MADDR_UINT,

MASK:=MASK_UINT, DONE=>DONE_BOOL, STAT=>STAT_UINT, DATA=>DATA_WORD);

 Chapter 11. Communication and Special Function Blocks

11-46

PUTE
Write data to a special module(Access upper word)

Availability XGI, XGR

Flags

Function Block Description

Input REQ: execute the function in case of 1

 BASE: Base position setting

 SLOT: Slot position setting

 MADDR: Module address

 MASK: Word position setting

 0(Lower word), 1(Upper word)

 DATA: data to save into a module(WORD/DWORD)

Output DONE: 1 output in case of normal execution

 STAT: Error information

 ■ Function

1) Write data to the designated special module.
2) Select WORD or DWORD type according to data type.
3) Position of data selected according to MASK setting.
 0 -> Lower word of module address at MADDR
 1 -> Upper world of module address at MADDR

Function Block Input type Operation description

PUTE_WORD WORD Write WORD data at the designated module address (MADDR)

PUTE_DWORD DWORD Write DWORD data at the designated module address (MADDR)

■ Program example

ST

INST_PUTE_WORD(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, MADDR:=MADDR_UINT,

MASK:=MASK_UINT, DATA:=DATA_WORD, DONE=>DONE_BOOL, STAT=>STAT_UINT);

Chapter 11. Communication and Special Function Blocks

11-47

ARY_GETE
Read special module data(Array, Access upper word)

Availability XGI, XGR

Flags

Function Block Description

Input REQ: executes the function in case of 1

 BASE: Base position setting

 SLOT: Slot position setting

 MADDR: Module address

0~1023

 MASK: Word position setting

 0(Lower word), 1(Upper word)

 SIZE: Quantity of data

(1~64[WORD], 1~32[DWORD])

Output DONE: 1 output in case of normal execution

 STAT: Error information

 DATA: Data(Array) read from a module

(WORD/DWORD)

 ■ Function
1) Read data as quantity user set from a configured special module.
2) Select WORD / DWORD type according to data type(Array).
3) Position of data selected according to MASK setting.
 0 -> Lower word of module address at MADDR

 1 -> Upper world of module address at MADDR

Function Block Output Type Description

ARY_GETE_WORD WORD Read data as much as SIZE in WORD from the configured module address
(MADDR)

ARY_GETE_DWORD DWORD Read data as much as SIZE in DWORD from the configured module address
(MADDR)

■ Program example
ST

INST_ARY_GETE_WORD (REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, MADDR:=MADDR_UINT,

MASK:=MASK_UINT, SIZE:=SIZE_UINT, DONE=>DONE_BOOL, STAT=>STAT_UINT, DATA:=ARY_DATA);

 Chapter 11. Communication and Special Function Blocks

11-48

ARY_PUTE
Write special module data(Array, Access upper word)

Availability XGI, XGR

Flags

Function Block Description

Input REQ: execute the function in case of 1

 BASE: Base position setting

 SLOT: Slot position setting

 MADDR: Module address

 0~1023

 MASK: Word position setting

 0(Lower word), 1(Upper word)

 DATA: Data(Array) to save into a module

(WORD/DWORD)

SIZE: Quantity of data

(1~64[WORD], 1~32[DWORD])

Output DONE: 1 output in case of normal execution

 STAT: Error information

■ Function
1) Write data as quantity user set to the designated special module.
2) Select WORD / DWORD type according to data type(Array).
3) Position of data selected according to MASK setting.
 0 -> Lower word of module address at MADDR
 1 -> Upper world of module address at MADDR

.
Function Block Input type Description

ARY_PUTE_WORD WORD
Save data as much as SIZE in WORD into the configured module address
(MADDR)

ARY_PUTE_DWORD DWORD
Save data as much as SIZE in DWORD into the configured module address
(MADDR)

■ Program example
 ST

INST_ARY_PUTE_WORD(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, MADDR:=MADDR_UINT,
MASK:=MASK_UINT, DATA:=ARY_DATA, DONE=>DONE_BOOL, STAT=>STAT_UINT);

Chapter 11. Communication and Special Function Blocks

11-49

11.3 Motion Control Function Block

GETM
Read motion control module data

Availability XGI, XGR

Flags

Function Block Description

Input REQ: execute the function in case of 1

 BASE: Base position setting

 SLOT: Slot position setting

 MADDR: Module address

512(0x200) ~ 1023(0x3FF)

Output DONE: 1 output in case of normal execution

 STAT: Error information

 DATA: Data read from a module

■ Function

Read data from the shared read memory address MADDR of the configured motion control module.

Function Block
Output(DATA)

type
Description

GETM DWORD
Read data as much as DWORD from the configured module address
(MADDR).

■ Program example

 ST

INST_GETM(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, MADDR:=MADDR_UINT,

DONE=>DONE_BOOL, STAT=>STAT_UINT, DATA=>DATA_DWORD);

 Chapter 11. Communication and Special Function Blocks

11-50

1.17. PUTM

PUTM
Write data into a special module(motion module)

Availability XGI, XGR

Flags

Function Block Description

UINT

PUTM

DONE

BASE

SLOT

MADDR

STAT

BOOL

USINT

UINT

USINT

DWORD DATA

REQBOOL

Input REQ: execute the function in case of 1

 BASE: Base position setting

 SLOT: Slot position setting

 MADDR: Module address

0(0x00) ~ 511(0x1FF)

 DATA: data to save into a module

Output DONE: 1 output in case of normal execution

 STAT: Error information

■ Function

Save data into the shared write memory MADDR of the configured motion control module.

Function Block DATA type Description

PUTM DWORD Save DWORD data into the configured module address (MADDR).

■ Program example

ST

INST_PUTM(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, MADDR:=MADDR_UINT,

DATA:=DATA_DWORD, DONE=>DONE_BOOL, STAT=>STAT_UINT);

Chapter 11. Communication and Special Function Blocks

11-51

1.18. ARY_GETM

ARY_GETM
Read motion control module data (Array)

Availability XGI, XGR

Flags

Function Block Description

REQ

BASE

SLOT

MADDR

DATA

SIZE

ARY_GETM

DONE

STAT

BOOL

USINT

USINT

UINT

ARRAY OF
DWORD

UINT

BOOL

UINT

Input REQ: execute the function in case of 1

 BASE: Base position setting

 SLOT: Slot position setting

 MADDR: Address to start reading

512(0x200) ~ 1023(0x3FF)

 SIZE: Number of data to read (1 ~ 512)

Output DONE: 1 output in case of normal execution

 STAT: Error information

 DATA: Array variable to save read data

 (ARRAY of DWORD)

■ Function

Read data as much as the size from the shared read memory MADDR of the configured motion control module.

■ Program example

ST

INST_ARY_GETM(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, MADDR:=MADDR_UINT,
SIZE:=SIZE_UINT, DONE=>DNOE_BOOL, STAT=>STAT_UINT, DATA=>ARY_DATA);

 Chapter 11. Communication and Special Function Blocks

11-52

1.19. ARY_PUTM

ARY_PUTM
Write motion control module data(Array)

Availability XGI

Flags

Function Block Description

Input REQ: execute the function in case of 1

 BASE: Base position setting

 SLOT: Slot position setting

MADDR: Address to start writing;

0(h0) ~ 511(h1FF)

 DATA: Array variable to save data

(ARRAY OF DWORD)

 SIZE: No. of data to write (1 ~ 512)

Output DONE: 1 output in case of normal execution

 STAT: Error information

■ Function

Save data as much as the size to the shared write memory addresses MADDR of the configured motion control module.

■ Program example

ST

INST_ARY_PUTM(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, MADDR:=MADDR_UINT,
 DATA:=ARY_DATA, SIZE:=SIZE_UINT, DONE=>DONE_BOOL, STAT=>STAT_UINT);

Chapter 11. Communication and Special Function Blocks

11-53

1.20. XPM_TRUN

XPM_TRUN
Motion controller module test run

Availability XGI, XGR

Flags -

Function Block Description

 XPM_TRUN

DONEREQ

BASE

SLOT

STAT

BOOLBOOL

USINT

USINT

UINT

AXISUSINT

CMD

PARAM1

PARAM2

WORD

LREAL

LREAL

PARAM3LREAL

PARAM4LREAL

Input REQ: execute the function in case of 1

 BASE: Base position setting

 SLOT: Slot position setting

AXIS: Specify the axis to issue the command

 1 to 32 (1 to 32 axes), 37 to 40 (37 to 40 axes),

 255 (total axes)

 CMD : Command Code (1 to 10)

 PARAM1: Command auxiliary data 1

PARAM2: Command auxiliary data 2

PARAM3: Command auxiliary data 3

PARAM4: Command auxiliary data 4

Output DONE: Keep 1 after initial operation

 STAT: Error information

■ Function

(1) This command is a test operation command that can execute simple motion control operations such as EtherCAT Slave
connection / disconnection, servo on / off, and position control to the motion control module.
(2) The module can be viewed by executing a simple module operation with the test run command in the STOP state.
(3) Gives CMD command to the axis designated as AXIS of the motion control module designated by BASE (base number of
motion module) and SLOT (slot number of motion module).
(4) In AXIS, specify the axis to issue CMD and set the following values. If you set a value other than the set value, “Error 6”
occurs.
1 to 32 (1 to 32 axes), 37 to 40 (37 to 40 axes), 255 (total axes)
(5) If the value set in CMD is 0, “Error 11” occurs in STAT.
(6) If the motion control module executes a test operation command in the RUN state, a 0x002A error occurs in the motion
control module and 0x002A is output to the STAT of the function block.

 Chapter 11. Communication and Special Function Blocks

11-54

(7) Command code and command auxiliary data setting values are as follows.

Function
Command

code
Auxiliary data 1 Auxiliary data 2 Auxiliary data 3 Auxiliary data 4

EtherCAT connection 1 - - - -

Disconnect EtherCAT 2 - - - -

Servo on 3 - - - -

Servo off 4 - - - -

Error reset 5

Error Type

0: Axis error

1: Common

error

- - -

Homing 6 - - - -

Position control (absolute) 7 Position Velocity Acceleration Deceleration

Position control (relative) 8 Position Velocity Acceleration Deceleration

Velocity control 9 Velocity Acceleration Deceleration -

Stop 10 Deceleration - -

■ Program Example

ST

INST_XPM_TRUN (REQ: = (* BOOL *), BASE: = (* USINT *), SLOT: = (* USINT *), AXIS: = (* USINT *), CMD: = (*

WORD *), PARAM1: = (* LREAL *), PARAM2: = (* LREAL *), PARAM3: = (* LREAL *), PARAM4: = (* LREAL *),

DONE => (* BOOL *), STAT => (* UINT *))

Chapter 11. Communication and Special Function Blocks

11-55

P11.4 Positioning Function Block (APM)

1.21. APM_ORG

APM_ORG
Homing Start

Availability XGI, XGR, XEC

Flags

Function Block Description

DONEREQ

BASE

SLOT

STAT

BOOLBOOL

USINT

USINT

USINT

AXISUSINT

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module
 AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis

Output DONE: maintains 1 after the first operation

STAT: output error number that occurs while
executing the function block

■ Function

(1) The instruction commands origin return run to the positioning module.
(2) Run instruction to find origin by means of the direction, compensation, speed (high speed/low speed) and dwell time set in

origin return parameter of each axis.
(3) Instruct origin return instruction to the designated AXIS of the positioning module where it is configured at BASE (base

number of positioning module) and SLOT (slot number of positioning module).
(4) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”

0: X axis, 1: Y axis, 2: Z axis (In case of XEC, Z axis is not supported)

■ Program example

 ST

INST_APM_ORG(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,

DONE=>DNOE_BOOL, STAT=>STAT_UINT);

UINT

 Chapter 11. Communication and Special Function Blocks

11-56

1.22. APM_FLT

APM_FLT
Floating origin setting

Availability XGI, XGR, XEC

Flags

Function Block Description

 APM_FLT

DONEREQ

BASE

SLOT

STAT

BOOLBOOL

USINT

USINT

UINT

AXISUSINT

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module
 AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands executing floating origin setting to the positioning module.
(2) As the command used to set the current position as origin, instead of executing return of a machine, the address configured

in origin return address is set as the current position.
(3) It commands floating origin command to the configured AXIS of the positioning module where it is configured at BASE (base

number of positioning module) and SLOT (slot number of positioning module).
(4) It can set an axis to instruct and value is as follows. If other value is set, it produces “Error6.”

0: X axis, 1: Y axis, 2: Z axis

■ Program example

 ST

INST_APM_FLT(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,

DONE=>DONE_BOOL, STAT=>STAT_UINT);

Chapter 11. Communication and Special Function Blocks

11-57

1.23. APM_DST

APM_DST
Direct Start

Availability XGI, XGR, XEC

Flags

Function Block Description

DONEREQ

BASE

SLOT

STAT

BOOLBOOL

USINT

USINT

USINT

AXISUSINT

ADDRDINT

SPEEDUDINT

DWELLUINT

MCODEUINT

POS/SPDBOOL

ABS/INCBOOL
TIME_SELUSINT

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module
 AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis
 ADDR: Setting target position address

 -2,147,483,648 ~ +2,147,483,647
 SPEED: Setting target speed

 Open Collector : 1 ~ 200,000[pps]
 Line Driver : 1 ~ 1,000,000[pps]
 DWELL: dwell time
 0 ~ 50000[ms]
 MCODE: Setting M Code
 POS/SPD: Setting position control/speed control
 0 : position control, 1 : speed control
 ABS/INC: Setting absolute/relative coordinates
 0 : absolute, 1 : relative
 TIME_SEL: setting acc./dec. time number
 0 : acc./dec. time 1
 1 : acc./dec. time 2
 2 : acc./dec. time 3
 3 : acc./dec. time 4

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block

■ Function

(1) The instruction commands direct run to the positioning module.
(2) It used when running by designating the run step number of the axis configured as run data.
(3) It command direct run instruction to the configured axis of the positioning module where it is configured at BASE
 (base number of positioning module) and SLOT(slot number of positioning module).
It can set an axis to instruct and the value is as follows. If other value is set, it produces ’Error6’.
If can value set in SPEED, DWELL, and TIME_SEL is out of the range, it generates ‘Error11’ to STAT.

■ Program example
ST

INST_APM_DST(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,

ADDR:=ADDR_DINT, SPEED:=SPEED_UDINT, DWELL:=DWELL_UINT, MCODE:=MCODE_UINT,

POS_SPD:=POS_BOOL, ABS_INC:=ABS_BOOL, TIME_SEL:=TIME_USINT, DONE=>DNOE_BOOL,

STAT=>STAT_UINT);

UINT

 Chapter 11. Communication and Special Function Blocks

11-58

APM_IST

APM_IST
 Indirect Start

Availability XGI, XGR, XEC

Flags

Function Block Description

DONEREQ

BASE

SLOT

STAT

BOOLBOOL

USINT

USINT

USINT

AXISUSINT

STEPUINT

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module
 AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis
 STEP: Step number to run 0 ~ 400

Output DONE: maintains 1 after the first operation

 STAT: Output the error number that occurs while
executing the function block.

■ Function

1. The instruction commands direct run to the positioning module.
2. It used when running by designating the run step number of the axis configured as run data.
3. It commands indirect run to the configured AXIS of the positioning module where it is configured at BASE (base
number of positioning module) and SLOT (slot number of positioning module).
4. It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 0: X axis, 1: Y axis, 2: Z axis (in case of XEC, Z axis is not supported)
5. If the value set in STEP is out of the range (0 ~ 400 (in case of XEC, 0 ~ 80)), it generates “Error11” to STAT.
6. If 0 is set in STEP, it operates the current step.

■ Program example

1. ST

INST_APM_IST(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,

STEP:=STEP_UINT, DONE=>DNOE_BOOL, STAT=>STAT_UINT);

UINT

Chapter 11. Communication and Special Function Blocks

11-59

1.24. APM_LIN

APM_LIN
Linear interpolation run

Availability XGI, XGR, XEC

Flags

Function Block Description

DONEREQ

BASE

SLOT

STAT

BOOLBOOL

USINT

USINT

USINT

LIN_AXISUSINT

STEPUINT

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module

 LIN_AXIS: Setting interpolation run axis
 3 : X/Y axis
 5 : X/Z axis
 6 : Y/Z axis
 7 : X/Y/Z axis
 STEP: Step number to run 0 ~ 400

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands linear interpolation run instruction to the positioning module.
(2) It commands for linear interpolation run in the 2 or 3 axes positioning module.
(3) It commands linear interpolation run instruction to the designated AXIS of the positioning module where it is
designated at BASE (base number of positioning module) and SLOT (slot number of positioning module).
(4) If other value is set in LIN_AXIS, it produces “Error6.” It can be set by setting each bit as follows.

15 ~ 4 2 1 0
- Z axis (in case of XEC, Z axis is not supported) Y axis X axis

 (5) If the value is out of the range, set in STEP (0 ~ 400 (In case of XEC, 0~80)), it generates “Error11” to STAT.
 (6) If 0 is set in STEP, it operates the current step.

■ Program example

1. ST

INST_APM_LIN(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, LIN_AXIS:=LIN_USINT,

STEP:=STEP_UINT, DONE=>DONE_BOOL, STAT=>STAT_UINT);

UINT

 Chapter 11. Communication and Special Function Blocks

11-60

1.25. APM_CIN

APM_CIN
Circular interpolation run

Availability XGI, XGR

Flags

Function Block Description

DONEREQ

BASE

SLOT

STAT

BOOLBOOL

USINT

USINT

USINT

MST_AXISUSINT

SLV_AXISUSINT

STEPUINT

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module
 MST_AXIS: Setting circular interpolation main axis
 0:X axis, 1:Y axis, 2:Z axis
 SLV_AXIS: Setting linear interpolation sub axes
 0:X axis, 1:Y axis, 2:Z axis
 STEP: Step number to run 0 ~ 400

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands circular interpolation run instruction to the positioning module.
(2) It commands for circular interpolation run in 2 or 3 axes positioning module.
(3) It commands circular interpolation run instruction to the designated AXIS of the positioning module where it is
designated at BASE (base number of positioning module) and SLOT (slot number of positioning module).
(4) MST_AXIS sets the main axis of circular interpolation run and the following values can be set.
 0: X axis, 1: Y axis, 2: Z axis
(5) SLV_AXIS sets the sub axis of circular interpolation run and the following values can be set.
 0: X axis, 1: Y axis, 2: Z axis
- If the values of MST_AXIS and SLV_AXIS are set out of the range, it generates “Error6.”
- If other value set in STEP (0 ~ 400), it generates “Error11” to STAT.
- If 0 is set in STEP, it operates the current step.

■ Program example

1. ST

INST_APM_CIN(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, MST_AXIS:=MST_USINT,
SLV_AXIS:=SLY_USINT, STEP:=STEP_UINT, DONE=>DONE_BOOL, STAT=>STAT_UINT);

UINT

Chapter 11. Communication and Special Function Blocks

11-61

1.26. APM_SST

APM_SST
Simultaneous Start

Availability XGI, XGR, XEC

Flags

Function Block Description

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module
 SST_AXIS : Setting simultaneous run axes
 3 : X/Y axis
 5 : X/Z axis
 6 : Y/Z axis
 7 : X/Y/Z axis

 X_STEP: Setting the simultaneous run step number
of X axis(0 ~ 400)

 Y_STEP: Setting the simultaneous run step number
of Y axis(0 ~ 400)

 Z_STEP: Setting the simultaneous run step number
of Z axis(0 ~ 400)

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands simultaneous run instruction to the positioning module.
(2) It is executed when simultaneously running 2 or 3 axes
(3) It commands the simultaneous run instruction to the configured AXIS of the positioning module where it is
configured at BASE (base number of positioning module) and SLOT (slot number of positioning module).
(4) If the value is set out of the range to SST_AXIS, it generates “Error6.” It can be set as follows by setting each bit.

15 ~ 4 2 1 0
- Z axis (in case of XEC, Z axis is not supported) Y axis X axis

(5) Set the step number run by X axis, Y axis and Z axis simultaneously to X_STEP, Y_STEP and Z_STEP .
(6) If the value set in X_STEP, Y_STEP and Z_STEP is out of the range (0 ~ 400(in case of XEC, 0~80)), it generates
“Error11” to STAT.
(7) If 0 is set in X_STEP, Y_STEP and Z_STEP, it operates the current step.

■ Program example
1. ST

INST_APM_SST(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, SST_AXIS:=SST_USINT,

X_STEP:=X_UINT, Y_STEP:=Y_UINT, Z_STEP:=Z_UINT, DONE=>DONE_BOOL, STAT=>STAT_UINT);

UINT

 Chapter 11. Communication and Special Function Blocks

11-62

1.27. APM_VTP

APM_VTP
Speed/Position switching

Availability XGI, XGR, XEC

Flags

Function Block Description

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module
 AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands speed/position control conversion instruction to the positioning module.
(2) A configured axis converts speed control to position control if receiving speed/position control instruction while
being run by speed control run.
(3) As soon as the instruction is executed, the origin is determined and it moves to the target position by the
previous speed control, completing positioning.
(4) It commands speed/position control instruction to the configured AXIS of the positioning module where it is
configured at BASE (base number of positioning module) and SLOT (slot number of positioning module).
(5) It can set an axis to instruct and the following value. If other value set, it produces “Error6.”
 0: X axis, 1: Y axis, 2: Z axis (in case of XEC, Z axis is not supported)

■ Program example

1. ST

INST_APM_VTP(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,

DONE=>DONE_BOOL, STAT=>STAT_UINT)

UINT

Chapter 11. Communication and Special Function Blocks

11-63

APM_PTV

APM_PTV
Position/Speed switching

Availability XGI, XGR, XEC

Flags

Function Block Description

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module
 AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands position/speed control conversion instruction to the positioning module.
(2) A configured axis converts speed control to position control if receiving position/speed control instruction while
being run by speed control run.
(3) As soon as the instruction is executed, the origin is not determined and it moves the target position by the
previous speed control and completes positioning.
(4) It commands speed/position control instruction to the configured AXIS of the positioning module where it is
configured at BASE (base number of positioning module) and SLOT (slot number of positioning module).
(5) It can set an axis to instruct and the value is as follows. If other value is set out of range, it produces “Error6.”
 0: X axis, 1: Y axis, 2: Z axis (In case of XEC, Z axis is not supported)

■ Program example

1. ST

INST_APM_PTV(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,

DONE=>DONE_BOOL, STAT=>STAT_UINT);

UINT

 Chapter 11. Communication and Special Function Blocks

11-64

1.28. APM_STP

APM_STP
Decelerating stop

Availability XGI, XGR, XEC

Flags

Function Block Description

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module
 AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis
 DEC_TIME: Decelerating stop time
 0: Acc./dec. time applied when it starts

running
 1 ~ 65,535 : 1 ~ 65,535ms

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function

(1) Instruction executing decelerating stop to the positioning module.
(2) It decelerates and stops when it receives the stop command while running by run data and resumes running by
run command.
(3) It is used to exit each speed/position synchronization in speed synchronization or position synchronization.
(4) It command decelerating stop to the configured AXIS of the positioning module where it is configured at BASE
(base number of positioning module) and SLOT (slot number of positioning module).
(5) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 0: X axis, 1: Y axis, 2: Z axis (In case of XEC, Z axis is not supported)

■ Program example

1. ST

INST_APM_STP(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,

DEC_TIME:=DEC_UINT, DONE=>DONE_BOOL, STAT=>STAT_UINT);

UINT

Chapter 11. Communication and Special Function Blocks

11-65

1.29. APM_SKP

APM_SKP
Skip run

Availability XGI, XGR

Flags

Function Block Description

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module
 AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands skip run instruction to the positioning module.
(2) It executes when moving to the next step without run step.
(3) Every time the instruction executes, it skips the current run step and starts the next run step.
(4) It commands skip run instruction to the configured AXIS of the positioning module where it is configured at
BASE
(base number of positioning module) and SLOT (slot number of positioning module).
(5) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 0: X axis, 1: Y axis, 2: Z axis

■ Program example

1. ST

INST_APM_SKP(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,

DONE=>DONE_BOOL, STAT=>STAT_UINT);

UINT

 Chapter 11. Communication and Special Function Blocks

11-66

1.30. APM_SSP

APM_SSP
Position synchronization

Availability XGI, XGR, XEC

Flags

Function Block Description

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module

AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis

STEP: Step number to run 0 ~ 400
MST_AXIS: Setting position synchronization main

axis 0:X axis, 1:Y axis, 2:Z axis
 MST_ADDR: Setting main axis to execute position

synchronization
 -2,147,483,648 ∼ 2,147,483,647

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands position synchronization instruction to the positioning module
(2) If an axis with the instruction is set as sub axis and the axis set as main axis reaches to the set synchronization
position, it starts run step set in instruction axis.
(3) It commands positioning instruction to the configured AXIS of the positioning module where it is configured at
BASE (base number of positioning module) and SLOT (slot number of positioning module).
(4) It can set an axis to instruct and the following value. If other value is set, it produces “Error6.”
 0: X axis, 1: Y axis, 2: Z axis (In case of XEC, Z axis is not supported)
(5) It sets the position synchronization main axis to MST_AXIS and the following values can be set. If other value is
set, it generates “Error6.”
 0: X axis, 1: Y axis, 2: Z axis (In case of XEC, Z axis is not supported)

■ Program example

1. ST

INST_APM_SSP(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,

STEP:=STEP_UINT, MST_AXIS:=AXIS_USINT, MST_ADDR:=ADDR_DINT, DONE=>DONE_BOOL,

STAT=>STAT_UINT);

UINT

Chapter 11. Communication and Special Function Blocks

11-67

1.31. APM_SSS

APM_SSS
Speed synchronization

Availability XGI, XGR

Flags

Function Block Description

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module

AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis
 MST_AXIS: Setting main axis of speed

synchronization
 0:X axis, 1:Y axis, 2:Z axis, 3:Encoder

 MST_RAT: Setting speed rate of main axis
 1 ~ 65,535
 SLV_RAT: Setting speed rate of sub axis
 1 ~ 65,535

Output DONE : maintains 1 after the first operation
 STAT : Output the error number that occurs while

executing the function block.

■ Function
(1) The instruction commands speed synchronization instruction to the positioning module.
(2) It is executes when controlling at the rate of run speed between both axes.
(3) It must be set to be “speed rate of sub axis/speed rate of main axis ≤ 1” if using speed synchronization run.
(4) It commands speed synchronization instruction to the assigned AXIS of the positioning module where it is

configured at BASE (base number of positioning module) and SLOT (slot number of positioning module).
(5) It can set an axis to instruct and the following value. If other value is set, it produces “Error6.”

0: X axis, 1: Y axis, 2: Z axis
(6) It can set an main axis in MST_AXIS and the following value. If other value is set, it produces “Error6.”
 0: X axis, 1: Y axis, 2: Z axis, 3: Encoder

■ Program example

1. ST

INST_APM_SSS(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
MST_AXIS:=AXIS_USINT, MST_RAT:=MST_UINT, SLV_RAT:=SLV_UINT, DONE=>DONE_BOOL,
STAT=>STAT_UINT);

UINT

 Chapter 11. Communication and Special Function Blocks

11-68

1.32. APM_POR

APM_SSSP
Positioning speed synchronization

Availability XGI, XGR

Flags

Function Block Description

Input REQ : requires to execute the function block
 BASE : Setting the base number with a module
 SLOT : Setting the slot number with a module

AXIS : Setting an axis to instruct
 0:X axis, 1:Y axis
 MST_AXIS : Setting main axis of speed

synchronization

Setting value Main axis setting Setting value Main axis setting

0 X axis 5 High Speed Counter Ch3

1 Y axis 6 High Speed Counter Ch4

2 High Speed Counter Ch0 7 High Speed Counter Ch5

3 High Speed Counter Ch1 8 High Speed Counter Ch6

4 High Speed Counter Ch2 9 High Speed Counter Ch7

 SLV_RAT : Setting speed rate of main axis
 1 ~ 65,535
 DELAY : Setting speed rate of sub axis
 1 ~ 65,535

Output DONE : maintains 1 after the first operation
 STAT : Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands speed synchronization instruction to the positioning module
(2) At the rising edge of input condition, axis set in AXIS is set as subsidiary axis and axis set in MST_AXIS is set as main

axis and speed synchronization instruction is executed.
(3) If instruction executes, subsidiary axis doesn’t yield pulse. (At this time, operation status flag (X axis: %KX6720, Y

axis: %KX6880) is on). At this time, if axis set in MST_AXIS starts, subsidiary axis starts with speed synchronization
rate set in AXIS.

(4) Synchronization rate can be set in SLV_RAT is 0.01% ~ 100.00% (setting value 1 ~ 10,000). If synchronization speed
rate exceeds this range, error code 356 occurs.

(5) Delay time of DEALY means how long it takes for speed of subsidiary axis to get equal with current main axis speed. In
XGB built-in positioning, when speed synchronization control, it detects the current speed of main axis every 500㎲ and
adjust speed of subsidiary axis. At this time, if speed of subsidiary axis changes rapidly by speed synchronization, rapid
change of subsidiary axis may cause damage of motor and noise.

UINT

Chapter 11. Communication and Special Function Blocks

11-69

For example, we assume that synchronization speed rate is 100.00% and delay time is 5(ms). In case speed of main
axis is 10,000[pps], after 5ms, XGB adjusts speed of subsidiary axis to be 10,000[pps] every 500[㎲] according to current
speed of main axis.
The more delay time is large, the more stability increases. When you want high stability of motor, increase the delay time.

(6) The range of delay time can be set in DELAY n2 is 1 ~ 10[ms]. If it exceeds the range, error code 357 occurs.
(7) The range of MST_AXIS is 0~9. If it exceeds the range, error code 355 occurs.
(8) You can specify axis for command at AXIS, The following setting is available. If you input invalid value, error code 6

occurs.
0: X axis, 1: Y axis

(9) You can specify main axis of speed synchronization at MST_AXIS. If you input invalid value, error code 6 occurs.

■ Program example

1. ST

INST_APM_SSSP(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
MST_AXIS:=AXIS_USINT, MST_RAT:=MST_UINT, SLV_RAT:=SLV_UINT, POS:=POS_DINT, DONE=>DONE_BOOL,
STAT=>STAT_UINT);

1.33.

 Chapter 11. Communication and Special Function Blocks

11-70

1.34.

APM_SSSB
Positioning speed synchronization

Availability XEC

Flags -

Function Block Description

Input REQ : requires to execute the function block
 BASE : Setting the base number with a module
 SLOT : Setting the slot number with a module

AXIS : Setting an axis to instruct
 0:X axis, 1:Y axis
 MST_AXIS : Setting main axis of speed

synchronization

Setting value Main axis setting Setting value Main axis setting

0 X axis 5 High Speed Counter Ch3

1 Y axis 6 High Speed Counter Ch4

2 High Speed Counter Ch0 7 High Speed Counter Ch5

3 High Speed Counter Ch1 8 High Speed Counter Ch6

4 High Speed Counter Ch2 9 High Speed Counter Ch7

 SLV_RAT : Setting speed rate of sub axis
 1 ~ 10,000(0.01 ~ 100.00%)
 DELAY : Delay time of sub axis
 1 ~ 10(1 ~ 10ms)

Output DONE : maintains 1 after the first operation
 STAT : Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands speed synchronization instruction to the positioning module
(2) At the rising edge of input condition, axis set in AXIS is set as subsidiary axis and axis set in MST_AXIS is set as main

axis and speed synchronization instruction is executed.
(3) If instruction executes, subsidiary axis doesn’t yield pulse. (At this time, operation status flag (X axis: %KX6720, Y

axis: %KX6880) is on). At this time, if axis set in MST_AXIS starts, subsidiary axis starts with speed synchronization
rate set in AXIS.

(4) Synchronization rate can be set in SLV_RAT is 0.01% ~ 100.00% (setting value 1 ~ 10,000). If synchronization speed
rate exceeds this range, error code 356 occurs.

(5) Delay time of DEALY means how long it takes for speed of subsidiary axis to get equal with current main axis speed. In
XGB built-in positioning, when speed synchronization control, it detects the current speed of main axis every 500㎲ and
adjust speed of subsidiary axis. At this time, if speed of subsidiary axis changes rapidly by speed synchronization, rapid
change of subsidiary axis may cause damage of motor and noise.

UINT

Chapter 11. Communication and Special Function Blocks

11-71

For example, we assume that synchronization speed rate is 100.00% and delay time is 5(ms). In case speed of main
axis is 10,000[pps], after 5ms, XGB adjusts speed of subsidiary axis to be 10,000[pps] every 500[㎲] according to current
speed of main axis.
The more delay time is large, the more stability increases. When you want high stability of motor, increase the delay time.

(6) The range of delay time can be set in DELAY n2 is 1 ~ 10[ms]. If it exceeds the range, error code 357 occurs.
(7) The range of MST_AXIS is 0~9. If it exceeds the range, error code 355 occurs.
(8) You can specify axis for command at AXIS, The following setting is available. If you input invalid value, error code 6

occurs.
0: X axis, 1: Y axis

(9) You can specify main axis of speed synchronization at MST_AXIS. If you input invalid value, error code 6 occurs.

■ Program example

2. ST

INST_APM_SSSB(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
MST_AXIS:=AXIS_USINT,
MST_RAT:=MST_UINT, SLV_RAT:=SLV_UINT, POS:=POS_DINT, DONE=>DONE_BOOL, STAT=>STAT_UINT);

 Chapter 11. Communication and Special Function Blocks

11-72

1.35.

APM_POR
Position override

Availability XGI, XGR, XEC

Flags

Function Block Description

DONEREQ

BASE

SLOT

STAT

BOOLBOOL

USINT

USINT

USINT

AXISUSINT

POR_ADDRDINT

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module

AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis
 POR_ADDR : Setting new target position
 -2,147,483,648 ∼ 2,147,483,647

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands position override instruction to the positioning module.
(2) It used when changing target position while instruction axis is running.
(3) It commands position override instruction to the configured AXIS of the positioning module where it is configured at BASE

(base number of positioning module) and SLOT (slot number of positioning module).
(4) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 0: X axis, 1: Y axis, 2: Z axis (in case of XEC, Z axis is not supported)
(5) Set the target position to change in POR_ADDR.

■ Program example

1. ST

 INST_APM_POR(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,

POR_ADDR:=POR_DINT, DONE=>DONE_BOOL, STAT=>STAT_UINT);

UINT

Chapter 11. Communication and Special Function Blocks

11-73

1.36. APM_SOR

APM_SOR
Speed override

Availability XGI, XGR, XEC

Flags

Function Block Description

DONEREQ

BASE

SLOT

STAT

BOOLBOOL

USINT

USINT

USINT

AXISUSINT

SOR_SPDUDINT

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module

AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis
 SOR_SPD: Setting new run speed value
 Open Collector: 0 ∼ 200,000[pps]

Line Driver: 0 ∼ 1,000,000[pps]

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands speed override instruction to the positioning module.
(2) It used when changing run speed while instruction axis is running.
(3) It commands speed override instruction to the configured AXIS of the positioning module where it is configured at BASE

(base number of positioning module) and SLOT (slot number of positioning module).
(4) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 0: X axis, 1: Y axis, 2: Z axis (in case of XEC, Z axis is not supported)
(5) Set the target speed to change in SOR_SPD. If the value is set out of the range, it generates “Error11.”

Open Collector: 0 ∼ 200,000[pps] (in case of XEC, Z axis is not supported)
Line Driver: 0 ∼ 1,000,000[pps]

■ Program example

1. ST

INST_APM_SOR(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
SOR_SPD:=SOR_UDINT, DONE=>DONE_BOOL, STAT=>STAT_UINT);

UINT

 Chapter 11. Communication and Special Function Blocks

11-74

1.37. APM_PSO

APM_PSO
Positioning speed override

Availability XGI, XGR, XEC

Flags

Function Block Description

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module

AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis
 PSO_ADDR: Position to change speed

 -2,147,483,648 ∼ 2,147,483,647
 PSO_SPD: Setting new run speed value

 Open Collector: 0 ∼ 200,000[pps]
Line Driver: 0 ∼ 1,000,000[pps]

Output DONE: maintains 1 after the first operation

STAT: Output the error number that occurs while
executing the function block.

■ Function

(1) The instruction commands positioning speed override instruction to the positioning module.
(2) It executes when changing run speed after the axis reaches to a certain position while it is running.
(3) It commands speed override instruction to the configured AXIS of the positioning module where it is configured at BASE

(base number of positioning module) and SLOT (slot number of positioning module).
(4) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 0: X axis, 1: Y axis, 2: Z axis (in case of XEC, Z axis is not supported)
(6) Set the target speed to change in PSO_SPD. The value is as follows. If the value is set out of the range, it generates

“Error11.”
Open Collector: 0 ∼ 200,000[pps] (in case of XEC, Z axis is not supported)
Line Driver: 0 ∼ 1,000,000[pps]

■ Program example

1. ST

 INST_APM_PSO(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,

PSO_ADDR:=ADDR_UDINT, PSO_SPD:=SPD_UDINT, DONE=>DONE_BOOL, STAT=>STAT_UINT);

UINT

Chapter 11. Communication and Special Function Blocks

11-75

1.38. APM_NMV

APM_NMV
Continuous run

Availability XGI, XGR

Flags

Function Block Description

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module
 AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands continuous run instruction to the positioning module.
(2) It executes to change the current step to the next step without stop.
(3) It commands continuous run instruction to the configured AXIS of the positioning module where it is configured at BASE

(base number of positioning module) and SLOT (slot number of positioning module).
(4) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 0: X axis, 1: Y axis, 2: Z axis

■ Program example

1. ST

INST_APM_NMV(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
DONE=>DONE_BOOL, STAT=>STAT_UINT);

UINT

 Chapter 11. Communication and Special Function Blocks

11-76

1.39. APM_INC

APM_INC
Inching run

Availability XGI, XGR, XEC

Flags

Function Block Description

DONEREQ

BASE

SLOT

STAT

BOOLBOOL

USINT

USINT

USINT

AXISUSINT

INCH_VALDINT

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module

AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis

INCH_VAL: Setting the movement to move to
inching run

 -2,147,483,648 ∼ 2,147,483,647

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands inching run instruction to the positioning module.
(2) Inching run is a type of manual run, used to process minute movement as quantitative run.
(3) The inching run speed is set in manual run parameter.
(4) It commands inching run floating origin instruction to the configured AXIS of the positioning module where it is configured

at BASE (base number of positioning module) and SLOT (slot number of positioning module).
(5) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 0: X axis, 1: Y axis, 2: Z axis (In case of XEC, Z axis is not supported)

■ Program example

1. ST

 INST_APM_INC(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,

INCH_VAL:=INCH_DINT, DONE=>DNOE_BOOL, STAT=>STAT_UINT);

UINT

Chapter 11. Communication and Special Function Blocks

11-77

1.40. APM_RTP

APM_RTP
Return to the position before manual run

Availability XGI, XGR

Flags

Function Block Description

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module
 AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands return to the position before manual run to the positioning module.
(2) It executes to return to the position before manual run when the position is changed by manual run after positioning.
(3) It commands Return to the position before manual run instruction to the configured AXIS of the positioning module

where it is configured at BASE (base number of positioning module) and SLOT (slot number of positioning module).
(4) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 0: X axis, 1: Y axis, 2: Z axis

■ Program example

1. ST

 INST_APM_RTP(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,

DONE=>DONE_BOOL, STAT=>STAT_UINT);

UINT

 Chapter 11. Communication and Special Function Blocks

11-78

APM_SNS

APM_SNS
Run step number change

Availability XGI, XGR, XEC

Flags

Function Block Description

DONEREQ

BASE

SLOT

STAT

BOOLBOOL

USINT

USINT

USINT

AXISUSINT

STEPUINT

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module

AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis
 STEP: Setting run step number to run
 1 ~ 400

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands run step number change instruction to the positioning module.
(2) It executes to change run step of the axis
(3) It commands run step number change instruction to the configured AXIS of the positioning module where it is configured

at BASE (base number of positioning module) and SLOT (slot number of positioning module).
(4) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 0: X axis, 1: Y axis, 2: Z axis (In case of XEC, Z axis is not supported)
(5) Set the step number to run in STEP between 1 ~ 400; if other value is set , it generates “Error11.”

■ Program example

1. ST

INST_APM_SNS(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,

STEP:=STEP_UINT, DONE=>DONE_BOOL, STAT=>STAT_UINT);

UINT

Chapter 11. Communication and Special Function Blocks

11-79

APM_SRS

APM_SRS
Repeat step number change

Availability XGI, XGR

Flags

Function Block Description

DONEREQ

BASE

SLOT

STAT

BOOLBOOL

USINT

USINT

USINT

AXISUSINT

STEPUINT

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module

AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis
 STEP: Setting repeat step number to change
 1 ~ 400

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands repeat step number change instruction to the positioning module.
(2) It executes to start run in a certain run step by configuring start step number of repeat run in case of repeat run in which it

returns to repeat run step if it meets repeat run while running by run data.
(3) It commands repeat step change instruction to the configured AXIS of the positioning module where it is configured at

BASE (base number of positioning module) and SLOT (slot number of positioning module).
(4) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 0: X axis, 1: Y axis, 2: Z axis
(5) Set the step number to start repeat run in STEP between 1 ~ 400; if other value is set , it generates “Error11.”

■ Program example

1. ST

INST_APM_SRS(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
STEP:=STEP_UINT, DONE=>DONE_BOOL, STAT=>STAT_UINT);

UINT

 Chapter 11. Communication and Special Function Blocks

11-80

APM_MOF

APM_MOF
M code cancellation

Availability XGI, XGR, XEC

Flags

Function Block Description

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module

AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands M code cancellation instruction to the positioning module.
(2) If M code is set in the parameter of each axis to With or After mode, it executes to turn off the signal when the M code signal of

the axis is on.
(3) It commands M code cancellation instruction to the configured AXIS of the positioning module where it is configured at

BASE (base number of positioning module) and SLOT (slot number of positioning module).
(4) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 0: X axis, 1: Y axis, 2: Z axis (in case of XEC, Z axis is not supported)

■ Program example

1. ST

 INST_APM_MOF(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,

DONE=>DONE_BOOL, STAT=>STAT_UINT);

UINT

Chapter 11. Communication and Special Function Blocks

11-81

APM_MOF

APM_PRS
Current position preset

Availability XGI, XGR, XEC

Flags

Function Block Description

DONEREQ

BASE

SLOT

STAT

BOOLBOOL

USINT

USINT

USINT

AXISUSINT

PRS_ADDRDINT

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module

 AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis
 PRS_ADDR: Setting the current position value to

change
 -2,147,483,648 ∼ 2,147,483,647

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands current position preset instruction to the positioning module.
(2) As the command used to change the current position to a temporary position, the origin is determined if executing the

command.
(3) It commands current position preset instruction to the configured AXIS of the positioning module where it is configured at

BASE (base number of positioning module) and SLOT (slot number of positioning module).
(4) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 0: X axis, 1: Y axis, 2: Z axis (in case of XEC, Z axis is not supported)

■ Program example

1. ST

 INST_APM_PRS(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,

PRS_ADDR:=ADDR_DINT, DONE=>DONE_BOOL, STAT=>STAT_UINT);

UINT

 Chapter 11. Communication and Special Function Blocks

11-82

1.41. APM_ZONE

APM_ZONE
Zone Output allowed/prohibited

Availability XGI, XGR

Flags

Function Block Description

 APM_ZONE

DONEREQ

BASE

SLOT

STAT

BOOLBOOL

USINT

USINT

UINT

AXISUSINT

ZONE_ENBOOL

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module

AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis
 ZONE_EN: Zone Output allowed/prohibited
 0: prohibited, 1: allowed

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands Zone Output allowed/prohibited instruction to the positioning module.
(2) It commands to allow or prohibit Zone Output by using the position data of zone set in common parameter and the position

data value set in Zone1, Zone2 and Zone3.
(3) It commands Zone Output allowed/prohibition instruction to the configured AXIS of the positioning module where it is

configured at BASE (base number of positioning module) and SLOT (slot number of positioning module).
(4) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 0: X axis, 1: Y axis, 2: Z axis

■ Program example

1. ST

 INST_APM_ZONE(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,

ZONE_EN:=ZONE_BOOL, DONE=>DONE_BOOL, STAT=>STAT_UINT);

Chapter 11. Communication and Special Function Blocks

11-83

1.42. APM_EPRE

APM_EPRE
Encoder value preset

Availability XGI, XGR

Flags

Function Block Description

 APM_EPRE

DONEREQ

BASE

SLOT

STAT

BOOLBOOL

USINT

USINT

UINT

AXISUSINT

EPRE_VALUDINT

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module

AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis
 EPRE_VAL: Setting encoder preset value
 0 ∼ 4,294,967,295

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands encoder value preset instruction to the positioning module.
(2) It commands to preset the current encoder value set in EPRE_VAL.
(3) It commands encoder value preset instruction to the configured AXIS of the positioning module where it is configured at

BASE (base number of positioning module) and SLOT (slot number of positioning module).
(4) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 0: X axis, 1: Y axis, 2: Z axis

■ Program example

1. ST

 INST_APM_EPRE(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,

EPRE_VAL:=EPRE_UDINT, DONE=>DONE_BOOL, STAT=>STAT_UINT);

 Chapter 11. Communication and Special Function Blocks

11-84

1.43. APM_TEA

APM_TEA
Singular teaching

Availability XGI, XGR

Flags

Function Block Description

 APM_TEA

DONEREQ

BASE

SLOT

STAT

BOOLBOOL

USINT

USINT

UINT

AXISUSINT

STEPUINT

RAM/ROMBOOL

POS/SPDBOOL

TEA_VALDINT

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module
 AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis
 STEP: Setting step number for teaching

 0 ~ 400
RAM/ROM: Selecting RAM teaching/ROM teaching

type
 0 : RAM teaching, 1 : ROM teaching

POS/SPD: Selecting position teaching/speed teaching
type

 0 : position teaching, 1 : speed teaching
 TEA_VAL: Setting teaching value

 Position teaching: -2,147,483,648 ∼ 2,147,483,647
 Speed teaching: Open Collector 0 ∼ 200,000[pps]

 Line Driver 0 ∼ 1,000,000[pps]

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function
(1) The instruction commands singular teaching instruction to the positioning module.
(2) Speed teaching can be used when using a temporary speed for run data of a certain step while position teaching is used to

set a temporary position for run data of a certain run step.
(3) It commands singular teaching instruction to the configured AXIS of the positioning module where it is configured at BASE

(base number of positioning module) and SLOT (slot number of positioning module).
(4) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 0: X axis, 1: Y axis, 2: Z axis
(5) It can set the step number of run data for teaching in STEP between 0 ~ 400. If other value is set, it generates

“Error11.”
(6) In case of position teaching, a position value for teaching is set in TEA_VAL while speed value for teaching is set; the setting

ranges are as follows. If other value is set, it generates “Error11.”
 ● Position teaching range: -2,147,483,648 ∼ 2,147,483,647

● Speed teaching range: Open Collector Output -> 0 ∼ 200,000 [pps]
Line Driver Output -> 0 ∼ 1,000,000 [pps]

Chapter 11. Communication and Special Function Blocks

11-85

■ Program example

1. ST

INST_APM_TEA(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
STEP:=STEP_UINT, RAM_ROM:=RAM_BOOL, POS_SPD:=SPD_BOOL);

APM_ATEA

1.44. A

 Chapter 11. Communication and Special Function Blocks

11-86

1.45. PM_ATEA

APM_ATEA
Singular teaching

Availability XGI, XGR

Flags

Function Block Description

 APM_ATEA

DONEREQ

BASE

SLOT

STAT

BOOLBOOL

USINT

USINT

UINT

AXISUSINT

STEPUINT

RAM/ROMBOOL

POS/SPDBOOL

TEA_CNTUSINT

TEA_VALDINT[16]

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module
 AXIS: Setting an axis to instruct
 0 : X axis, 1:Y axis, 2:Z axis
 STEP: Setting step number for teaching, 0 ~ 400
 RAM/ROM: Selecting RAM teaching/ROM teaching

 0 : RAM teaching, 1 : ROM teaching
POS/SPD: Selecting position teaching/speed teaching

type
 0 : position teaching, 1 : speed teaching
 TEA_CNT : Setting the no. of data for teaching, 1 ~ 16
 TEA_VAL : Setting teaching value

 Position teaching: -2,147,483,648 ∼ 2,147,483,647
 Speed teaching : Open Collector 0 ∼ 200,000[pps]

 Line Driver 0 ∼ 1,000,000[pps]

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function
(1) The instruction commands plural teaching instruction to the positioning module.
(2) Speed teaching can be used when using a temporary speed for run data of a certain step while position teaching is used to

set a temporary position for run data of a certain run step.
(3) Using the teaching plural function block, up to 16 target positions and speed values can be changed.
(4) It commands plural teaching instruction to the configured AXIS of the positioning module where it is configured at BASE

(base number of positioning module) and SLOT (slot number of positioning module).
(5) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 0: X axis, 1: Y axis, 2: Z axis
(6) It can set the step number of run data for teaching in STEP between 0 ~ 400. If other value is set, it generates

“Error11.”
(7) The number of data is set in TEA_CNT up to 16. If other value is set out of the range, it generates “Error11.”
(8) In case of position teaching, a position value for teaching is set in TEA_VAL while speed value for teaching is set; the setting

ranges are as follows.
 ● Position teaching range: -2,147,483,648 ∼ 2,147,483,647

● Speed teaching range: Open Collector Output -> 0 ∼ 200,000 [pps]
Line Driver Output -> 0 ∼ 1,000,000 [pps]

Chapter 11. Communication and Special Function Blocks

11-87

1.46.

■ Program example

1. ST

 INST_APM_ATEA1(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
STEP:=STEP_UINT, RAM_ROM:=RAM_BOOL, POS_SPD:=SPD_BOOL, TEA_CNT:=CNT_USINT,
ATEA_VAL:=ARY_ATEA, DONE=>DONE_BOOL, STAT=>STAT_UINT);

APM_SBP

 Chapter 11. Communication and Special Function Blocks

11-88

1.47.

APM_SBP
Basic parameter teaching

Availability XGI, XGR

Flags

Function Block Description

DONEREQ

BASE

SLOT

STAT

BOOLBOOL

USINT

USINT

USINT

AXISUSINT

BP_VALUDINT

BP_NOUSINT

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module
 AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis

 BP_VAL: basic parameter value to change
BP_NO: basic parameter item number to change

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands basic parameter teaching instruction to the positioning module.
(2) The parameter modified by basic parameter setting instruction is valid only when the power is on. To save the

parameter modified by basic parameter setting instruction, it is necessary to save the parameter value modified by
save parameter/run data save instruction (WRT) to ROM after setting basic parameter.

(3) It commands basic parameter setting instruction to the configured AXIS of the positioning module where it is configured at
BASE (base number of positioning module) and SLOT (slot number of positioning module).

(4) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 0: X axis, 1: Y axis, 2: Z axis
(5) The following values can be set in the basic parameter item number.

1: speed limit
2: bias speed
3: acc./dec. time 1
4: acc./dec. time 2
5: acc./dec. time 3
6: acc./dec. time 4
7: no. of pulse per rotation
8: conveyance distance per rotation
9: pulse output mode
10: unit
11: unit allocation

UINT

Chapter 11. Communication and Special Function Blocks

11-89

1.48. APM_SEP

■ Program example

1. ST

INST_APM_SBP(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,

BP_NO:=EP_USINT*), BP_VAL:=BP_UDINT, DONE=>DONE_BOOL, STAT=>STAT_UINT);

 Chapter 11. Communication and Special Function Blocks

11-90

APM_SEP
Extension parameter teaching

Availability XGI, XGR

Flags

Function Block Description

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module
 AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis
 EP_VAL: Extension parameter value to change
 EP_NO: Extension parameter number to change

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands extension parameter teaching instruction to the positioning module.
(2) The parameter modified by extension parameter setting instruction is valid only when the power is on. To save the

parameter modified by extension parameter setting instruction, it is necessary to save the parameter value modified
by save parameter/run data save instruction (WRT) to ROM after setting extension parameter.

(3) It commands extension parameter setting instruction to the configured AXIS of the positioning module where it is
configured at BASE (base number of positioning module) and SLOT (slot number of positioning module).

(4) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 0: X axis, 1: Y axis, 2: Z axis
(5) The following values can be set in the extension parameter item number.

1: Software upper limit
2: Software lower limit
3: Backlash compensation
4: Position completion output time
5: S-Curve rate
6: External instruction selection
7: Pulse output direction
8: Acc./dec. pattern
9: M code number
10: Position display during uniform run
11: Upper/lower limit display during uniform run
12: External speed/position control conversion allowed
13: External instruction allowed
14: External stop allowed
15: External simultaneous run allowed

UINT

Chapter 11. Communication and Special Function Blocks

11-91

16: Positioning completion condition
17: Driver ready/in-position

■ Program example

1. ST

INST_APM_SEP(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
EP_NO:=NO_USINT, EP_VAL:=EP_DINT, DONE=>DONE_BOOL, STAT=>STAT_UINT);

 Chapter 11. Communication and Special Function Blocks

11-92

1.49. APM_SHP

APM_SHP
Origin return parameter setting

Availability XGI, XGR

Flags

Function Block Description

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module
 AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis

HP_VAL: origin return parameter value to change
HP_NO: origin return parameter item number to

change

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands an origin return parameter teaching instruction to the positioning module.
(2) The parameter modified by origin return parameter setting instruction is valid only when the power is on. To save the

parameter modified by origin return parameter setting instruction, it is necessary to save the parameter value
modified by save parameter/run data save instruction (WRT) to ROM after setting origin return parameter.

(3) It commands origin return parameter teaching instruction to the configured AXIS of the positioning module where it is
configured at BASE (base number of positioning module) and SLOT (slot number of positioning module).

(4) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 0: X axis, 1: Y axis, 2: Z axis
(5) The values to set to origin return parameter items are as follows.

1: Origin address
2: Origin return high speed
3: Origin return low speed
4: Acc./dec. time of origin return
5: Dwell time of origin return
6: Origin compensation
7: Re-run time of origin return
8: Origin return mode
9: Origin return direction

UINT

Chapter 11. Communication and Special Function Blocks

11-93

■ Program example

1. ST

INST_APM_SHP(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
HP_NO:=NO_USINT, HP_VAL:=HP_DINT, DONE=>DONE_BOOL, STAT=>STAT_UINT);

1.50.

 Chapter 11. Communication and Special Function Blocks

11-94

1.51.

APM_SMP
Manual run parameter teaching

Availability XGI, XGR

Flags

Function Block Description

DONEREQ

BASE

SLOT

STAT

BOOLBOOL

USINT

USINT

USINT

AXISUSINT

MP_VALUDINT

MP_NOUSINT

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module
 AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis

MP_VAL: Manual run parameter value to change
MP_NO: Manual run parameter item number to

change

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands manual run parameter teaching instruction to the positioning module.
(2) The parameter modified by manual run parameter teaching instruction is valid only when the power is on. To save

the parameter modified by manual run parameter teaching instruction, it is necessary to save the parameter value
modified by parameter/run data save instruction (WRT) to ROM after setting manual run parameter teaching.

(3) It commands manual run parameter teaching instruction to the configured AXIS of the positioning module where it is
configured at BASE (base number of positioning module) and SLOT (slot number of positioning module).

(4) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 0: X axis, 1: Y axis, 2: Z axis
(5) The values to set in manual run parameter item number are as follows.

1: Jog high speed
2: Jog low speed
3: Jog acc./dec. time
4: Inching speed

■ Program example

1. ST

 INST_APM_SMP(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
MP_NO:=NO_USINT, MP_VAL:=MP_UDINT, DONE=>DONE_BOOL, STAT=>STAT_UINT);

UINT

Chapter 11. Communication and Special Function Blocks

11-95

APM_SIP

APM_SIP
Input signal parameter teaching

Availability XGI, XGR

Flags

Function Block Description

DONEREQ

BASE

SLOT

STAT

BOOLBOOL

USINT

USINT

USINT

AXISUSINT

IP_VALUINT

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module
 AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis

IP_VAL: External signal parameter value to change /
setting the signal allocated by each bit.

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands input signal parameter teaching to the positioning module.
(2) The parameter modified by input signal parameter teaching instruction is valid only when the power is on. To save

the parameter modified by input signal parameter setting instruction, it is necessary to save the parameter value
modified by save parameter/run data save instruction (WRT) to ROM after setting external signal parameter.

(3) It commands input signal parameter teaching to the configured AXIS of the positioning module where it is configured at
BASE (base number of positioning module) and SLOT (slot number of positioning module).

(4) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 0: X axis, 1: Y axis, 2: Z axis

5. The setting of each input signal setting area has the following meaning.
0: contact A, 1: contact B
The signals allocated to each bit of input signal parameter value to change are as follows.

Bit Input signal Bit Q signal
0 Upper limit signal 6 Instruction signal
1 Lower limit signal 7 Sub instruction signal
2 Approx. origin signal 8 Speed/position conversin signal
3 Origin signal 9 Driver ready/in-position signal
4 Emergency stop signal 10 External simultaneous run signal
5 Dec. stop signal 15 ~ 11 -

UINT

 Chapter 11. Communication and Special Function Blocks

11-96

APM_SCP

■ Program example

1. ST

 INST_APM_SIP(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
IP_VAL:=IP_WORD, DONE=>DONE_BOOL, STAT=>STAT_UINT);

Chapter 11. Communication and Special Function Blocks

11-97

1.52.

APM_SCP
Common parameter teaching

Availability XGI, XGR

Flags

Function Block Description

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module
 AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis

CP_VAL: Common parameter value to change
CP_NO: Common parameter item number to change

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands common parameter teaching instruction to the positioning module.
(2) The parameter modified by common parameter setting instruction is valid only when the power is on. To save the

parameter modified by common parameter setting instruction, it is necessary to save the parameter value modified
by using save parameter/run data instruction (WRT) to ROM after common parameter teaching.

(3) It commands common parameter teaching instruction to the axis configured as the positioning axis configured as
BASE (base number of positioning module) and SLOT (slot number of positioning module).

(4) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 0: X axis, 1: Y axis, 2: Z axis
5. The values to set in common parameter item number are as follows.
1: Pulse Output level
2: Circular interpolation method
3: Encoder Input mode
4: Encoder Auto Reload value
5: ZONE Output mode
6: ZONE1 axis setting
7: ZONE2 axis setting
8: ZONE3 axis setting
9: ZONE1 On area
10: ZONE1 Off area
11: ZONE2 On area
12: ZONE2 Off area
13: ZONE3 On area
14: ZONE3 Off area

UINT

 Chapter 11. Communication and Special Function Blocks

11-98

■ Program example

1. ST

INST_APM_SCP(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
CP_NO:=NO_USINT, CP_VAL:=CP_DINT, ENC_LD:=ENC_UDINT, DONE=>DONE_BOOL, STAT=>STAT_UINT);

Chapter 11. Communication and Special Function Blocks

11-99

1.53. APM_SMD

APM_SMD
Run data teaching

Availability XGI, XGR

Flags

Function Block Description

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module
 AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis
 STEP: Run step number to change
 0 ~ 400
 MD_VAL: Run data value to change

MD_NO: Run data item number to change

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands run data teaching instruction to the positioning module.
(2) The parameter modified by run data teaching instruction is valid only when the power is on. To save the parameter

modified by run data setting instruction, it is necessary to save the parameter value modified by using save
parameter/run data instruction to ROM.

(3) It commands run data teaching instruction to the configured AXIS of the positioning module where it is configured at BASE
(base number of positioning module) and SLOT (slot number of positioning module).

(4) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 0: X axis, 1: Y axis, 2: Z axis
5. The following values can be set into the run data item number.
1: target position
2: circular interpolation sub point
3: target speed
4: dwell time
5: M code
6: control method
7: run mode
8: run pattern
9: coordinate
10: acc./dec. number
11: circular interpolation direction

APM_EM

UINT

 Chapter 11. Communication and Special Function Blocks

11-100

■ Program example

1. ST

 INST_APM_SMD(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
STEP:=STEP_UINT, MD_NO:=NO_USINT, MD_VAL:=MD_DINT, DONE=>DONE_BOOL, STAT=>STAT_UINT);

1.54.

Chapter 11. Communication and Special Function Blocks

11-101

APM_EMG
Emergency stop

Availability XGI, XGR, XEC

Flags

Function Block Description

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands emergency stop instruction to the positioning module.
(2) It commands Emergency stop instruction to the configured AXIS of the positioning module where it is configured at BASE

(base number of positioning module) and SLOT (slot number of positioning module).
(3) It is executed when stopping running due to emergency situation and every axis receiving the instruction would stop.
(4) Since it is converted to output prohibition and origin not determined, to resume running, it needs to cancel output

prohibition and determine the origin again.

■ Program example

1. ST

INST_APM_EMG(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, DONE=>DONE_BOOL,
STAT=>STAT_UINT);

UINT

 Chapter 11. Communication and Special Function Blocks

11-102

1.55. APM_RST

APM_RST
Error reset/Output prohibition cancel

Availability XGI, XGR, XEC

Flags

Function Block Description

DONEREQ

BASE

SLOT

STAT

BOOLBOOL

USINT

USINT

USINT

AXISUSINT

INH_OFFBOOL

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module
 AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis
 INH_OFF: Output prohibition cancellation
 0: Error reset

1: Error reset/Output prohibition cancellation

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands error reset/output prohibition cancellation to the positioning module.
(2) It commands error reset/output prohibition cancel instruction to the configured AXIS of the positioning module where it is

configured at BASE (base number of positioning module) and SLOT (slot number of positioning module).
(3) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
0: X axis, 1: Y axis, 2: Z axis (in case of XEC, Z axis is not supported)
(4) It is executed when canceling the status of pulse output prohibited by external emergency stop or upper/lower limit

detection or resetting an error that occurs when parameter is out of the range or while running.

■ Program example

1. ST

INST_APM_RST(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
INH_OFF:=INH_BOOL, DONE=>DOONE_BOOL, STAT=>STAT_UINT);

UINT

Chapter 11. Communication and Special Function Blocks

11-103

1.56. APM_PST

APM_PST
Point run

Availability XGI, XGR

Flags

Function Block Description

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module
 AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis
 PST_CMT: Setting the number of point run step
 0 ~ 19
 PST_VAL: Setting the point run step number
 0 ~ 400

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands point run instruction to the positioning module.
(2) It commands point run instruction to the configured AXIS of the positioning module where it is configured at BASE (base

number of positioning module) and SLOT (slot number of positioning module).
(3) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
0: X axis, 1: Y axis, 2: Z axis
(4) It executes when continuously running without stop by one instruction by setting max. 20 run steps in case of PTP

(point to point) run.
(5) If other value is set in PST_CNT or PST_VAL, it generates “Error6.”

■ Program example

1. ST

INST_APM_PST(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
PST_CNT:=CNT_USINT, PST_VAL:=ARY_PST, DONE=>DONE_BOOL, STAT=>STAT_UINT);

UINT

 Chapter 11. Communication and Special Function Blocks

11-104

1.57. APM_WRT

APM_WRT
Save parameter/run data

Availability XGI, XGR, XEC

Flags

Function Block Description

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module
 AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis
 WRT_AXIS: Setting save axis(by setting each bit)
 0bit:X axis, 1bit:Y axis, 2bit:Z axis

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands save parameter/run data instruction to the positioning module.
(2) It commands save parameter/run data instruction to the configured AXIS of the positioning module where it is configured

at BASE (base number of positioning module) and SLOT (slot number of positioning module).
(3) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
0: X axis, 1: Y axis, 2: Z axis
(4) It commands the instruction to save the current run parameter and run data of the axis set in WRT_AXIS to Flash

ROM.

■ Program example

1. ST

INST_APM_WRT(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
WRT_AXIS:=WRT_USINT, DONE=>DONE_BOOL, STAT=>STAT_UINT);

UINT

Chapter 11. Communication and Special Function Blocks

11-105

1.58. APM_CRD

APM_CRD
Read run info

Availability XGI, XGR

Flags

Function Block Description

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module
 AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.
 ERR: display error during operation
 CA: display current position address
 CV: display current run speed
 STEP: display current run data step number
 MCD: display current MCode value

■ Function

(1) The instruction commands read run info instruction to the positioning module.
(2) It commands Read current run info instruction to the configured AXIS of the positioning module where it is configured at

BASE (base number of positioning module) and SLOT (slot number of positioning module).
(3) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
0: X axis, 1: Y axis, 2: Z axis
(4) It can monitor by reading the current position address, run speed, run data number and M code number of the

preset axis or be used in a user program.

■ Program example

1. ST

 NST_APM_CRD(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
DONE=>DONE_BOOL, STAT=>STAT_UINT, ERR=>ERR_UINT, CA=>CA_DINT, CV=>CV_UDINT,
STEP=>STEP_UINT, MCD=>MCD_UINT);

UINT

 Chapter 11. Communication and Special Function Blocks

11-106

1.59. APM_SRD

APM_SRD
Read run state

Availability XGI, XGR

Flags

Function Block Description

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module
 AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.
 ST1: state 1
 ST2: state 2
 ST3: state 3
 ST4: state 4
 ST5: state 5
 ST6: state 6
 ST7: state 7

■ Function

(1) The instruction commands read run state run instruction to the positioning module.
(2) It commands Read run state instruction to the configured AXIS of the positioning module where it is configured at BASE

(base number of positioning module) and SLOT (slot number of positioning module).
(3) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”

0: X axis, 1: Y axis, 2: Z axis
(4) The content of ST1 ~ ST7, the output variables of current run state bit read function block is important information

that should be applied in the program.
(5) Each bit of ST1 ~ ST4 has the following meaning.

 Bit Description Bit Description

ST1

[0] Running(0: stop, 1: BUSY) [4] Origin determined
(0: not determined, 1:
completed)

[1] Error state [5] Pulse Output prohibited
(0: allowed, 1: prohibited)

[2] Positioning complete [6] Stop

[3] M Code On signal (0: Off, 1:
On)

[7] -

UINT

Chapter 11. Communication and Special Function Blocks

11-107

 Bit Description Bit Description

ST2

[0] Upper limit detected [4] Accelerating

[1] Lower limit detected [5] Constant speed

[2] Emergency stop state [6] Decelerating

[3] Direction
(0: forward, 1: reverse)

[7] Dwelling

ST3

[0] 1 axis position control [4] 2 axes circular interpolating

[1] 1 axis speed control [5] Origin return running

[2] 2 axes linear interpolation [6] Position synchronization
running

[3] 3 axes linear interpolation [7] Speed synchronization
running

ST4

[0] Jog low speed running [4] Returning to the position
before manual run

[1] Jog high speed running [5] -

[2] Inching running [6] -

[3] MPG running [7] -

(6) Each bit of ST5 ~ ST7 has the following meaning, respectively.

 Bit Description Bit Description

ST5

[0] Axis state(0: sub, 1:
main)

[4] Main axis info[Encoder]

[1] Main axis info(X axis) [5] -

[2] Main axis info(Y axis) [6] -

[3] Main axis info(Z axis) [7] -

ST6

[0] Emergency stop signal [4] Upper limit signal

[1] External stop signal [5] Lower limit signal

[2] External command
signal

[6] Origin signal

[3] Jog high speed reverse
signal

[7] Approx. origin signal

ST7

[0] Speed/position control
conversion signal

[4] -

[1] Driver ready/in-position
signal

[5] -

[2] External simultaneous
run signal

[6] -

[3] - [7] -

■ Program example

1. ST

INST_APM_SRD(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
DONE=>DONE_BOOL, STAT=>STAT_UINT, ST1=>ARY_ST1, ST2=>ARY_ST2, ST3=> ARY_ST3, ST4=> ARY_ST4,
ST5=> ARY_ST5, ST6=> ARY_ST6, ST7=> ARY_ST7);

 Chapter 11. Communication and Special Function Blocks

11-108

1.60. APM_ENCRD

APM_ENCRD
Read encoder value

Availability XGI, XGR

Flags

Function Block Description

Input REQ: requires to execute the function block

BASE: Setting the base number with a module
SLOT: Setting the slot number with a module

Output DONE: maintains 1 after the first operation

STAT: Output the error number that occurs while
executing the function block.

ENC_VAL: current encoder value

■ Function

(1) The instruction commands read encoder value instruction to the positioning module.
(2) It commands Read encoder value instruction to the configured AXIS of the positioning module where it is configured at

BASE (base number of positioning module) and SLOT (slot number of positioning module).

■ Program example

ST

 INST_APM_ENCRD(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, DONE=>DONE_BOOL,
STAT=>STAT_UINT, ENC_VAL=>ENC_UDINT);

UINT

Chapter 11. Communication and Special Function Blocks

11-109

1.61. APM_JOG

APM_JOG
Jog run

Availability XGI, XGR

Flags

Function Block Description

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module

AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis
 JOG_DIR: Setting rotation direction of jog run

0: forward, 1: reverse
 LOW/HIGH: Setting jog run speed

0: low speed jog run
1: high speed jog run

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block.

■ Function

(1) The instruction commands jog run instruction to the positioning module.
(2) The manual run function for test is used to verify the address for system operation, wiring state and teaching.
(3) If connection condition of input variable REQ is on, pulse is output by the value; it stops in case of off.
(4) It commands jog run instruction to the configured AXIS of the positioning module where it is configured at BASE
(base number of positioning module) and SLOT (slot number of positioning module).
(5) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”

 0: X axis, 1: Y axis, 2: Z axis

■ Program example

1. ST

 INST_APM_JOG(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
JOG_DIR:=JOG_BOOL, LOW_HIGH:=LOW_HIGH_BOOL, DONE=>DONE_BOOL, STAT=>STAT_UINT);

UINT

 Chapter 11. Communication and Special Function Blocks

11-110

1.62. APM_MPG

APM_MPG
Manual pulse generator(MPG) run

Availability XGI, XGR

Flags

Function Block Description

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module

AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis
 MPG_EN: MPG run allowed/prohibited setting

0: prohibited, 1: allowed

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block

■ Function

(1) It commands to instruct positioning module to execute MPG run.
(2) Instruct positioning module to be ready for running when it is necessary to run by using externally installed MPG.
(3) It commands MPG run instruction to the configured AXIS of the positioning module where it is configured at
BASE (base number of positioning module) and SLOT (slot number of positioning module).
(4) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
0: X axis, 1: Y axis, 2: Z axis

■ Program example

ST

INST_APM_MPG(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
MPG_EN:=MPG_BOOL, DONE=>DONE_BOOL, STAT=>STAT_UINT);

UINT

Chapter 11. Communication and Special Function Blocks

11-111

1.63.

APM_RCP
Current position section repetition

Availability XGI, XGR

Flags

Function Block Description

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module

AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis
 POS: Setting repetition position(address):
 -2,147,483,648 ~ 2,147,483,647

EN : Enable current position section repetition
 0: Prohibit current position section repetition

 1: Enable current position section repetition
Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block

■ Function
(1) It commands to instruct positioning module to set or prohibit current position section repetition.
(2) It only operates at direct start.
(3) It commands RCP run instruction to the configured AXIS of the positioning module where it is configured at
BASE
(base number of positioning module) and SLOT (slot number of positioning module).

 (4) For “AXIS”, you can configure the axis to give an instruction. If other value is set, it produces “Error6.”

■ Program example

ST

INST_APM_RCP(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), POS:=(*DINT*),
DONE=>(*BOOL*), STAT=>(*UINT*))

UINT

 Chapter 11. Communication and Special Function Blocks

11-112

1.64.

APM_VRD
Read Variable Data

Availability XGI, XGR

Flags

Function Block Description

 APM_VRD

DONEREQ

BASE

SLOT

STAT

BOOLBOOL

USINT

USINT

UINT

OFFSETUINT

SIZEUINT

S_ADDRUDINT

AXISUSINT

CNTUINT

VAR UINT[128]

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module

AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis
 S_ADDR: Head address of data in module internal

memory to read (0 ~ 12147)
OFFSET: Offset between Read data blocks

0 ~ 53329
SIZE : Size of Read data block : 1 ~ 128
CNT : No. of Read data block : 1 ~ 128

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block
VAR : PLC device where Read data is saved

■ Function
(1) It commands to instruct positioning module to read parameter, operation data directly
(2) You can read data you want by designating the module internal memory address of parameter and operation
data
(3) It reads the positioning module internal memory from the position set by “S_ADDR” by WORD unit and save
them in the device set by “VAR”. The number of data to read is the number set by “Size”. In case “CNT” is larger
than 2, it reads multiple data blocks and save them in the device set by “VAR” in order. At this time, head address of
next block is “Offset” apart from head address of current block.
(4) Max. data size one instruction can read (SIZE x CNT) is 128 WORD

(5) “VRD” instruction can be executed during operation

(6) For “AXIS”, you can configure the axis to give an instruction. If other value is set, it produces “Error6.”

(7) If Read data size (SIZE x CNT) is o or larger than 128 WORD, error “11” occurs at STAT.

■ Program example

1. ST

INST_APM_VRD(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*),

S_ADDR:=(*UINT*),OFFSET:=(*UINT*), SIZE:=(*UINT*), CNT:=(*UINT*), DONE=>(*BOOL*), STAT=>(*UINT*),

R=>(*ARRAY[0..127]_OF_UINT*))

Chapter 11. Communication and Special Function Blocks

11-113

APM_VWR
Write Variable Data

Availability XGI, XGR

Flags

Function Block Description

 APM_VWR

DONEREQ

BASE

SLOT

STAT

BOOLBOOL

USINT

USINT

USINT

AXISUSINT

VAR

T_ADDRUDINT

OFFSETUINT

SIZEUINT

CNTUINT

UINT[128]

Input REQ: requires to execute the function block
 BASE: Setting the base number with a module
 SLOT: Setting the slot number with a module

AXIS: Setting an axis to instruct
 0:X axis, 1:Y axis, 2:Z axis
 VAR : PLC device where data to write is saved

T_ADDR: module internal memory head address to
write data 0 ~ 12147

OFFSET : Offset between Write data blocks

0 ~ 53329
SIZE : Size of Write data block : 1 ~ 128
CNT : No. of Write data block : 1 ~ 128

Output DONE: maintains 1 after the first operation
 STAT: Output the error number that occurs while

executing the function block

■ Function
(1) It commands to instruct positioning module to write parameter, operation data directly
(2) You can read data you want by configure the module internal memory address of parameter and operation data
(3) It writes the WORD data in “VAR” to module internal memory. The data are saved from internal memory position
set by “T_ADDR” and the number of data is the number set by “Size”. In case the number of block “CNT” is larger
than 2, multiple blocks are made. At this time, head address of next block is “Offset” apart from head address of
current block.
(4) Max. data size one instruction can read (SIZE x CNT) is 128 WORD

(5) “VWR” instruction can executes during operation

(6) For “AXIS”, you can designate the axis to give an instruction. If other value is set, it produces “Error6.”

(7) If Write data size (SIZE x CNT) is o or larger than 128 WORD, error “11” occurs at STAT.

■ Program example

1. ST

INST_APM_VWR(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*),

VAR:=(*ARRAY[0..127]_OF_UINT*), T_ADDR:=(*UINT*), OFFSET:=(*UINT*), SIZE:=(*UINT*), CNT:=(*UINT*),

DONE=>(*BOOL*), STAT=>(*UINT*))

 Chapter 11. Communication and Special Function Blocks

11-114

APM_VTPP
Position specified Speed/Position Switching Control

Availability XGI, XGR

Flags

Function Block Description

Input

REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

0:X axis, 1:Y axis, 2:Z axis
POS: transfer amount

 1 ~2,147,483,647
Output

DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) Give “Position specified Speed/Position Switching Control” command to the axis configured as the axis of positioning

module with BASE (Base no. of Positioning module) and SLOT (Slot no. of Positioning module).
(2) When the configured axis receives speed/position control switching command in speed control operation, speed control

changes to position control and move by transfer amount configured by POS.

(3) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
0:X axis, 1:Y axis, 2:Z axis

■ Program example

1. ST

INST_APM_VTPP(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), POS:=(*DINT*),
DONE=>(*BOOL*), STAT=>(*UINT*));

UINT

Chapter 11. Communication and Special Function Blocks

11-115

P11.5 Positioning Function Block (XPM)

XPM_ORG
Homing Start

Availability XGI, XGR

Flags

Function Block Description

Input

REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

Output

DONE : Maintain 1 after first operation
STAT : Output the error no in operation

■ Function

(1) This is the command that give homing command to XPM module.

(2) This is the command to find the origin of machine by Direction, Correction, Speed, Address and Dwell set on parameter

of each axis for homing according to the homing access.

(3) Give “Homing” command to the axis configured as the axis of positioning module with BASE (Base no. of Positioning

module) and SLOT (Slot no. of Positioning module).

(4) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 XPM: 1 ~ 4 (1-axis ~ 4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

(5) If homing command executes normally, it starts homing according to “homing method” of “homing parameter”.

■ Program example

1. ST

INST_XPM_ORG(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), DONE=>(*BOOL*),

STAT=>(*UINT*))

 Chapter 11. Communication and Special Function Blocks

11-116

XPM_FLT
Floating Origin Setting

Availability XGI, XGR

Flags

Function Block Description

DONEREQ

BASE

SLOT

STAT

BOOLBOOL

USINT

USINT

UINT

AXISUSINT

Input

REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)
Output

DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) Give “Floating Origin” command to the axis configured as the axis of positioning module with BASE (Base no. of

Positioning module) and SLOT (Slot no. of Positioning module).

(2) This command is for setting the current position as the origin by compulsion. The address value saved on homing

address will be the current position.

(3) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

■ Program example

1. ST

INST_XPM_FLT(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), DONE=>(*BOOL*),

STAT=>(*UINT*))

Chapter 11. Communication and Special Function Blocks

11-117

XPM_DST
Direct Start

Availability XGI, XGR

Flags

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

ADDR : Destination position address setting
 -2147483648 ~ +2147483647

SPEED : Destination speed setting
DWELL : Dwell time setting

 0 ~ 65535[ms]
M code : M code value setting
CTRL : Control method setting

 0: Position, 1: Speed, 2: Feed
ABS/INC: Absolute/Relative coordibates setting

 0: Absolute, 1: Relative
ACC_SEL: Acc.time no. setting
 0: Acc. Time 1, 1: Acc. Time 2

 2: Acc. Time 3, 3: Acc. Time 4
DCC_SEL: Dec.time no. setting

 0: Dec. time 1, 1: Dec. time 2
 2: Dec. time 3, 3: Dec. time 4
Output

DONE : Maintain 1 after first operation
STAT : Output the error no in operation

■ Function

(1) Give “Direct Start” command to the axis configured as the axis of positioning module with BASE (Base no. of Positioning

module) and SLOT (Slot no. of Positioning module).

(2) This is for operating by setting destination position address, operation speed, dwell time, M code, control method,

coordinates setting and no. of Acc./Dec time, not by operation data.
(3) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”

 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

(4) If the value set on SPEED, CTRL, TIME_SEL is out of setting range, “Error11” occur on STAT.
■ Program example

1. ST
INST_XPM_DST(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), ADDR:=(*DINT*),
SPEED:=(*UDINT*), DWELL:=(*UINT*), MCODE:=(*UINT*), CTRL:=(*USINT*), ABS_INC:=(*BOOL*),
ACC_SEL:=(*USINT*), DEC_SEL:=(*USINT*), DONE=>(*BOOL*), STAT=>(*UINT*))

 Chapter 11. Communication and Special Function Blocks

11-118

XPM_IST
Direct Start

Availability XGI, XGR

Flags

Function Block Description

Input

REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

STEP : Set the step no. to do teaching
 0 ~ 400
Output

DONE : Maintain 1 after first operation
STAT : Output the error no in operation

■ Function

(1) Give “Indirect Start” command to the axis configured as the axis of positioning module with BASE (Base no. of

Positioning module) and SLOT (Slot no. of Positioning module).

(2) This is for operating by setting operation step no. of axis which set as an operation data.
(3) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”

 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

(4) If the value set on STEP is out of the setting range (0~400), “Error11” arises on STAT.

(5) If the value set on STEP is 0, it operates the current step.

(6) Linear interpolation, circular interpolation and helical interpolation execute in indirect start by setting the control method.

■ Program example

1. ST

INST_APM_IST(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), STEP:=(*UINT*),

DONE=>(*BOOL*), STAT=>(*UINT*))

Chapter 11. Communication and Special Function Blocks

11-119

XPM_SST
Simultaneous Start

Availability XGI, XGR

Flags

Function Block Description

Input

REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
SST_AXIS : Simultaneous axis setting
 XPM: 0bit ~ 3bit: (1-axis ~4-axis)
 XGF-PN8A/B: 0bit~7bit (1-axis~8-axis)
 Set bit of each axis to select
A1_STEP : step no. of axis1 to start
A2_STEP : step no. of axis2 to start
A3_STEP : step no. of axis3 to start
A4_STEP : step no. of axis4 to start
A5_STEP : Not use
A6_STEP : Not use
A7_STEP : Not use
A8_STEP : Not use

Output
DONE : Maintain 1 after first operation
STAT : Output the error no in operation

■ Function

(1) Give “Simultaneous Start” command to the axis configured as the axis of positioning module with BASE (Base no. of

Positioning module) and SLOT (Slot no. of Positioning module).

(2) This is for starting 2~4 axes for XPM, 2~8 axes for XGF-PN8A at once..

(3) If you set a value out of setting range, “Error6” arises. Set with each bit as follows.
7bit 6bit 5bit 4bit 3bit 2bit 1bit 0bit

8-axis 7-axis- 6-axis 5-axis 4-axis 3-axis 2-axis 1-axis

(4) Set the step no. of each axis to execute simultaneous start on A1_STEP ~ A4_STEP.

■ Program example

1. ST

INST_XPM_SST1(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), SST_AXIS:=(*USINT*),

A1_STEP:=(*UINT*), A2_STEP:=(*UINT*), A3_STEP:=(*UINT*), A4_STEP:=(*UINT*), A5_STEP:=(*UINT*),

A6_STEP:=(*UINT*), A7_STEP:=(*UINT*), A8_STEP:=(*UINT*), DONE=>(*BOOL*), STAT=>(*UINT*))

 Chapter 11. Communication and Special Function Blocks

11-120

XPM_VTP
Speed/Position Switching Control

Availability XGI, XGR

Flags

Function Block Description

Input

REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)
Output

DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) Give “Speed/Position Switching Control” command to the axis configured as the axis of positioning module with BASE

(Base no. of Positioning module) and SLOT (Slot no. of Positioning module).
(2) When the configured axis receives speed/position control switching command in speed control operation, speed control

changes to position control and keep operating by the position value at the beginning.

(3) If this command executes, origin would be decided at the same time and it finishes the positioning after arrive at the

destination position.

(4) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

■ Program example

1. ST

INST_XPM_VTP(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), DONE=>(*BOOL*),

STAT=>(*UINT*))

Chapter 11. Communication and Special Function Blocks

11-121

XPM_VTPP
Position specified Speed/Position Switching Control

Availability XGI, XGR

Flags

Function Block Description

Input

REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)
 POS: transfer amount
 -2,147,483,648~2,147,483,647
Output

DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) Give “Position specified Speed/Position Switching Control” command to the axis configured as the axis of positioning

module with BASE (Base no. of Positioning module) and SLOT (Slot no. of Positioning module).
(2) When the configured axis receives speed/position control switching command in speed control operation, speed control

changes to position control and move by transfer amount configured by POS.

(3) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

■ Program example

1. ST

INST_XPM_VTPP(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), POS:=(*DINT*),

DONE=>(*BOOL*), STAT=>(*UINT*))

 Chapter 11. Communication and Special Function Blocks

11-122

XPM_PTV
Position/Speed Switching Control

Availability XGI, XGR

Flags

Function Block Description

Input

REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)
Output

DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) Give “Position/Speed Switching Control” command to the axis configured as the axis of positioning module with BASE

(Base no. of Positioning module) and SLOT (Slot no. of Positioning module).

(2) When the configured axis is in positioning control operation, if it receives position/speed control switching command,

positioning control operation changes into speed control operation and continue to operate until stop command.

(3) Once the command executes, origin would not be assigned and then operate in speed control.
(4) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”

 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

■ Program example

1. ST

INST_XPM_PTV(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), DONE=>(*BOOL*),

STAT=>(*UINT*))

Chapter 11. Communication and Special Function Blocks

11-123

XPM_PTT
Position/Torque Switching Control

Availability XGI, XGR

Flags

Function Block Description

DONEREQ

BASE

SLOT

STAT

BOOLBOOL

USINT

USINT

UINT

AXISUSINT

TRQINT

Input

REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 1 ~ 8 (1-axis ~ 8-axis)
 TRQ: Torque value
 -300~300
Output

DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) Give “Position/Speed Switching Control” command to the axis configured as the axis of positioning module with BASE

(Base no. of Positioning module) and SLOT (Slot no. of Positioning module).

(2) When the configured axis is in positioning control operation, if it receives the position/torque control switching command,

the positioning control operation changes into the torque control operation with the torque value in TRQ and continues to

operate until stop command.

(3) The range of torque value is -300~300 and unit is [%]
(4) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”

 1 ~ 8 (1-axis ~ 8-axis)

(5) This instruction is only for XGF-PN8A/B.

■ Program example

1. ST

INST_XPM_PTT(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), TQR:=(*INT*),

DONE=>(*BOOL*), STAT=>(*UINT*))

 Chapter 11. Communication and Special Function Blocks

11-124

XPM_STP
Deceleration Stop

Availability XGI, XGR

Flags

Function Block Description

Input

REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

DEC_TIME : Decelerating stop time
 0: Acc./Dec. time applied when start operating
 1 ~ 2147483647: 1 ~ 2147483647ms
Output

DONE : Maintain 1 after first operation
STAT : Output the error no in operation

■ Function

(1) Give “Decelerating Stop” command to the axis configured as the axis of positioning module with BASE (Base no. of

Positioning module) and SLOT (Slot no. of Positioning module).

(2) If receive the stop command by operation data, it will stop operating and continue to operate by start command.

(3) If “Decelerating Stop” executes in speed/position synchronization or CAM operation, speed/position synchronization or

CAM operation stops depending on the state of the current operation control.

(4) “Decelerating Stop” executes in not only acc./dec. area but also steady speed area.

(5) Deceleration time means the time between the point of start decelerating and the point of stop and may be set to 0 ~

2,147,483,647ms. But, if it is set to “0”, it stops by the time set at the starting of operation.

(6) Decelerating time means the time between the speed limit of basic parameter and stop.
(7) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”

 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

■ Program example

1. ST

INST_XPM_STP(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), DEC_TIME:=(*UDINT*),

DONE=>(*BOOL*), STAT=>(*UINT*))

Chapter 11. Communication and Special Function Blocks

11-125

XPM_SKP
Skip Operation

Availability XGI, XGR

Flags

Function Block Description

Input

REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)
Output

DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) Give “Skip Operation” command to the axis configured as the axis of positioning module with BASE (Base no. of

Positioning module) and SLOT (Slot no. of Positioning module).

(2) This command is for operating the next step. That is, stop operating of the current step and then start operating the next

step.

(3) Skip a step at once.
(4) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”

 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

■ Program example

1. ST

INST_XPM_SKP(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), DONE=>(*BOOL*),

STAT=>(*UINT*))

 Chapter 11. Communication and Special Function Blocks

11-126

XPM_SSP
Position Synchronization

Availability XGI, XGR

Flags

Function Block Description

Input

REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

STEP : Step no. to operate
 0 ~ 400

MST_AXIS : Set the main axis
 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

9: Encoder
MST_ADDR : Set the position of main axis

 -2,147,483,648 2,147,483,647∼
Output

DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) Give “Synchronization Start” command to the axis configured as the axis of positioning module with BASE (Base no. of

Positioning module) and SLOT (Slot no. of Positioning module).
(2) Operate operation step set by command axis after main axis comes to the position of synchronization.

(3) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”

 XPM: 1 ~ 4 (1-axis ~4-axis),XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

(4) You may set the main axis on MST_AXIS with following values. If other value is set, it produces “Error6.”
XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis), 9: Encoder

■ Program example
1. ST

INST_XPM_SSP(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), STEP:=(*UINT*),

MST_AXIS:=(*USINT*), MST_ADDR:=(*DINT*), DONE=>(*BOOL*), STAT=>(*UINT*))

Chapter 11. Communication and Special Function Blocks

11-127

XPM_SSS
Speed Synchronization

Availability XGI, XGR

Flags

Function Block Description

Input

REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

MST_AXIS : Set main axis
XPM: 1 ~ 4 (1-axis ~4-axis)

 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis),
9: Encoder

MST_RAT : Set speed rate of main axis
 -32768 ~ 32767

SLV_RAT : Set speed rate of sub axis
 -32768 ~ 32767
Output

DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) Give “Speed Synchronization” command to the axis configured as the axis of positioning module with BASE (Base no. of

Positioning module) and SLOT (Slot no. of Positioning module).

(2) This command is for operating at the operation speed ratio between main axis and subordinate axis.

(3) There is no rule about size of the speed ratio between main/sub axis. If the speed ratio of main axis is bigger than sub’s, the

main axis moves faster than sub axis. If the speed ratio of sub axis is bigger than main’s, the sub axis moves faster than

main.
(4) Set an axis to command. If other value is set, it produces “Error6.”

 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)
(5) You may set the main axis on MST_AXIS with following values. If other value is set, it produces “Error6.”

XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis), 9: Encoder

(6) The operating direction of subordinate depends on speed synchronization ratio)(
Main

Sub
. If it is positive, operate in

direction of main axis. If it is negative, operate in reverse direction of main axis.

 Chapter 11. Communication and Special Function Blocks

11-128

■ Program example
1. ST

INST_XPM_SSS(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), MST_AXIS:=(*USINT*),

MST_RAT:=(*INT*), SLV_RAT:=(*INT*), DONE=>(*BOOL*), STAT=>(*UINT*))

Chapter 11. Communication and Special Function Blocks

11-129

XPM_POR
Position Override

Availability XGI, XGR

Flags

Function Block Description

Input

REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

POR_ADDR : Set a new goal position
 -2,147,483,648 2,147,483,647∼
Output

DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) Give “Position Override” command to the axis configured as the axis of positioning module with BASE (Base no. of

Positioning module) and SLOT (Slot no. of Positioning module).

(2) This command is for changing the goal position in operation.

(3) after passing override destination position, if position override command executes position module stops and turn back to

the position set on POR_ADDR.

(4) Set the destination position to modify on POR_ADDR.’

(5) Override position set on position override is absolute coordinates.
(6) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”

 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

■ Program example

1. ST

INST_XPM_POR(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), POR_ADDR:=(*DINT*),

DONE=>(*BOOL*), STAT=>(*UINT*))

 Chapter 11. Communication and Special Function Blocks

11-130

XPM_SOR
Speed Override

Availability XGI, XGR

Flags

Function Block Description

Input

REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

SOR_SPD : Set a new operation speed value

Output
DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) Give “Speed Override” command to the axis configured as the axis of positioning module with BASE (Base no. of

Positioning module) and SLOT (Slot no. of Positioning module).

(2) This command is for changing the operating speed in operation.

(3) It may be set to “%” or “Speed value (unit/time)” according to “Speed Override” value of common parameter.

(4) If unit of Speed override is %, setting range is from 1 to 65,535. It means 0.01% ~ 655.35%.

(5) If unit of speed override is speed value, the setting range is from 1 to speed limit. The speed limit is the value set on “Speed

Limit” item of basic parameter and the unit of speed override is the same as unit of axis.
(6) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”

 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

■ Program example

1. ST

INST_XPM_SOR(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), SOR_SPD:=(*UDINT*),

DONE=>(*BOOL*), STAT=>(*UINT*))

Chapter 11. Communication and Special Function Blocks

11-131

XPM_PSO
Position Assigned Speed Override

Availability XGI, XGR

Flags

Function Block Description

Input

REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

PSO_ADDR : The position to change speed
 -2,147,483,648 2,147,483,647∼

PSO_SPD : Set new speed value
Output

DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) Give “Position Assigned Speed Override” command to the axis designated as the axis of positioning module with BASE

(Base no. of Positioning module) and SLOT (Slot no. of Positioning module).

(2) This command is for changing operating speed in operation after command axis arrive at definite position.

(3) The speed value set on PSO_SPD will be “% Designation” or “Speed value Designation” depending on the value set on

“Speed Override” of common parameter.

(4) If unit of speed value is %, the setting range is from 1 ~ 65,535 and it means 0.01% ~ 655.35%.
(5) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”

 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

■ Program example

1. ST

INST_XPM_PSO(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), PSO_ADDR:=(*DINT*),

PSO_SPD:=(*UDINT*), DONE=>(*BOOL*), STAT=>(*UINT*))

 Chapter 11. Communication and Special Function Blocks

11-132

XPM_NMW
Continuous Operation

Availability XGI, XGR

Flags

Function Block Description

Input

REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)
Output

DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) Give “Continuous Operation” command to the axis configured as the axis of positioning module with BASE (Base no. of

Positioning module) and SLOT (Slot no. of Positioning module).

(2) This command is for command axis to continue to operate the next step without stop.

(3) If this command executes, the current step no. would be changed to the next step no. and continue to execute positioning

operation at the next step speed to the goal position.

(4) Continuous Operation command only changes the current operation pattern, not changes operation data.
(5) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”

 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

■ Program example

 1. ST

INST_XPM_NMV(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), DONE=>(*BOOL*),

STAT=>(*UINT*))

Chapter 11. Communication and Special Function Blocks

11-133

XPM_INC
Inching Operation

Availability XGI, XGR

Flags

Function Block Description

Input

REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

INCH_VAL: Amount of movement by Inching Operation
 -2,147,483,648 2,147,483,647∼
Output

DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) Give “Inching Operation” command to the axis designated as the axis of positioning module with BASE (Base no. of

Positioning module) and SLOT (Slot no. of Positioning module).

(2) This command is a kind of manual operation for process a minute movement as an operation of fixed amount.

(3) Speed of inching operation is set on manual operation parameter.
(4) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”

 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

■ Program example

1. ST

INST_XPM_INC(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), INCH_VAL:=(*DINT*),

DONE=>(*BOOL*), STAT=>(*UINT*))

 Chapter 11. Communication and Special Function Blocks

11-134

XPM_RTP
Returning to Previous Manual Operation Position

Availability XGI, XGR

Flags

Function Block Description

Input

REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)
Output

DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) Give “Returning to previous manual operation” command to the axis designated as the axis of positioning module with

BASE (Base no. of Positioning module) and SLOT (Slot no. of Positioning module).
(2) When the position is changed by manual operation, this command may move the axis to previous manual operation

position.

(3) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”

 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

■ Program example

1. ST

INST_XPM_RTP(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), DONE=>(*BOOL*),

STAT=>(*UINT*))

Chapter 11. Communication and Special Function Blocks

11-135

XPM_SNS
Start Step Number Change

Availability XGI, XGR

Flags

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

STEP : Set the operation step no. to operate
 1 ~ 400
Output

DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) Give “Start Step no. Change” command to the axis configured as the axis of positioning module with BASE (Base no. of

Positioning module) and SLOT (Slot no. of Positioning module).

(2) This command is for changing the operation step of command axis.
(3) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”

 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

(4) Set the step no. on STEP. The setting range is 1 ~ 400, If other value is set, it produces “Error11.”

■ Program example

1. ST

INST_XPM_SNS(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), STEP:=(*UINT*),

DONE=>(*BOOL*), STAT=>(*UINT*))

 Chapter 11. Communication and Special Function Blocks

11-136

XPM_SRS
Repeat Step No. Change

Availability XGI, XGR

Flags

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

STEP : Set the repeat step no. to change

 1 ~ 400
Output

DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) Give “Repeat Step no. Change” command to the axis configured as the axis of positioning module with BASE (Base no. of

Positioning module) and SLOT (Slot no. of Positioning module).

(2) This command is for configuring the starting step no. of repeat operation and operating from the configured operation step.
(3) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”

 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

(4) Set the step no. to operate repeatedly on STEP. The setting range is 1 ~ 400, If other value is set, it produces “Error11”.

■ Program example

 1. ST

INST_XPM_SRS(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), STEP:=(*UINT*),

DONE=>(*BOOL*), STAT=>(*UINT*))

Chapter 11. Communication and Special Function Blocks

11-137

XPM_MOF
M code Release

Availability XGI, XGR

Flags

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)
Output

DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) Give “M code Release” command to the axis configured as the axis of positioning module with BASE (Base no. of

Positioning module) and SLOT (Slot no. of Positioning module).

(2) In the case that M code of parameter of each axis is set as “With” of “After”, you may turn the M code off with this command.

That is, M code signal is off, M code no. is 0.
(3) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”

 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

■ Program example

1. ST

INST_XPM_MOF(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), DONE=>(*BOOL*),

STAT=>(*UINT*))

 Chapter 11. Communication and Special Function Blocks

11-138

XPM_PRS
Current Position Change

Availability XGI, XGR

Flags

Function Block Description

DONEREQ

BASE

SLOT

STAT

BOOLBOOL

USINT

USINT

UINT

AXISUSINT

PRS_ADDRDINT

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

PRS_ADDR : Set the current position value to change.
 -2,147,483,648 2,147,483,647∼
Output

DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) Give “Basic Parameter Setting” command to the axis configured as the axis of positioning module with BASE (Base no. of

Positioning module) and SLOT (Slot no. of Positioning module).

(2) This command is for changing the current position to random position. If it executes in the state of non-origin, the origin

signal would be on and the current position would be set as setting value (PRS_ADDR).
(3) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

■ Program example

1. ST

INST_XPM_PRS(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), PRS_ADDR:=(*DINT*),

DONE=>(*BOOL*), STAT=>(*UINT*))

Chapter 11. Communication and Special Function Blocks

11-139

XPM_EPRE
Encoder Value Preset

Availability XGI, XGR

Flags

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

ENC : Encoder no. (Always 0)
 0: Encoder

EPRE_VAL : Set the value of encoder preset
 -2147483648 ~ 2147483647

Output
DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) Give “Encoder Preset” command to the axis configured as the axis of positioning module with BASE (Base no. of

Positioning module) and SLOT (Slot no. of Positioning module).

(2) This command is for changing the current value of encoder to the value set on EPRE_VAL

(3) Set the encoder to preset on ENC and it has to be 0 in APM module of XPM.
(4) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

■ Program example

1. ST

INST_XPM_EPRE(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), ENC:=(*BOOL*),

EPRE_VAL:=(*DINT*), DONE=>(*BOOL*), STAT=>(*UINT*))

 Chapter 11. Communication and Special Function Blocks

11-140

XPM_ATEA
Teaching Array

Availability XGI, XGR

Flags

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

STEP : Set the step no. to do teaching
 0 ~ 400

RAM/ROM : Selection of RAM/ROM teaching
 0 : RAM teaching, 1 : ROM teaching

POS/SPD : Selection of position/speed teaching
 0 : Position, 1 : Speed

TEA_CNT : Set the no. of data to do teaching
 1 ~ 16

TEA_VAL : Set the teaching value
Output

DONE : Maintain 1 after first operation
STAT : Output the error no in operation

■ Function

(1) Give “Teaching Array” command to the axis configured as the axis of positioning module with BASE (Base no. of

Positioning module) and SLOT (Slot no. of Positioning module).
(2) Speed teaching is for user to use random speed value in a operation data of specified step and position teaching is for user

to use random position value in a operation data of specified operation step.

(3) This command is for modifying maximum 16 destination positions/speed value at once with teaching array function block.

(4) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)
(5) You may set step no.(0~400) of operation data on STEP. If other value is set, it produces “Error11.”

(6) You may set the no. of data to do teaching on TEA_CNT and do teaching max. 16. If other value is set,

it produces “Error11.

(7) Parameter value modified by teaching command and setting RAM/ROM as “0” is valid within power connection. If you

want to keep the parameter without power connection, execute teaching command with setting “1” on RAM/ROM or save

the modified parameter value on FRAM with XPM_WRT (Parameter/Operation Data Saving command) after teaching.

Chapter 11. Communication and Special Function Blocks

11-141

■ Program example

1. ST

INST_XPM_ATEA(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), STEP:=(*UINT*),

RAM_ROM:=(*BOOL*), POS_SPD:=(*BOOL*), TEA_CNT:=(*USINT*), TEA_VAL:=(*ARRAY[0..15]_OF_DINT*),

DONE=>(*BOOL*), STAT=>(*UINT*))

 Chapter 11. Communication and Special Function Blocks

11-142

XPM_SBP
Basic Parameter Teaching

Availability XGI, XGR

Flags

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

BP_VAL : Basic parameter to change
BP_NO : Item no. of basic parameter to change
RAM/ROM : Method of parameter save
 0: save on RAM
 1: save on ROM

Output
DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) Give “Basic Parameter Teaching” command to the axis configured as the axis of positioning module with BASE (Base no.

of Positioning module) and SLOT (Slot no. of Positioning module).

(2) Parameter value modified by basic parameter teaching command and setting RAM/ROM to “0” is valid within power

connection. If you want to keep the parameter without power connection, execute basic parameter teaching command with

setting RAM/ROM as “1” or save the modified parameter value on FRAM with XPM_WRT (Parameter/Operation Data

Saving command) after basic parameter teaching.
(3) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”

 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

Chapter 11. Communication and Special Function Blocks

11-143

(4) The value that needs to be set in basic parameter is as follows.

Value Items Setting Range

1 Speed Limit

㎜ : 1 2,147,483,647 [X10∼ -2㎜/min]
Inch : 1 2,147,483,647 [X10∼ -3Inch/min]
degree : 1 2,147,483,647 [X10∼ -3 degree/min]
pulse : 1 2∼ ,147,483,647 [pulse/sec]

2 Acc. Time 1

 1 ~ 2,147,483,647 [ms] 3 Acc. Time 2
4 Acc. Time 3
5 Acc. Time 4
6 Dec. Time 1

 1 ~ 2,147,483,647 [ms] 7 Dec. Time 2
8 Dec. Time 3
9 Dec. Time 4
10 Urgent stop Dec. Time 1 ~ 2,147,483,647 [ms]
11 Demultiply ouput pulse/rotation 1 ~ 200,000,000 12 Transfering Distance/rotation
13 Unit 0:Pulse, 1:mm, 2:Inch, 3:Degree
14 Unit assignment 0: x 1, 1: x 10, 2: x 100, 3: x 1000
15 Unit for speed command 0: unit/time, 1: rpm
16 Bias speed 1 ~ speed limit
17 Pulse output mode 0: CW/CCW, 1: PLS/DIR, 2: PHASE

■ Program example

1. ST

 INST_XPM_SBP(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
BP_VAL:=BP_UDINT, BP_NO:=BP_USINT, RAM_ROM:=RAM_ROM_BOOL, DONE=>DONE_BOOL,
STAT=>STAT_UINT);

 Chapter 11. Communication and Special Function Blocks

11-144

XPM_SEP
Extended Parameter Teaching

Availability XGI, XGR

Flags

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

EP_VAL : Parameter value to modify
EP_NO : Item no. of parameter to modify
RAM/ROM : Method for saving parameter

 0: Save on RAM
 1: Save on ROM
Output

DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) Give “Extended Parameter Teaching” command to the axis configured as the axis of positioning module with BASE (Base

no. of Positioning module) and SLOT (Slot no. of Positioning module).

(2) Parameter value modified by extended parameter teaching command and setting RAM/ROM to “0” is valid within power

connection. If you want to keep the parameter without power connection, execute extended parameter teaching command

with setting RAM/ROM as “1” or save the modified parameter value on FRAM with XPM_WRT (Parameter/Operation Data

Saving command) after extended parameter teaching.
(3 It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

Chapter 11. Communication and Special Function Blocks

11-145

(4) The extended parameter items and setting values are as follows.
Value Item Setting Range

1 Software high limit ㎜ :-2147483648 ~ 2147483647[X10-4㎜]
Inch:-2147483648 ~ 2147483647[X10-5Inch]
degree:-2147483648 ~ 2147483647[X10-5degree]
pulse:-2147483648 ~ 2147483647[pulse] 2 Software low limit

3 Backlash compensation amount

mm: 0 ~ 65,535[X10-4㎜]
inch: 0 ~ 65,535[X10-5Inch]
degree: 0 ~ 65,535[X10-5degree]
pulse: 0 ~ 65,535[pulse]

4 Positioning end output time 0 ~ 65,535[ms]
5 S-Curve ratio 1 ~ 100

6 Position to interpolate circular arc of 2axis linear
interpolation

mm: 0 ~ 2147483647[X10-4㎜]
Inch: 0 ~ 2147483647[X10-5Inch]
degree: 0 ~ 2147483647[X10-5degree]
pulse: 0 ~ 2147483647[pulse]

7 Acc./dec. pattern 0: Trapezoid operating, 1: S-curve operating
8 M code mode 0: None, 1: With, 2: After

9 Detection of High/Low limit in speed control 0: Not detect, 1: Detect

10 Condition for positioning completion

0: Dwell time
1: In-position
2: Dwell time AND In-position
3: Dwell time OR In-position

11 Positioning method of interpolation continuous
operation

0: passage of goal position,
1: passage of near position

12 2axis linear interpolation continuous operation
circular arc interpolating

0: No circular interpolating,
1: Circular interpolating continuous operation

13 External speed/position control switching 0: Not permit, 1: Permit

14 Selection of external emergent stop/dec stop 0: Emergent stop, 1: Dec. Stop

15 Coordinates of positioning speed override 0: Absolute, 1: Relative

16 Pulse output direction 0: Forward, 1: Reverse

■ Program example

1. ST

INST_XPM_SEP(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
EP_VAL:=EP_DINT, EP_NO:=NO_USINT, RAM_ROM:=RAM_ROM_BOOL, DONE=>DONE_BOOL,
STAT=>STAT_UINT);

 Chapter 11. Communication and Special Function Blocks

11-146

XPM_SHP
Homing Parameter Teaching

Availability XGI, XGR

Flags

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

HP_VAL : Homing parameter value to modify
HP_NO : Item no. of homing parameter to modify
RAM/ROM : Method for saving parameter
 0: Save on RAM
 1: Save on ROM

Output
DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) Give “Homing Parameter Setting” command to the axis configured as the axis of positioning module with BASE (Base no.

of Positioning module) and SLOT (Slot no. of Positioning module).

(2) Parameter value modified by homing parameter teaching command and setting RAM/ROM to “0” is valid within power

connection. If you want to keep the parameter without power connection, execute homing parameter teaching command

with setting RAM/ROM as “1” or save the modified parameter value on FRAM with XPM_WRT (Parameter/Operation Data

Saving command) after homing parameter teaching.
(3) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”

 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

Chapter 11. Communication and Special Function Blocks

11-147

(4) The homing parameter items and setting ranges are as follows.

Setting
value

Items Setting Range

1 Homing position

㎜ : -2147483648 21∼ 47483647 [X10-4㎜]
Inch : -2147483648 2147483647 [X10∼ -5Inch]
degree : -2147483648 2147483647 [X10∼ -5degree]
pulse : -2147483648 2147483647 [pulse]∼

2 High speed for homing ㎜ : 1 ∼ 2,147,483,647 [X10-2㎜/min]
Inch : 1 ∼ 2,147,483,647 [X10-3Inch/min]
degree : 1 ∼ 2,147,483,647 [X10-3 degree/min]
pulse : 1 ∼ 2,147,483,647 [pulse/sec] 3 Low speed for homing

4 Homing Acc. Time 0 ~ 2,147,483,647 [ms] 5 Homing Dec. Time
6 Homing Dwell Time 0 ~ 65,535[ms]

7 Revision amount of origin

㎜ : -2147483648 2147483647 [X10∼ -3㎜]
Inch : -2147483648 2147483647 [X10∼ -5Inch]
degree : -2147483648 2147483647 [X10∼ -5degree]
pulse : -2147483648 2147483647 [pulse]∼

8 Restart time for homing 0 ~ 65,535[ms]

9 Homing mode
0:Near origin/Origin(Off), 1:Near origin/Origin(On),
2:High&Low limit/Origin,
3:Near origin, 4:High speed origin, 5:High/Low limit, 6:Origin

10 Homing direction 0:Forward, 1:Reverse

■ Program example

1. ST

INST_XPM_SHP(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
HP_VAL:=HP_DINT, HP_NO:=NO_USINT, ㄲRAM_ROM:=RAM_ROM_BOOL, DONE=>DONE_BOOL,
STAT=>STAT_UINT);

 Chapter 11. Communication and Special Function Blocks

11-148

XPM_SMP
Manual Operation Parameter Teaching

Availability XGI, XGR

Flags

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

MP_VAL : Manual operation parameter value to modify
MP_NO : Item no. of manual operation parameter to

modify
RAM/ROM : Method for saving parameter
 0: Save on RAM
 1: Save on ROM

Output
DONE : Maintain 1 after first operation
STAT : Output the error no in operation

■ Function

(1) Give “Manual Operation Parameter Setting” command to the axis configured as the axis of positioning module with BASE

(Base no. of Positioning module) and SLOT (Slot no. of Positioning module).

(2) Parameter value modified by manual operation parameter teaching command and setting RAM/ROM to “0” is valid within

power connection. If you want to keep the parameter without power connection, execute manual operation parameter

teaching command with setting RAM/ROM as “1” or save the modified parameter value on FRAM with XPM_WRT

(Parameter/Operation Data Saving command) after manual operation parameter teaching.
(3) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”

 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

Chapter 11. Communication and Special Function Blocks

11-149

(4) The manual operation parameter items and setting ranges are as follows.

Setting
Value

Items Setting Range

1 JOG high speed ㎜ : 1 ∼ 2,147,483,647 [X10-2㎜/min]
Inch : 1 ∼ 2,147,483,647 [X10-3Inch/min]
degree : 1 ∼ 2,147,483,647 [X10-3 degree/min]
pulse : 1 ∼ 2,147,483,647 [pulse/sec]

2 JOG low speed

3 JOG acc. time
0 ~ 2,147,483,647 [ms]

4 JOG dec, time

5 Inching speed

㎜ : 1 65,535[X10∼ -2㎜/min]
Inch : 1 65,535[X∼ 10-3Inch/min]
degree : 1 65,535[X10∼ -3 degree/min]
pulse : 1 65,535[pulse/sec]∼

■ Program example

1. ST

 INST_XPM_SMP(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
MP_VAL:=MP_UDINT, MP_NO:=NO_USINT, RAM_ROM:=RAM_ROM_BOOL, DONE=>DONE_BOOL,
STAT=>STAT_UINT);

 Chapter 11. Communication and Special Function Blocks

11-150

XPM_SIP
I/O Signal Parameter Teaching

Availability XGI, XGR

Flags

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

IP_VAL : External signal parameter value to modify
 Set the corresponding signal for each Bit
RAM/ROM : Method for saving parameter
 0: Save on RAM
 1: Save on ROM

Output
DONE : Maintain 1 after first operation
STAT : Output the error no in operation

■ Function

(1) Give “Input Signal Parameter Setting” command to the axis configured as the axis of positioning module with BASE (Base

no. of Positioning module) and SLOT (Slot no. of Positioning module).

(2) Parameter value modified by input signal parameter teaching command and setting RAM/ROM to “0” is valid within power

connection. If you want to keep the parameter without power connection, execute input signal parameter teaching

command with setting RAM/ROM as “1” or save the modified parameter value on FRAM with XPM_WRT

(Parameter/Operation Data Saving command) after input signal parameter teaching.
(3) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”

XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)
(4) The setting value of each setting area of external signal has the meaning as below.

 0 : A contact, 1 : B contact

Chapter 11. Communication and Special Function Blocks

11-151

(5) The manual operation parameter items and setting values are as follows.

Bit Signal
0 High limit signal
1 Low limit signal
2 Near origin signal
3 Origin signal
4 Emergent stop/Dec. stop signal
5 Speed/Position control switching siganl
6 Drive ready signal
7 In-position signal
8 Deviation counter clear output signal

9 ~ 15 Not Use

■ Program example
1. ST

 INST_XPM_SIP(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
IP_VAL:=IP_WORD, RAM_ROM:=RAM_ROM_BOOL, DONE=>DONE_BOOL, STAT=>STAT_UINT);

 Chapter 11. Communication and Special Function Blocks

11-152

XPM_SCP
Common Parameter Teaching

Availability XGI, XGR

Flags

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

CP_VAL : Common parameter value to modify
CP_NO : Item no. of common parameter to modify
RAM/ROM : Method for saving parameter
 0: Save on RAM
 1: Save on ROM

Output
DONE : Maintain 1 after first operation
STAT : Output the error no in operation

■ Function

(1) Give “Common Parameter Setting” command to the axis configured as the axis of positioning module with BASE (Base no.

of Positioning module) and SLOT (Slot no. of Positioning module).

(2) Parameter value modified by common parameter teaching command and setting RAM/ROM to “0” is valid within power

connection. If you want to keep the parameter without power connection, execute common parameter teaching command

with setting RAM/ROM as “1” or save the modified parameter value on FRAM with XPM_WRT (Parameter/Operation Data

Saving command) after common parameter teaching.
(3) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”

 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

(4) The common parameter items and setting values are as follows.
Setting Value Items Setting values

1 Speed override 0 : % designation, 1 : speed designation

2 Mode for encoder pulse input

0:CW/CCW 1multiply, 1:CW/CCW 2 multiply
2:PULSE/DIR 1 multiply, 3:PULSE/DIR 2 multiply
4:PHASE A/B 1 multiply, 5:PHASE A/B 2 multiply
6:PHASE A/B 4 multiply

3 Maximum value of encoder
-2147483648 ~ 2147283647

4 Minimum value of encoder

5 Pulse output level 0 : Low Active, 1 : High Active

Chapter 11. Communication and Special Function Blocks

11-153

■ Program example

1. ST

INST_XPM_SCP(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
CP_VAL:=CP_DINT, CP_NO:=NO_USINT, RAM_ROM:=RAM_ROM_BOOL, DONE=>DONE_BOOL,
STAT=>STAT_UINT);

 Chapter 11. Communication and Special Function Blocks

11-154

XPM_SMD
Operation Data Teaching

Availability XGI, XGR

Flags

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

STEP : Step no. to modify
 0 ~ 400

MD_VAL : Operation data value to modify
MD_NO : Item no. of operation data to modify
RAM/ROM : Method for saving parameter
 0: Save on RAM
 1: Save on ROM

Output
DONE : Maintain 1 after first operation
STAT : Output the error no in operation

■ Function

(1) Give “Operation Data Teaching” command to the axis configured as the axis of positioning module with BASE (Base no. of

Positioning module) and SLOT (Slot no. of Positioning module).

(2) Parameter value modified by operation data teaching command and setting RAM/ROM to “0” is valid within power

connection. If you want to keep the parameter without power connection, execute operation data teaching command with

setting RAM/ROM as “1” or save the modified parameter value on FRAM with XPM_WRT (Parameter/Operation Data

Saving command) after operation data teaching.
(3) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”

XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

Chapter 11. Communication and Special Function Blocks

11-155

(4) The operation data items and setting range are as follows.

Setting
value

Items Setting Range

1 Goal position

㎜ : -2147483648 ∼ 2147483647 [X10-4㎜]
Inch : -2147483648 ∼ 2147483647 [X10-5Inch]
degree : -2147483648 ∼ 2147483647 [X10-5degree]
pulse : -2147483648 ∼ 2147483647 [pulse]

2 Auxiliary position for circular
interpolation -2147483648 ∼ 2147483647

3 Operating speed

㎜ : 1 ∼ 2,147,483,647 [X10-2㎜/min]
Inch : 1 ∼ 2,147,483,647 [X10-3Inch/min]
degree : 1 ∼ 2,147,483,647 [X10-3 degree/min]
pulse : 1 ∼ 2,147,483,647 [pulse/sec]

4 Dwell time 0 ~ 65,535[ms]
5 M code no. 0 ~ 65,535

6 Sub axis setting
Bit unit setting
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
axis8 axis7 axis6 axis5 axis4 axis3 axis2 axis1

7 Helical interpolation axis 0, axis1 ~ axis4 (0: General circular interpolation)

8 The no. of turn for circular
interpolation 0~65,535

9 Coordinates 0:absolute, 1:relative

10 Control method 0:Abbreviation position control, 1:Abbreviation speed control,
2:Abbreviation Feed control, 3:linear interpolation, 4:circular interpolation

11 Operating method 0:single, 1:repeat
12 Operating pattern 0:end, 1:go on, 2:continue
13 Size of circular arc 0:circular arc<180 1:circular arc>=180
14 Acc. No. 0 ~ 3
15 Dec. No. 0 ~ 3
16 Method of circular interpolation 0:middle point, 1:center point, 2:radius
17 Direction of circular interpolation 0:CW, 1:CCW

■ Program example

1. ST

 INST_APM_SMD(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
STEP:=STEP_UINT, MD_VAL:=MD_DINT, MD_NO:=NO_USINT, RAM_ROM:=RAM_ROM_BOOL,
DONE=>DONE_BOOL, STAT=>STAT_UINT);

 Chapter 11. Communication and Special Function Blocks

11-156

XPM_EMG
Emergency Stop

Availability XGI, XGR

Flags

Function Block Description

DONEREQ

BASE

SLOT

STAT

BOOLBOOL

USINT

USINT

UINT

AXISUSINT

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)
Output

DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) Give “Emergency Stop” command to the axis configured as the axis of positioning module with BASE (Base no. of

Positioning module) and SLOT (Slot no. of Positioning module).

(2) This command is for immediate stop. The axis to execute this command will stop.

(3) Dec. time of emergent stop is the time set on “Dec. time of Emergent stop” of basic parameter.
(4) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”

XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

■ Program example

1. ST

INST_XPM_EMG(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
DONE=>DONE_BOOL, STAT=>STAT_UINT);

Chapter 11. Communication and Special Function Blocks

11-157

XPM_RST
Error Reset

Availability XGI, XGR

Flags

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

SEL : Select axis error/common error
 0:axis error (Always 0)

Output
DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) Give “Error Reset” command to the axis configured as the axis of positioning module with BASE (Base no. of Positioning

module) and SLOT (Slot no. of Positioning module).
(2) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”

XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)
(3) This is for resetting the errors.

(4) Select the kind of error to reset on SEL. If it is set to 0, reset the errors of each axis. XGF series has to be set 0.

■ Program example

1. ST

INST_XPM_RST(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
SEL:=SEL_BOOL, DONE=>DONE_BOOL, STAT=>STAT_UINT);

 Chapter 11. Communication and Special Function Blocks

11-158

XPM_HRST
Error History Reset

Availability XGI, XGR

Flags

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)
Output

DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) Give “Error History Reset” command to the axis configured as the axis of positioning module with BASE (Base no. of

Positioning module) and SLOT (Slot no. of Positioning module).
(2) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”

 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

(3) If errors arise, Max.10 errors are saved on module. This command is for resetting error history.

■ Program example

1. ST

INST_XPM_HRST(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
DONE=>DONE_BOOL, STAT=>STAT_UINT);

Chapter 11. Communication and Special Function Blocks

11-159

XPM_PST
Point Start

Availability XGI, XGR

Flags

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

PST_CMT : Set the no. of step for point operation
 1 ~ 20

PST_VAL : Set the step no. for point operation
 0 ~ 400

Output
DONE : Maintain 1 after first operation
STAT : Output the error no in operation

■ Function

(1) Give “Point start” command to the axis configured as the axis of positioning module with BASE (Base no. of Positioning

module) and SLOT (Slot no. of Positioning module).
(2) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”

 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

(3) This is for when operating PTP(Point to Point), operate continuously by setting max. 20 operation steps.

(4) Point operation may be executed with max. 20 point steps. Therefore, you may use the parameter which has 20 elements

and like UNIT arrangement.

(5) If other value is set , it produces “Error6.

■ Program example

1. ST

INST_XPM_PST(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
PST_CNT:=CNT_USINT, PST_VAL:=ARY_PST, DONE=>DONE_BOOL, STAT=>STAT_UINT);

 Chapter 11. Communication and Special Function Blocks

11-160

XPM_WRT
Saving Parameter/Operation Data

Availability XGI, XGR

Flags

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

XPM_WRT_AXIS : Saving axis setting
 (by setting bit)

XPM: 0bit ~ 3bit: 1-axis ~ 4-axis
XGF-PN8A: 0bit ~ 7bit (1-axis ~ 8-axis)

Output
DONE : Maintain 1 after first operation
STAT : Output the error no in operation

■ Function

(1) Give “Basic Parameter Setting” command to the axis designated as the axis of positioning module with BASE (Base no.

of positioning module) and SLOT (Slot no. of positioning module).
(2) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”

XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)
(3) If function block executes normally, the current operation parameter and data which saved on WRT_AXIS are saved on

FRAM and maintain the data without the power connection.
(4) In case of modifying the CAM data with XPM_VWR instruction, when you execute XPM_WRT, the modified data saves

in FLASH.

■ Program example

1. ST

INST_XPM_WRT(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
WRT_AXIS:=WRT_USINT, DONE=>DONE_BOOL, STAT=>STAT_UINT);

Chapter 11. Communication and Special Function Blocks

11-161

XPM_CRD
Operation Information Read

Availability XGI, XGR

Flags

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)
Output

DONE : Maintain 1 after first operating
STAT : Output the error no. in operation
ERR : Display axis error
CERR : Display common error
CA : Display the command position
CV : Display the command speed
SA : Display the current position
SV : Display the current speed
TRQ: Display the current torque
STEP : Display step no. of the current operation data
MCD : Display the current M code value

■ Function

(1) Read the axis state of current operation configured in the axis of configured positioning module with BASE (Base no. of

Positioning module) and SLOT (Slot no. of Positioning module).

(2) The operation information is saved in parameter set on output of function block.
(3) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”.

 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

(4) You can monitor command position, command speed, current position, current speed, torque, operation data no. and M

code value of axis already set through reading them or use them as a condition in user’s program.

(5) “-” speed displayed as command speed(CV) or current speed(SV) means reverse direction.

■ Program example

1. ST

 INST_XPM_CRD(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
DONE=>DONE_BOOL, STAT=>STAT_UINT, ERR=>ERR_UINT, CERR=>CERR_UINT, CA=>CA_DINT,
CV=>CV_UDINT, SA=>SA_DINT, SV=>SV_DINT, TRQ=>TRQ_INT, STEP=>STEP_UINT, MCD=>MCD_UINT);

 Chapter 11. Communication and Special Function Blocks

11-162

XPM_SRD
Operation State Read

Availability XGI, XGR

Flags

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)
Output

DONE : Maintain 1 after first operating
STAT : Output the error no. in operation
ST1 : State 1
ST2 : State 2
ST3 : State 3
ST4 : State 4
ST5 : State 5
ST6 : State 6
ST7 : State 7

■ Function

(1) Give “Bit Information of Current operation reading” command to the axis designated as the axis of positioning module with

BASE (Base no. of Positioning module) and SLOT (Slot no. of Positioning module).

(2) The bit information about the state of current operation is saved in parameter set on ST1 ~ ST7.

(3) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

Chapter 11. Communication and Special Function Blocks

11-163

(4) The contents of output parameters, ST1 ~ ST7 are important information necessarily applied in the program.

 Bit Description Bit Description

ST1

[0] Operating(0:STOP, 1:BUSY) [4] Origin fix state
(0:Uncompletion, 1:Completion)

[1] Error state [5] -
[2] Positioning completion [6] Stop
[3] Mcode On signal(0:Off, 1:On) [7] -

ST2

[0] High limit detection [4] In acceleration
[1] Low limit detection [5] In stable speed
[2] Emergent Stop [6] In deceleration
[3] Direction(0:Forward, 1:Reverse) [7] In dwell

ST3

[0] Axis1 in positioning control [4] In circular interpolation operation
[1] Axis1 in speed control [5] In homing operation
[2] In linear interpolation [6] In position synchronous start operation
[3] - [7] In speed synchronous start operation

ST4

[0] In jog operation [4] In previous position of manual operation
returning operation

[1] - [5] In CAM control operation
[2] In inching operation [6] In Feed control operation
[3] - [7] In ellipse interpolation operation

ST5

[0] Main axis information
1 ~ 4: axis1 ~ axis4
9: Encoder

[4] Axis state(0:Main axis, 1: sub axis)
[1] [5] -
[2] [6] -
[3] [7] -

ST6

[0] Emergent stop/Dec. stop signal [4] High limit signal
[1] - [5] Low limit signal
[2] - [6] Origin signal
[3] - [7] Near origin signal

ST7

[0] Switching signal of Speed/Position
control

[4] In-position signal

[1] - [5] Declination counter clear output signal
[2] - [6] -
[3] Drive ready signal [7] -

■ Program example

1. ST

INST_XPM_SRD(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
DONE=>DONE_BOOL, STAT=>STAT_UINT, ST1=>ARY_ST1, ST2=>ARY_ST2, ST3=> ARY_ST3, ST4=> ARY_ST4,
ST5=> ARY_ST5, ST6=> ARY_ST6, ST7=> ARY_ST7);

 Chapter 11. Communication and Special Function Blocks

11-164

XPM_ENCRD
Encoder Value Read

Availability XGI, XGR

Flags

Function Block Description

Input
REQ : Resquest for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
ENC : Encoder no. (Always 0)

 0: Encoder
Output

DONE : Maintain 1 after first operating
STAT : Output the error no. in operation
ENC_VAL : Current value of encoder

■ Function

(1) Give “Encoder Reading” command to the axis configured as the axis of positioning module with BASE (Base no. of

Positioning module) and SLOT (Slot no. of Positioning module).

(2) The current encoder value is displayed on ENC_VAL

(3) Set the encoder want to read on ENC, it has to be always 0 in XPM positioning module.

■ Program example

1. ST

 INST_XPM_ENCRD(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, ENC:=ENC_BOOL,
DONE=>DONE_BOOL, STAT=>STAT_UINT, ENC_VAL=>ENC_UDINT);

Chapter 11. Communication and Special Function Blocks

11-165

XPM_JOG
JOG Operation

Availability XGI, XGR

Flags

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

JOG_DIR : Set the direction of JOG operation
0:Forward, 1:Reverse

LOW/HIGH : Set the speed of JOG operation
0:Low speed, 1:High speed

Output
DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) Give “JOG Operation” command to the axis configured as the axis of positioning module with BASE (Base no. of

Positioning module) and SLOT (Slot no. of Positioning module).
(2) This command is for checking operation of system, wiring and address for teaching. It may be used in High/Low speed.

(3) The operating condition of JOG operation function block is Level type. That is, when the condition of input parameter

(REQ) is ON, pulse is outputted by setting value.

(4) If the value of LOW/HIGH is changed, the speed changes without stop and if the value of JOG_DIR is changed, it

changes the direction after decelerating stop.

(5) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

■ Program example

1. ST

 INST_XPM_JOG(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT, JOG_DIR:=JOG_BOOL,

LOW_HIGH:=LOW_HIGH_BOOL, DONE=>DONE_BOOL, STAT=>STAT_UINT);

 Chapter 11. Communication and Special Function Blocks

11-166

XPM_CAM
CAM Operation

Availability XGI, XGR

Flags

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

MST_AXIS : Set main axis
XPM: 1 ~ 4 (1-axis ~4-axis)

 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)
9: Encoder

CAM_BLK : Set CAM block
1 ~ 8: Block1 ~ Block8

Output
DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) Give “CAM Operation” command to the axis configured as the axis of positioning module with BASE (Base no. of
Positioning module) and SLOT (Slot no. of Positioning module).

(2) Execute CAM operation with CAM main axis and CAM data block.
(3) When executing CAM operation, sub axis indicates that it is in operation but it does not work actually. When main axis

starts, the motor starts working according to the data value of CAM data block which already set on CAM block
(CAM_BLK)

(4) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”
 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

(5) Set main axis of CAM operation at MST_AXIS. If other value is set, it produces “Error11.”.
(6) Set CAM block number in CAM_BLK and available value is as follows. If other value is set, it produces “Error11.”

1 ~ 8 : block1 ~ block8
(7) CAM data sets on positioning package and you sets max. 8 blocks.

■ Program example

1. ST

 INST_XPM_CAM(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
MST_AXIS:=MST_AXIS_USINT, CAM_BLK:=CAM_BLK_USINT, DONE=>DONE_BOOL, STAT=>STAT_UINT);

Chapter 11. Communication and Special Function Blocks

11-167

XPM_ELIN
Ellipse Interpolation

Availability XGI, XGR

Flags

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

STEP : Step no. to operate
RATIO : Ellipse ratio(%)
DEG : Operating angle

Output
DONE : Maintain 1 after first operation
STAT : Output the error no in operation

■ Function

(1) Give “Ellipse Interpolation” command to the axis configured as the axis of positioning module with BASE (Base no. of

Positioning module) and SLOT (Slot no. of Positioning module).

(2) This is the command that execute ellipse interpolation to the configured step as much as the angle set on DEG in the

ratio of it which set on RATIO.

(3) Ellipse interpolation is that distort operation data of the step already set at the rate already set on RATIO to execute

ellipse interpolation. Therefore, the step of operation data set on STEP has to be set in accordance with circular

interpolation control.

(4) Ellipse rate range from 1 to 65535, it has [X10-2 %] as its unit. If you set 65535, the rates is 655.35%.

(5) Operation angle range from 1 to 65535, it has [X10-1 degree] as its unit. If you set 3650, the angle is 365.0
(6) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”

 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

■ Program example

1. ST

 INST_XPM_ELIN(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
STEP:=STEP_UINT, RATIO:=RATIO_UINT, DEG:=DEG_UINT, DONE=>DONE_BOOL, STAT=>STAT_UINT);

 Chapter 11. Communication and Special Function Blocks

11-168

XPM_SSSP
Position Assigned Speed Synchronization

Availability XGI, XGR

Flags

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

MST_AXIS : Set main axis
 XPM: 1 ~ 4 (1-axis ~4-axis)

 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)
9: Encoder

MST_RAT : Set speed rate of main axis
 -32768 ~ 32767

SLV_RAT : Set speed rate of sub axis
 -32768 ~ 32767

POS : Destination position
 -2,147,483,648 ~ 2,147,483,647

Output
DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) Give “Position Assigned Speed Synchronization” command to the axis configured as the axis of positioning module with

BASE (Base no. of Positioning module) and SLOT (Slot no. of Positioning module).

(2) This command is for operating at the operation speed ratio between main axis and subordinate axis. It stops operating

when the position of sub axis come to the position set on POS.

(3) There is no rule about size of the speed ratio between main/sub axis. If the speed ratio of main axis is bigger than sub’s,

the main axis moves faster than sub. If the speed ratio of sub axis is bigger than main’s, the sub axis moves faster than

main.
(4) It can set an axis to instruct and the value is as follows. If other value is set, it produces “Error6.”

 XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

(5) You may set the main axis on MST_AXIS with following values. If other value is set, it produces “Error6
XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis), 9: Encoder

(6) The operating direction of subordinate depends on speed synchronization ratio)(
Main

Sub
. If it is positive, operate in

direction of main axis. If it is negative, operate in reverse direction of main axis.

Chapter 11. Communication and Special Function Blocks

11-169

■ Program example

1. ST

INST_XPM_SSSP(REQ:=REQ_BOOL, BASE:=BASE_USINT, SLOT:=SLOT_USINT, AXIS:=AXIS_USINT,
MST_AXIS:=AXIS_USINT, MST_RAT:=MST_INT, SLV_RAT:=SLV_INT, POS:=POS_DINT, DONE=>DONE_BOOL,
STAT=>STAT_UINT);

 Chapter 11. Communication and Special Function Blocks

11-170

XPM_VRD
Position Assigned Speed Synchronization

Availability XGI, XGR

Flags

Function Block Description

 XPM_VRD

DONEREQ

BASE

SLOT

STAT

BOOLBOOL

USINT

USINT

UINT

OFFSETUINT

SIZEUINT

S_ADDRUDINT

AXISUSINT

CNTUINT

VAR UINT[128]

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

S_ADDR : Module internal memory head address of
Read Data
0 ~ 53329

OFFSET : Offset between Read Data blocks
0 ~ 54217
* XGF-PNxB: 0 ~ 65535

SIZE : Block size of Read data
1 ~ 128

CNT : No. of Read Data block
1 ~ 128

Output

DONE : Maintain 1 after first operation
STAT : Output the error no. in operation
VAR : PLC device where Read Data is saved

■ Function

(1) Gives “Read parameter, operation data, CAM data directly” command to positioning module.
(2) You read data you want by configuring module internal memory address of parameter, operation data, CAM data

directly.
(3) It reads the positioning module internal memory from the position set by “S_ADDR” by WORD unit and save them in

the device set by “VAR”. The number of data to read is the number set by “Size”. In case “CNT” is larger than 2, it reads
multiple data blocks and save them in the device set by “VAR” in order. At this time, head address of next block is
“Offset” apart from head address of current block.

(4) Max. data size (SIZE x CNT) you can read with one command is 128 word.
(5) “Read Variable Data” command can execute in operation.
(6) You can set an axis to command in “AXIS” and the following value is available. If other value is set, it produces

“Error6.”appears.
XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

(7) In case Read Data size (SIZE x CNT) is 0 or higher than 128 word, error code “11” appears in STAT.

Chapter 11. Communication and Special Function Blocks

11-171

■ Program example

1. ST
INST_XPM_VRD(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), S_ADDR:=(*UDINT*),
OFFSET:=(*UINT*), SIZE:=(*UINT*), CNT:=(*UINT*), DONE=>(*BOOL*), STAT=>(*UINT*),
VAR=>(*ARRAY[0..127]_OF_UINT*))

 Chapter 11. Communication and Special Function Blocks

11-172

XPM_VWR
Write Variable Data

Availability XGI, XGR

Flags

Function Block Description

 XPM_VWR

DONEREQ

BASE

SLOT

STAT

BOOLBOOL

USINT

USINT

USINT

AXISUSINT

VAR

T_ADDRUDINT

OFFSETUINT

SIZEUINT

CNTUINT

UINT[128]

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 XPM: 1 ~ 4 (1-axis ~4-axis)
 XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)

VAR : PLC device where Write Data is saved
T_ADDR : Module internal memory head address

where data is written
0 ~ 53329

OFFSET : Offset between Write data blocks
0 ~ 54217
* XGF-PNxB: 0 ~ 65535

SIZE : Size of block to write
1 ~ 128

CNT : No. of Write data block
1 ~ 128

Output

DONE : Maintain 1 after first operation
STAT : Output the error no. in operation

■ Function

(1) Gives “Write parameter, operation data, CAM data directly” command to positioning module.
(2) You can write data you want by configuring module internal memory address of parameter, operation data, CAM data

directly.
(3) It writes the WORD data in “VAR” to module internal memory. The data are saved from internal memory position set by

“T_ADDR” and the number of data is the number set by “Size”. In case the number of block “CNT” is larger than 2,
multiple blocks are made. At this time, head address of next block is “Offset” apart from head address of current block.

(4) Max. data size (SIZE x CNT) you can write with one command is 128 word.
(5) “Write Variable Data” command can’t execute in operation.
(6) You can set an axis to command in “AXIS” and the following value is available. If other value is set, it produces “Error6.”

XPM: 1 ~ 4 (1-axis ~4-axis), XGF-PN8A/B: 1 ~ 8 (1-axis ~ 8-axis)
(7) In case Read Data size (SIZE x CNT) is 0 or higher than 128 WORD, error code “11” appears in STAT
(8) In case no. of block (CNT) is higher than 2, and block offset is smaller than block size, error code “11” appears in STAT

because module internal memory block to write is overlapped each other.

Chapter 11. Communication and Special Function Blocks

11-173

■ Program example

1. ST

INST_XPM_VWR(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*),

VAR:=(*ARRAY[0..127]_OF_UINT*), T_ADDR:=(*UDINT*), OFFSET:=(*UINT*), SIZE:=(*UINT*), CNT:=(*UINT*),

DONE=>(*BOOL*), STAT=>(*UINT*))

 Chapter 11. Communication and Special Function Blocks

11-174

XPM_ECON
Connect Servo Communication

Availability XGI, XGR

Flags -

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module

Output

DONE : Maintain 1 after first operation
STAT : Output the error no. in operation

■ Function
(1) Gives “EtherCAT Communication Connection” command to positioning module.
(2) Instruct the positioning module configured by BASE (base number of positioning module) and SLOT (slot number of

positioning module) to connect communication with Servo
(3) If Servo driver is connected normally, the bit corresponding to the connected axis is set.

 Global variable Contents
1-axis _xxyy_A1_RDY 1-axis operation ready
2-axis _xxyy_A2_RDY 2-axis operation ready
3-axis _xxyy_A3_RDY 3-axis operation ready
4-axis _xxyy_A4_RDY 4-axis operation ready
5-axis _xxyy_A5_RDY 5-axis operation ready
6-axis _xxyy_A6_RDY 6-axis operation ready
7-axis _xxyy_A7_RDY 7-axis operation ready
8-axis _xxyy_A8_RDY 8-axis operation ready

 (For xxyy, “xx” means base number and “yy” means slot number where module is installed
(4) This instruction is only for XGF-PN8A/B.

■ Program example

1. ST

INST_XPM_ECON(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), DONE=>(*BOOL*), STAT=>(*UINT*))

Chapter 11. Communication and Special Function Blocks

11-175

XPM_DCON
Disconnect Servo Communication

Availability XGI, XGR

Flags -

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module

Output

DONE : Maintain 1 after first operation
STAT : Output the error no. in operation

■ Function

(1) Gives “EtherCAT Communication Disconnection” command to positioning module.
(2) Instruct the positioning module configured by BASE (base number of positioning module) and SLOT (slot number of

positioning module) to disconnect communication with Servo
(3) If Servo driver is connected normally, the bit corresponding to the disconnected axis is cleared.

 Global variable Contents
1-axis _xxyy_A1_RDY 1-axis operation ready
2-axis _xxyy_A2_RDY 2-axis operation ready
3-axis _xxyy_A3_RDY 3-axis operation ready
4-axis _xxyy_A4_RDY 4-axis operation ready
5-axis _xxyy_A5_RDY 5-axis operation ready
6-axis _xxyy_A6_RDY 6-axis operation ready
7-axis _xxyy_A7_RDY 7-axis operation ready
8-axis _xxyy_A8_RDY 8-axis operation ready

 (For xxyy, “xx” means base number and “yy” means slot number where module is installed
(4) This instruction is only for XGF-PN8A/B.

■ Program example

1. ST

INST_XPM_DCON(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), DONE=>(*BOOL*), STAT=>(*UINT*))

 Chapter 11. Communication and Special Function Blocks

11-176

XPM_SVON
Servo On

Availability XGI, XGR

Flags -

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module

 AXIS : Axis to command
1~8: 1-axis ~ 8-axis

Output
DONE : Maintain 1 after first operation
STAT : Output the error no. in operation

■ Function

(1) Give “Servo On” command to positioning module.
(2) Instruct the positioning module configured by BASE (base number of positioning module) and SLOT (slot number of

positioning module) to disconnect communication with Servo
(3) In order to start a motor, Servo On signal should be on.
(4) You can set an axis to command in “AXIS” and the following value is available. If other value is set, it produces “Error6.”

1 ~ 8 (1-axis ~ 8-axis)
(5) This instruction is only for XGF-PN8A/B.

■ Program example

1. ST

INST_XPM_SVON(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), DONE=>(*BOOL*),

STAT=>(*UINT*))

Chapter 11. Communication and Special Function Blocks

11-177

XPM_SVOFF
Servo Off

Availability XGI, XGR

Flags -

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module

 AXIS : Axis to command
 1~8: 1-axis ~ 8-axis
Output

DONE : Maintain 1 after first operation
STAT : Output the error no. in operation

■ Function

(1) Gives “Servo Off” command to positioning module.
(2) Instruct the positioning module configured by BASE (base number of positioning module) and SLOT (slot number of

positioning module) to disconnect communication with Servo
(3) You can set an axis to command in “AXIS” and the following value is available. If other value is set, it produces “Error6.”

1 ~ 8 (1-axis ~ 8-axis)
(4) This instruction is only for XGF-PN8A/B.

■ Program example

1. ST

INST_XPM_SVOFF(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), DONE=>(*BOOL*),

STAT=>(*UINT*))

 Chapter 11. Communication and Special Function Blocks

11-178

XPM_SRST
Servo Error Reset

Availability XGI, XGR

Flags -

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module

 AXIS : Axis to command
 1~8: 1-axis ~ 8-axis
Output

DONE : Maintain 1 after first operation
STAT : Output the error no. in operation

■ Function

(1) Gives “Servo Error Reset” command to positioning module.
(2) Instruct the positioning module configured by BASE (base number of positioning module) and SLOT (slot number of

positioning module) to disconnect communication with Servo
(3) If you give a “Servo Error Reset” command without removing the reason of server drive alarm, servo driver alarm may

not ne cleared. So remove the reason of servo driver alarm and then execute a “Servo Error Reset” command.
(4) You can set an axis to command in “AXIS” and the following value is available. If other value is set, it produces “Error6.”

1 ~ 8 (1-axis ~ 8-axis)
(5) This instruction is only for XGF-PN8A/B.

■ Program example

1. ST
INST_XPM_SRST(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), DONE=>(*BOOL*),
STAT=>(*UINT*))

Chapter 11. Communication and Special Function Blocks

11-179

XPM_SHRST
Servo Error History Reset

Availability XGI, XGR

Flags -

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module

 AXIS : Axis to command
 1~8: 1-axis ~ 8-axis
Output

DONE : Maintain 1 after first operation
STAT : Output the error no. in operation

■ Function

(1) Gives “Servo Error History Reset” command to positioning module.
(2) Instruct the positioning module configured by BASE (base number of positioning module) and SLOT (slot number of

positioning module) to disconnect communication with Servo

(3) Instruct the servo corresponding to the selected axis among the servos connected to the module to reset alarm

histories

(4) Servo drive can save up to 10 server alarm histories
(5)You can set an axis to command in “AXIS” and the following value is available. If other value is set, it produces “Error6.”

1 ~ 8 (1-axis ~ 8-axis)
(6) This instruction is only for XGF-PN8A/B.

■ Program example

1. ST
INST_XPM_SHRST(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), DONE=>(*BOOL*),
STAT=>(*UINT*))

 Chapter 11. Communication and Special Function Blocks

11-180

XPM_RSTR
Restart

Availability XGI, XGR

Flags -

Function Block Description

DONEREQ

BASE

SLOT

STAT

BOOLBOOL

USINT

USINT

UINT

AXISUSINT

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 1 ~ 8: aixs1 ~ axis8
Output

DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) Give “Restart” command to the axis of positioning module designated by BASE (Base no. of Positioning module) and
SLOT (Slot no. of Positioning module).

(2) This command is used when restarting the axis which stops by EMG stop command. If this command is executed, the axis
operates again with previous operating information.

(3) If you start the axis with commands other than “Restart” after it stops with DEC. stop, “Restart” will not be executed
(4) Set an axis to command from 1 ~ 8. If you set wrongly, “Error6” arises.

 1 ~ 8: axis1 ~ axis8
(5) For detailed information on “Restart”, refer to “9.2.20. Restart”.

■ Program example

1. ST

INST_XPM_RSTR(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), DONE=>(*BOOL*), STAT=>(*UINT*));

Chapter 11. Communication and Special Function Blocks

11-181

XPM_POE
Setting Position Output Enable/Disable

Availability XGI, XGR

Flags -

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 1 ~ 4: aixs1 ~ axis4
DATA_NUM : The number of setting position output
 (0~50)
TIME : Keeping time of setting position output

(0~65,535ms)
ENABLE : Setting position output enable/disable
 0: Disable , 1: Enable

Output
DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) Give “Setting Position Output Enable/Disable” command to the axis of positioning module designated by BASE (Base no.
of Positioning module) and SLOT (Slot no. of Positioning module).

(2) When Setting position output enable and current position come to setting position output ,the position module outputs
 signal to deviation count clear pin or setting position output pin.

(3) Setting the number of data on DATA_NUM. The number of data can set between 0 to 50, If other value is set, it produces
“Error11” and if the number of data on DATA_NUM is zero, the function block operates disable.

(4) During setting time on Time of F/B, Setting Position Output signal is on.
(5) If disables the F/B, Current output signal changes off immediately.
(6) Set an axis to command from 1 ~ 4. If you set wrongly, “Error6” arises.

 1 ~ 4: axis1 ~ axis4
(7) This instruction is only for XPM Module.

■ Program example

1. ST

INST_XPM_POE(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), DATA_NUM:=(*USINT*), TIME:=(*UINT*),

ENABLE:=(*BOOL*), DONE=>(*BOOL*), STAT=>(*UINT*));

 Chapter 11. Communication and Special Function Blocks

11-182

XPM_SVIRD
Servo External Input Information Read

Availability XGI, XGR

Flags -

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 1 ~ 8: aixs1 ~ axis8
Output

DONE : Maintain 1 after first operating
STAT : Output the error no. in operation
SV_IN: Servo input signal information

■ Function

(1) Give “Servo External Input Information Read” command to the axis of positioning module designated with BASE (Base no.
of Positioning module) and SLOT (Slot no. of Positioning module).

(2) This is command reading input signal state of the servo driver corresponding to the selected axis among servos
connected to the module

(3) Input signal state is outputted at SV_IN.
(4) Set an axis to command from 1 ~ 8. If you set wrongly, “Error6” arises.

 1 ~ 8 : axis1 ~ axis8

■ Program example

1. ST

INST_XPM_SVIRD(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), DONE=>(*BOOL*), STAT=>(*UINT*),

SV_IN=>(*UDINT*));

Chapter 11. Communication and Special Function Blocks

11-183

XPM_SVPRD
Servo Parameter Read

Availability XGI, XGR

Flags -

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 1 ~ 8: aixs1 ~ axis8
 INDEX:
 SUBINDEX:
 LENGTH:
Output

DONE : Maintain 1 after first operating
STAT : Output the error no. in operation
DATA: Read servo parameter data

■ Function

(1) Only for XGF-PN8B, this is the command that reads parameters (CoE object) of the servo driver connected to positioning
module.

(2) Give “Servo Parameter Read” command to the axis of positioning module designated with BASE (Base no. of Positioning
module) and SLOT (Slot no. of Positioning module).

(3) Save in DATA to read value of LENGTH size at the servo parameter object designated with INDEX, SUBINDEX, at the
axis designated with BASE (Base no. of Positioning module) and SLOT (Slot no. of Positioning module).

(4) Set an axis to command from 1 ~ 8. If you set wrongly, “Error6” arises.
 1 ~ 8 : axis1 ~ axis8

(5) INDEX can be set as follows. If you set wrongly, “Error11” arises at STATE.
Set value Description

0x1000 ~ 0x1FFF Communication Profile Area
0x2000 ~ 0x5FFF Manufacturer Specific Profile Area
0x6000 ~ 0x9FFF Standardized Device Profile Area

(6) SUBINDEX can be set as follows. If you set wrongly, “Error11” arises at STATE.
Set value Description
0x0 ~ 0xFF Object Subindex of servo parameter

(7) LENGTH can be set as follows. If you set wrongly, “Error11” arises at STATE.
Set value Description
1 ~ 4 Object Byte Length of servo parameter

(8) This instruction is only for XGF-PN8B.

 Chapter 11. Communication and Special Function Blocks

11-184

■ Program example

1. ST

INST_XPM_SVPRD(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), INDEX:=(*UINT*),

SUBINDEX:=(*USINT*), LENGH:=(*USINT*), DONE=>(*BOOL*), STAT=>(*UINT*), DATA=>(*DINT*));

Chapter 11. Communication and Special Function Blocks

11-185

XPM_SVPWR
Servo Parameter Write

Availability XGI, XGR

Flags -

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 1 ~ 8: aixs1 ~ axis8
 INDEX : Servo parameter object Index

SUBINDEX : Servo paramter object subindex
LENGTH : Servo parameter object size
DATA: Servo parameter value
RAM/ROM : how to save parameter
 0: save at RAM, 1: save at ROM

Output
DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) This is the function block only for XGF-PN8B and that changes parameters (CoE object) of the servo driver connected to
positioning module

(2) Give “Servo Parameter Write” command to the axis of positioning module designated with BASE (Base no. of Positioning
module) and SLOT (Slot no. of Positioning module).

(3) If you want to save at the internal ROM of the servo driver with “Servo parameter write” command, set up 1 at RAM/ROM
and execute the command, or set up 0 at RAM/ROM and execute the command and later save them at servo driver
EEPROM with XPM_SVSAVE command.

(4) Save DATA of LENGTH size at the servo parameter object designated with INDEX, SUBINDEX, at the axis designated
with BASE (Base no. of Positioning module) and SLOT (Slot no. of Positioning module).

(5) Set an axis to command from 1 ~ 8. If you set wrongly, “Error6” arises.
 1 ~ 8 : axis1 ~ axis8

(6) You can set INDEX as follows. If you set wrongly, “Error11” arises

Setting value Description

0x2000 ~ 0x5FFF Manufacturer Specific Profile Area

0x6000 ~ 0x9FFF Standardized Device Profile Area
(7) You can set SUBINDEX as follows. If you set wrongly, “Error11” arises

Setting value Description

0x0~0xFF Servo parameter Object Subindex

 Chapter 11. Communication and Special Function Blocks

11-186

(8) You can set SUBINDEX as follows. If you set wrongly, “Error11” arises

Setting value Description

1~4 Servo parameter Object Byte Length
(9) You can set SUBINDEX as follows.

Setting value Teaching method

0 RAM teaching

1 ROM teaching
(10) This instruction is only for XGF-PN8B.

■ Program example

1. ST

INST_XPM_SVPWR(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), INDEX:=(*UINT*),

SUBINDEX:=(*USINT*), LENGTH:=(*USINT*), DATA:=(*DINT*), RAM_ROM:=(*BOOL*), DONE=>(*BOOL*), STAT=>(*UINT*));

Chapter 11. Communication and Special Function Blocks

11-187

XPM_SVSAVE
Servo Parameter Save

Availability XGI, XGR

Flags -

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 1 ~ 8: aixs1 ~ axis8
 SAVE_AXIS: Set the axis to save by setting each bit

(bit 0~7: 1-axis~8-axis)
Output

DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

 (1) This is the function block only for XGF-PN8B and that saves parameters of the servo driver connected to positioning
module at the EEPROM of the servo driver.

(2) Give “Servo Parameter Save” command to the axis of positioning module designated with BASE (Base no. of Positioning
module) and SLOT (Slot no. of Positioning module).

(3) Set up the axis to give a command at AXIS and you can set as follows. If you set wrongly, “Error6” arises. Command
axis is different with the axis for saving servo parameter. If you want to save servo parameter of the command axis, set
the corresponding bit at SAVE_AXIS.

1 ~ 8: 1-axis ~ 8-axis
(4) Set up the servo driver axis at SAVE_AXIS. If you set wrongly, “Erro11” arises

Bit 0 ~ 7 : 1-axis ~ 8-axis
(5) This instruction is only for XGF-PN8B.

■ Program example

1. ST

INST_XPM_SVSAVE(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), SAVE_AXIS:=(*USINT*),

DONE=>(*BOOL*), STAT=>(*UINT*));

 Chapter 11. Communication and Special Function Blocks

11-188

XPM_TRQ
Torque Control

Availability XGI, XGR

Flags -

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 1 ~ 8: aixs1 ~ axis8
 TRQ_VAL: Torque value

(unit: %, -32768 ~ 32767)
 TIME: Torque gradient (unit: ㎳, 0 ~ 65535㎳)

Output
DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) Give “Torque Control” command to the axis of positioning module designated by BASE (Base no. of Positioning module)
and SLOT (Slot no. of Positioning module).

(2) Torque control executes if torque value and torque gradient are set and a command is issued.
(3) Set torque value (%) to TRQ_VAL. Torque values work in % rated torque. (1 = 1% of rated torque)

For example, set 200 if the user wants to control torque in 200% of torque.
※ The allowable range of torque value may vary according to the connected servo drive. In general, target torque value

is limited to the maximum torque setting.
(4) Set time to take in reaching the target torque to TIME. If a command is executed, torque increases in this gradient until it

reaches the set torque value.
(5) Any command cannot be executed, the relevant axis is being operated for functions other than torque control.
(6) Set an axis to command from 1 ~ 8. If you set wrongly, “Error6” arises.

 1 ~ 8: axis1 ~ axis8
(7) For detailed information on “Torque Control”, refer to “9.2.21. Torque Control”.
(8) This instruction is only for XGF-PN8B.

■ Program example

1. ST

INST_XPM_TRQ(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), TRQ_VAL:=(*INT*), TIME:=(*UINT*),

DONE=>(*BOOL*), STAT=>(*UINT*));

Chapter 11. Communication and Special Function Blocks

11-189

XPM_LRD
Servo External Input Information Read

Availability XGI, XGR

Flags -

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 1 ~ 8: axis1 ~ axis8
Output

DONE : Maintain 1 after first operating
STAT : Output the error no. in operation
L_CNT: Number of latch position data
L_DATA: Latch position data 1 ~ 10

■ Function

(1) This command is used to read data count and latch position data saved and latched by the positioning module’s
external latch command.

(2) Save the position data count read and latched the latch data of the axis designated as the positioning module’s
AXIS(Command axis) designated as BASE(Base number of the positioning module) and SLOT(Slot number of the
positioning module) to L_CNT and save the latch position data to L_DATA.

(3) Set an axis to which Command is issued to Axis and one among 1 through 8 can be set. If any other value except the
setting value is set, ”Error 6” arises.

(4) This instruction is only for XGF-PN8A/B.

■ Program example

1. ST

INST_XPM_LRD(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), DONE=>(*BOOL*), STAT=>(*UINT*),

L_CNT=>(*UINT*), L_DATA=>(*ARRAY[0..9]_OF_UDINT*));

 Chapter 11. Communication and Special Function Blocks

11-190

XPM_LCLR
Latch Reset

Availability XGI, XGR

Flags -

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 1 ~ 8: aixs1 ~ axis8
 SEL: Latch reset item selection
Output

DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) This command is used to initialize the data count and latch position data saved and latched on the positioning module or
the state when latch is completed.

(2) Give “Latch Reset” command to the positioning module with BASE (Base no. of Positioning module) and SLOT (Slot no.
of Positioning module).

(3) The following items are reset according to the Reset Latch items designated to SEL.
0: Reset the state when latch is completed
1: Reset latch position data and the state when latch is completed
(Values high than “1” are processed equally with “1”)

(4) If latch position data are read through the “Read Latch Position Data (XPM_LRD)” command after 1 is set to SEL and the
“Reset Latch” command is executed, all of data become 0.

(5) Set an axis to command from 1 ~ 8. If you set wrongly, “Error6” arises.
 1 ~ 8 : axis1 ~ axis8

 (6) This instruction is only for XGF-PN8A/B.

■ Program example

1. ST

INST_XPM_LCLR(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), SEL:=(*BOOL*), DONE=>(*BOOL*),

STAT=>(*UINT*));

Chapter 11. Communication and Special Function Blocks

11-191

XPM_LSET
Servo External Input Information Read

Availability XGI, XGR

Flags -

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 1 ~ 8: aixs1 ~ axis8
 ENABLE: Latch enable/disable
 MODE: Latch mode
Output

DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) This command is used to initialize the data count and latch position data saved and latched on the positioning module or

the state when latch is completed.
(2) Give “Latch Set” command to the positioning module with BASE (Base no. of Positioning module) and SLOT (Slot no. of

Positioning module).
(3) Actions according to the Enable/Disable Latch item designated to ENABLE are as following.

0: latch prohibition 1: latch permission
(Values high than “1” are processed equally with “1”)

(4) Actions according to the latch mode item designated to MODE are as following.
0: Single trigger (The current position latch is available only the touch probe 1 signal inputted at first after latch is enabled)
1: Continuous trigger (The current position latch is available at every touch probe 1 signal after latch is enabled)
(Values high than “1” are processed equally with “1”)

(5) Set an axis to command from 1 ~ 8. If you set wrongly, “Error6” arises.
 1 ~ 8 : axis1 ~ axis8

(6) “Latch Set” command is applied to only XGF-PN8B.
(7) This instruction is only for XGF-PN8B.

■ Program example

1. ST

INST_XPM_LSET(REQ:=(*BOOL*), BASE:=(*USINT*), SLOT:=(*USINT*), AXIS:=(*USINT*), ENABLE:=(*BOOL*), MODE:=(*BOOL*),

DONE=>(*BOOL*), STAT=>(*UINT*));

 Chapter 11. Communication and Special Function Blocks

11-192

XPM_STC
Torque Synchronization

Availability XGI, XGR

Flags -

Function Block Description

Input
REQ : Request for execution of function block
BASE : Set the base no. with module
SLOT : Set the slot no. with module
AXIS : Axis to command

 1 ~ 8: aixs1 ~ axis8
 MST_TRQ : Torque rate of main axis
 0 ~ 65535
 SLV_TRQ : Torque rate of sub axis
 0 ~ 65535
 MST_RAT : Speed rate of main axis
 0 ~ 65535
 SLV_RAT : Speed rate of sub axis
 0 ~ 65535
 MST_AXIS : Torque synchronization main axis
 1 ~ 8: aixs1 ~ axis8

Output

DONE : Maintain 1 after first operating
STAT : Output the error no. in operation

■ Function

(1) This command is used to order torque synchronization to axis of servo drive that is connected to positioning module.
(2) Give “Torque synchronization” command to the axis of positioning module with BASE (Base no. of Positioning module)

and SLOT (Slot no. of Positioning module).
(3) The axis to performing a command operates torque synchronization with main axis set as MST_AXIS.
(4) The axis to performing a command operates torque synchronization with torque rate set as MST_TRQ, SLV_TRQ and
speed rate set as MST_RAT, SLV_RAT.

 Torque of sub axis = (SLV_TRQ/MST_TRQ) * torque of main axis
 Torque synchronization speed of sub axis = (SLV_RAT/MST_RAT) * speed of main axis
(5) Set an axis to AXIS from 1 ~ 8. If you set wrongly, “Error 6” arises.

 1 ~ 8 : axis1 ~ axis8
(6) Set an main axis of torque synchronization to MST_AXIS from 1 ~ 8. If you set wrongly, “Error 11” arises.

 1 ~ 8 : axis1 ~ axis8

Chapter 11. Communication and Special Function Blocks

11-193

XPM_PHASING Applied model Occurrence flag

Phase correction control XGI, XGR -

Function block Explanation

input
REQ: Function block execution request
BASE: Set the number of the base on which the

module is mounted
SLOT: Set the number of the slot where the

module is mounted
AXIS: Assign axis to command

XGF-PN4B: 1 to 4 (1 to 4 axes)
XGF-PN8A / XGF-PN8B: 1 to 8 (1 to 8 axes)

MST_AXIS: Phase correction main axis setting
XGF-PN4B: 1 to 4 (1 to 4 axes)

XGF-PN8A / XGF-PN8B: 1 to 8 (1 to 8 axes)
9: Encoders 1 and 10: Encoder 2

PHASE_VAL: Phase correction value
VELOCITY: Phase correction speed (relative

speed to main shaft speed)
ACC_TIME: Acceleration time (0 ~ 2,147,483,647

ms)
DEC_TIME: Deceleration time (0 ~ 2,147,483,647

ms)
Print

DONE: Maintain 1 after initial operation
STAT: Output error number generated during

function block execution

■ Features

1. It is a function block that executes phase correction with respect to the position of the main axis referenced by AXIS
of the positioning module and enables synchronous operation to the position of main axis whose subordinate axis is
corrected.

2. ACC_TIME, DEC_TIME by the amount of phase correction set in PHAS_VAL for the main axis set in MST_AXIS
on the axis specified by AXIS of the positioning module specified by BASE (base number of positioning module)
and SLOT (slot number of positioning module) Perform phase correction with.

3. AXIS sets the axis on which to issue the command. You can set the following values. If a value other than the set
value is set, "Error 6" occurs.

1) XBF-PN08B
1 to 8: 1 to 8 axes

2) XBF-PN04B
1 to 4: 1 to 4 axes

4. MST_AXIS sets the main axis of the phase compensation command and the following values can be set. If a value
other than the set value is set, "Error 11" occurs.

 Chapter 11. Communication and Special Function Blocks

11-194

1) XBF-PN08B
1 to 8: 1 to 8 axes, 9: Encoders 1 and 10: Encoder 2

2) XBF-PN04B
1 to 4: 1 to 4 axes, 9: Encoders 1 and 10: Encoder 2

Chapter 11. Communication and Special Function Blocks

11-195

XPM_SSSD Applied model Occurrence flag

32-bit speed sync XGI, XGR -

Function block Explanation

input
REQ: Function block execution request
BASE: Set the number of the base on which the

module is mounted
SLOT: Set the number of the slot where the

module is mounted
AXIS: Assign axis to command

XGF-PN4B: 1 to 4 (1 to 4 axes)
XGF-PN8A / XGF-PN8B: 1 to 8 (1 to 8

axes)
MST_AXIS: Speed synchronous spindle setting

XGF-PN4B: 1 to 4 (1 to 4 axes)
XGF-PN8A / XGF-PN8B: 1 to 8 (1 to 8

axes)
9: Encoders 1 and 10: Encoder 2

MST_RAT: Speed ratio of main shaft
-2,147,483,648-2,147,483,647

SLV_RAT: Speed ratio of subordinate axis
-2,147,483,648-2,147,483,647
Print

DONE: Maintain 1 after initial operation

■ Features

One. It outputs a speed synchronous command to the axis specified by AXIS of the positioning module specified by BASE
(base number of positioning module) and SLOT (slot number of positioning module).

2. It is used to control the ratio of the operation speed between two axes. You can set the spindle and ordinate ratios to a
32-bit integer range.

3. There is no rule for size between the spindle speed ratio and the subordinate axis speed ratio. That is, if the speed ratio
of the main axis is higher than the speed ratio of the vertical axis, the main axis moves faster than the vertical axis. If
the speed ratio of the sub axis is larger than the speed ratio of the main axis, the sub axis moves faster than the main
axis.

4. AXIS sets the axis on which to issue the command. You can set the following values. If a value other than the set value
is set, "Error 6" occurs.

XGF-PN4B: 1 to 4 (1 to 4 axes), XGF-PN8A / XGF-PN8B: 1 to 8 (1 to 8 axes)
5. MST_AXIS sets the main axis of speed synchronization and the following values can be set. If a value other than the

set value is set, "Error 11" occurs.
XGF-PN4B: 1 to 4 (1 to 4 axes), XGF-PN8A / XGF-PN8B: 1 to 8 (1 to 8 axes), 9: Encoders 1 and 10: Encoder 2

 Chapter 11. Communication and Special Function Blocks

11-196

6. The driving direction of the vertical axis is)
ratio axis alLongitudin

ratio axis main
(ratio ationsynchroniz Speed If

positive, it operates in the direction of main spindle. If negative, it operates in the opposite direction of main spindle.

Chapter 11. Communication and Special Function Blocks

11-197

XPM_SSSPD Applied model Occurrence flag

Positioning Speed Synchronization XGI, XGR -

Function block Explanation

input
REQ: Function block execution request
BASE: Set the number of the base on which the

module is mounted
SLOT: Set the number of the slot where the

module is mounted
AXIS: Assign axis to command

XGF-PN4B: 1 to 4 (1 to 4 axes)
XGF-PN8A / XGF-PN8B: 1 to 8 (1 to 8

axes)
MST_AXIS: Speed synchronous spindle setting

XGF-PN4B: 1 to 4 (1 to 4 axes)
XGF-PN8A / XGF-PN8B: 1 to 8 (1 to 8

axes)
9: Encoders 1 and 10: Encoder 2

MST_RAT: Speed ratio of main shaft
-2,147,483,648-2,147,483,647

SLV_RAT: Speed ratio of subordinate axis
-2,147,483,648-2,147,483,647

POS: Goal location
 -2,147,483,648-2,147,483,647

Print
DONE: Maintain 1 after initial operation
STAT: Error number occurred during execution of

function block

■ Features

One. The positioning speed synchronous command is issued to the axis specified by AXIS of the positioning module
specified by BASE (base number of positioning module) and SLOT (slot number of positioning module).

2. It is used to control the ratio of the operation speed between two axes. You can set the spindle and ordinate ratios to a
32-bit integer range. After XPM_SSSPD is executed, when the position where the subordinate axis moved is the
position designated by POS, it ends the speed synchronization and stops.

3. There is no rule for size between the spindle speed ratio and the subordinate axis speed ratio. That is, if the speed ratio
of the main axis is higher than the speed ratio of the vertical axis, the main axis moves faster than the vertical axis. If
the speed ratio of the sub axis is larger than the speed ratio of the main axis, the sub axis moves faster than the main
axis.

4. AXIS sets the axis on which to issue the command. You can set the following values. If a value other than the set value
is set, "Error 6" occurs.

 Chapter 11. Communication and Special Function Blocks

11-198

XGF-PN4B: 1 to 4 (1 to 4 axes), XGF-PN8A / XGF-PN8B: 1 to 8 (1 to 8 axes)
5. MST_AXIS sets the main axis of speed synchronization and the following values can be set. If a value other than the

set value is set, "Error 11" occurs.
 XGF-PN4B: 1 to 4 (1 to 4 axes), XGF-PN8A / XGF-PN8B: 1 to 8 (1 to 8 axes), 9: Encoders 1 and 10: Encoder 2

6. The driving direction of the vertical axis is)
ratio axis alLongitudin

ratio axis main
(ratio ationsynchroniz Speed If

positive, it operates in the direction of main spindle. If negative, it operates in the opposite direction of main spindle.

Chapter 11. Communication and Special Function Blocks

11-199

XPM_SETOVR Applied model Occurrence flag

Speed / acceleration / deceleration

override
XGI, XGR -

Function block form Contents

 XPM_SETOVR

DONEREQ

BASE

SLOT

STAT

BOOLBOOL

USINT

USINT

USINT

AXISUSINT

VEL_FACOTRDINT

ACC_FACTORUDINT

DEC_FACTORUDINT

S-RATIOUINT

DIRECTIONUINT

input

REQ: Function block execution request

BASE: Set the number of the base on which the

module is mounted

SLOT: Set the number of the slot where the module

is mounted

AXIS: Assign axis to command

XGF-PN4B: 1 to 4 (1 to 4 axes)

XGF-PN8B: 1 to 8 (1 to 8 axes)

VEL_FACTOR: Speed Override Ratio

 (Or command speed)

ACC_FACTOR: Acceleration Override Ratio

 (Or command acceleration time)

DEC_FACTOR: Deceleration Override Ratio

 (Or command deceleration time)

S_RATIO: unused

(S-curve ratio (0 = trapezoid, 1 to 100: S-curve ratio))

DIRECTION: Driving direction (1 ~ 3: 1-forward

direction, 2-reverse direction, 3-current direction)

Print

DONE: Maintain 1 after initial operation

STAT: Output error number generated during

function block execution

(1) The speed / acceleration / deceleration override command is given to the axis specified by AXIS of the positioning

module specified by BASE (base number of positioning module) and SLOT (slot number of positioning module).

(2) It is used to change the operation speed, acceleration, deceleration, and direction while command axis is in operation.

(3) VEL_FACTOR, ACC_FACTOR and DEC_FACTOR can be set to "%" or "speed value (unit / hour)" according to the

value set in "Speed override" of the common parameter.

 Chapter 11. Communication and Special Function Blocks

11-200

(4) If the unit of speed override value is%, the setting range is -65,535 ~ 65,535, which means -655.35 ~ 655.35%.

(5) If the unit of speed override value is the speed value, the setting range is - speed limit value ~ speed limit value. In this

case, speed limit value is the value set in "speed limit value" item of basic parameter. The units of the speed override value

follow the axis unit.

(6) When the unit of acceleration override and deceleration override value is%, the setting range is 0 ~ 65,535, which

means 0% ~ 655.35%.

(7) When the acceleration override and deceleration override value units are speed values, the setting range is 0 to

4,294,967,295.

(8) Operation direction value can be input 1 ~ 3, 1 means forward, 2 means reverse, and 3 means current direction.

(9) AXIS sets the axis to be commanded and the following values can be set. If a value other than the set value is set,

"Error 6" occurs.

 XGF-PN4B: 1 to 4 (1 to 4 axes), XGF-PN8B: 1 to 8 (1 to 8 axes)

Chapter 11. Communication and Special Function Blocks

11-201

XPM_CAMA Applied model Occurrence flag

Absolute position cam drive XGI, XGR -

Function block form Contents

input

REQ: Function block execution request

BASE: Set the number of the base on which the module

is mounted

SLOT: Set the number of the slot where the module is

mounted

AXIS: Assign axis to command

XGF-PN4B: 1 to 4 (1 to 4 axes)

XGF-PN8B: 1 to 8 (1 to 8 axes)

MST_AXIS: Main axis setting

XGF-PN4B: 1 to 4 (1 to 4 axes)

XGF-PN8B: 1 to 8 (1 to 8 axes)

9: Encoder 1

CAM_BLK: Cam block setting

1 to 9: 1 block 1 to 9 blocks

STRT_DST: Cam operation start movement setting

-2147483648 ~ 2147483647

MST_OFFSET: Spindle offset position movement

amount setting

-2147483648 ~ 2147483647

SLV_OFFSET: Subordinate axis offset position

movement setting

-2147483648 ~ 2147483647

Print

DONE: Maintain 1 after initial operation

STAT: Output error number generated during function

block execution

(1) Absolute position cam operation command is issued to the axis specified by AXIS of the positioning module specified

by BASE (base number of positioning module) and SLOT (slot number of positioning module).

(2) Cam is driven by using the cam main axis, cam data block, cam operation start position, spindle offset, and vertical axis

 Chapter 11. Communication and Special Function Blocks

11-202

offset.

(3) Execute absolute position cam operation command and start to move to the synchronous position until the axis set as

main axis starts to move by the distance set in STRT_DST.

 The synchronized position can be moved according to the setting of the MST_OFFSET and SLV_OFFSET values to the

position on the subordinate axis according to the cam data value set in the cam block (CAM_BLK) when the main axis

is in STRT_DST. When the main axis reaches the distance set in STRT_DST, the motor starts to move to the

subordinate axis position corresponding to the main axis position according to the data value of the cam data block set

in the cam block (CAM_BLK).

(4) AXIS sets the axis to be commanded and the following values can be set. If a value other than the set value is set,

"Error 6" occurs.

XGF-PN4B: 1 to 4 (1 to 4 axes), XGF-PN8B: 1 to 8 (1 to 8 axes)

(5) In MST_AXIS, main axis of cam operation is set and the following values can be set. If a value other than the set value

is set, "Error 11" occurs.

XGF-PN4B: 1 to 4 (1 to 4 axes), XGF-PN8B: 1 to 8 (1 to 8 axes), 9: Encoder 1

(6) CAM_BLK sets the cam block number to be executed and the following values can be set. If a value other than the set

value is set, "Error 11" occurs.

1 to 9: Block 1 to Block 9

(7) Cam data can be created in the positioning package, and up to 8 blocks (block 1 to block 8) can be set.
(8) In order to use the user cam (CAM) operation, the cam block number must be set to 9.
(9) Refer to "9.4.4 User Cam (CAM) Operation" for details of user cam (CAM) operation.

Chapter 12. Expanded Functions

12-1

Chapter 12. Expanded Functions

 This chapter describes each expanded function.. It is used for a specific processing (ex. FOR ~ NEXT, CALL, etc.) of a part

of program during user program run.

 Chapter 12. Expanded Functions

12-2

1.1. FOR/NEXT/BREAK

FOR/NEXT/BREAK
LOOP command

Availability XGI, XGR, XEC

Flags _ERR, _LER

Function Description

Repeat a block of FOR ~ NEXT n times

Escape a block of FOR ~ NEXT

■ Function

(1) PLC repeats FOR ~ NEXT command n times and then processes the next step of NEXT command.
(2) n is available 1 ~ 65,535.
(3) FOR ~ NEXT command is able to use 16 NESTINGs.
(4) REAK command is the instruction to escape FOR ~ NEXT loop.
(5) Keep the range of WDT value to avoid delaying the scan time.

■ Program Example

(1) It operates FOR ~ NEXT loop 100 times repeatedly.
(2) To escape the loop during a repetition, turn the switch on and run the BREAK command.

Chapter 12. Expanded Functions

12-3

1.2. CALL/SBRT/RET

CALL/SBRT/RET
Command of function call

Availability XGI, XGR, XEC

Flags

Function Description

 Call a SBRT routine

Assign a routine to be called by the CALL function

 RETURN

■ Function

(1) With an input condition and the CALL n command, it operates a program among the SBRT n ~ RET command.
(2) Nested CALL n command is usable, and the program among SBRT n ~ RET must be placed after END command.
(3) A program which is in SBRT can call another SBRT. In this case, END command is impossible to use in the SBRT.
(4) A program can escape the FOR ~ NEXT loop with a BREAK command.

■ Program Example

(1) It calls a SBRT (Motor Start) if the program operates CALL command.
(2) SBRT command must be placed after the END command.
(3) When SBRT (Motor Start) is called, a program is run in the SBRT until RET command. It goes to the position again

where CALL command is called.

 Chapter 12. Expanded Functions

12-4

1.3. JMP

JMP
JUMP command

Availability XGI, XGR, XEC

Flags

Function Description

 Jump to a place of LABLE

■ Function

(1) If a switch of JMP (LABLE) command is on, it jumps to the next of the assigned LABLE. All the commands
between JMP and LABLE are not processed.

(2) LABLE must not be duplicated, but JMP can be repeated.
(3) It is recommended that the program which must not be run in a state of emergency is placed between JMP and

LABLE.

■ Program Example

(1) When %IX0.0.0 is on, it does not operate ABS function.

Chapter 12. Expanded Functions

12-5

1.4. INIT_DONE

INIT_DONE
Command to terminate an initial task

Availability XGI, XGR, XEC

Flags

Function Description

 Terminate an initial task

■ Function

(1) It terminates an initial task.
(2) You have to terminate an initial task program using this command when you program an initial task program.

Otherwise, you neither terminate the initial task program nor enter a scan program.

■ Program Example

(1) When %IX0.0.0 is on, it terminates an initial task.

 Chapter 12. Expanded Functions

12-6

1.5. END

END
END command

Availability XGI, XGR, XEC

Flags

Function Description

 Terminate a program

■ Function

(1) It indicates the end of a program.

(2) After the processing of the END command, the program goes to the beginning of itself and process again.

Chapter 13. Process Control Library

13-1

Chapter 13. Process Control Library

This chapter describes the process control library relating to process control, data process, arithmetic instruction, data
measurement and data creation.

13.1 Process Control Library

1) STAT
Some process control library functions and function blocks have STAT, which is used to notify of any error of instruction. If
STAT has any other value, other than 0, it means that the instruction has an error; the content of STAT code is as follows.

STAT Name Operation on
occurrence Description

1 T_s error Scan cycle
operation

In case it may not work as previously set because T_s setting is earlier
than the current scan time, it operates with the earliest time as possible
and displays it.

2 X_min, X_max
inversion

Operation stop
Output reset

Input is designed to be X; it displays if X_min is larger than X_max
while it is limited to max./min.

4 Y_min, Y_max
inversion

Operation stop
Output reset

Output is designed to be X; it displays if Y_min is larger than Y_max
while it is limited to max./min.

8 Other setting error Operation stop
Output reset

It means any other erroneous state of setting except the above
statements

If two and more are detected in the above, the sum of two STATs is output. That is, if 2 should be the output to STAT as
X_min and X_max are inversed while 4 should be output to STAT as Y_min and Y_max are inversed, the sum of 2 and 4,
6 should be output.
Errors except T_s error in which STAT is 1 stop function or function block, outputs 0 and make, if any, DONE and ENO off.

2) T_s
T_s existing in some instructions represents operation cycle of instruction and if setting T_s, the instruction operates every
T_s time. As being structured to execute an operation if passing T_s time after comparing the previous operation time and
the present time as it approaches to the instruction, it has temporal error E (T_s) and the error is not accumulated ordinarily
because it reflects the error in the next operation cycle.

scan
T(T_s) E 0

In the case, T_s error is accumulated, and the instruction executes operation every time it scans to solve accumulated error
and it outputs 1 to STAT value. Therefore, if setting T_s as 0, it processes the instruction every time it scans.

3) Setting same max. limit and min. limit
Process library keeps several min./max. limits of X or Y. In general, if max./min. values are limited, a bit displaying on the
bottom of output that such limits are valid exists (i.e.: X_max_AL) and especially, if max. limit and min. limit are set alike,
both alarms are turned on, which is the way displaying that it is limited both to max. and min. limits.

4) Abnormal input
It may not work properly if an instruction to have real numbers had abnormal input such as 1.#inf00000 E+000, -1.#inf00000 E+000
or 1.#QNAN0000 E+000.

 Chapter 13. Process Control Library

13-2

Notes

Blinking STAT 1 (T_S error)

Since every scan of PLC may have different data volume, the execution speed may not be same per
scan. In case, it may work with STAT 1 indicated or STAT 1 blinks unless T_s setting does not have
tolerance properly. For instance, if a user sets T_s as 3ms and its scan cycle fluctuates between 2 ~
4ms, it may work properly if its scan cycle is 2ms or 3ms but the instruction may not work normally if it
reaches to 4ms, so it should indicate 1 in STAT and the scan operates with 4ms. If scan is shortened
to 2ms or 3ms, STAT 1 is turned off and blinks.

Chapter 13. Process Control Library

13-3

13.2 Process Control Function and Function Block

 Chapter 13. Process Control Library

13-4

PIDAT
PID Auto tuning

Availability XEC

Flags -

Function block Description

Input REQ : Function block execution request

BLOCK : Block number (0)
LOOP : Loop number (0~15)

Output DONE : On if done without error
PID_STAT : PID state alarm

■ Functions

(1) It executes PID operation of the related block and loop.
(2) Totally 16 PID loops are available independently because BLOCK is fixed as 0 and LOOP can take input as 0~15
(3) Output AT_STAT is hexadecimal and each PID loop shows the state as presented in <Table 13.1>.

 <Table 13.1>

Class Display Flag Description

STATE

16#0001 PID_STAT A loop is being operated.
16#0080 AT_DONE AT (Auto-tuning) ends.
16#0100 MV_MIN_MAX_ERR Max. MV is smaller than Min. MV
16#0300 PWM_PERIOD_ERR Output period of PWM output is smaller than 100 (10ms).
16#0400 SV_RANGE_ERR In case of forward operation, Set value at the start of auto-

tuning is smaller than present value. In case of reverse
operation, Set value at the start of auto-tuning is larger than
present value

16#0500 PWM_ADDRESS_ERR The value other than %QX0.0.0~0.0.31 is set as PWM
output

16#0A00 TUNE_DIR_CHG Operation direction is changed while auto-tuning
16#0B00 AT_PERIOD_ERR; Operation period of auto-tuning is smaller than 100(10ms)
16#0E00 LOOP_EXCEED Auto-tuning LOOP number is larger than 15

(4) Each state may be presented simultaneously.
.

Chapter 13. Process Control Library

13-5

PIDRUN
PID Operator

Availability XGI, XGR, XEC

Flags -

Function block Description

Input REQ : Function block execution request

BLOCK : Block number (0~7)
LOOP : Loop number (0~31)

Output DONE : On if done without error
PID_STAT : PID state alarm

■ Functions

(1) It executes PID operation of the related block and loop.
(2) Totally 256 PID loops are available independently because block may be 0 ~ 7 (In case of XEC), and loop of each block may

be 0 ~ 31. (In case of XEC 0~15)
(3) Output PID_STAT is hexadecimal and each PID loop shows the state as presented in the following table.

<Table 13.2>
In case of XGI, XGR

Class Display Flag Description

ALARM

16#0001 T_s ERR It may not execute every T_s because T_s setting is too small.
16#0002 K_p ERR Note that K_p is 0.
16#0004 dPV_AL PV is limited by dPV_max setting.
16#0008 dMV_AL MV is limited by dMV_max setting.
16#0010 MVmax_AL MV is limited by MV_max setting.
16#0020 MVmin_AL MV is limited by MV_min setting.
16#0040 AT_fail AT (Auto-tuning) is abnormally ended.
16#0080 Unused Unused

STATE

16#0100 PID_STAT A loop is being operated.
16#0200 AT_STAT AT (Auto-tuning) in progress
16#0400 AT_DONE AT (Auto-tuning) ends.
16#0800 EX_RUN Started by external run signal.
16#1000 MAN_OUT Manual output in progress
16#2000 CAS_STAT CAS (Cascade) in progress
16#4000 CAS_MST CAS (Cascade) operates as master.
16#8000 AW_STAT AW1(Anti wind-up) or AW2 is operating.

 Chapter 13. Process Control Library

13-6

In case of XEC

Class Display Flag Description

ALARM

16#0001 PV_MIN_MAX_ALM Present value exceeds the range
16#0002 PID_SCANTIME_ALM Operation period is too small
16#0003 PID_dPV_WARN Delta present value of this PID period exceeds Delta PV limit
16#0004 PID_dMV_WARN Delta manipulated value of this PID period exceeds Delta

MV limit
16#0005 PID_MV_MAX_WARN MV of this PID period exceeds Max. MV
16#0006 PID_MV_MIN_WARN MV of this PID period exceeds Min. MV

ERROR

16#0100 MV_MIN_MAX_ERR Max. MV is smaller than Min. MV
16#0200 PV_MIN_MAX_ERR Max. PV is smaller than Min. MV
16#0300 PWM_PERIOD_ERR PWM output period is smaller than 100 (10ms)
16#0400 SV_RANGE_ERR In case of forward operation, Set value at the start of auto-

tuning is smaller than present value. In case of reverse
operation, Set value at the start of auto-tuning is larger
than present value

16#0500 PWM_ADDRESS_ERR The value other than %QX0.0.0~0.0.31 is set as PWM
output

16#0600 P_GAIN_SET_ERR Proportional Gain is smaller than 0
16#0700 I_TIME_SET_ERR Integral Time is smaller than 0
16#0800 D_TIME_SET_ERR Derivative Time is smaller than 0
16#0900 CONTROL_MODE_ERR Control mode is other than P, PI and PID.
16#0B00 PID_PERIOD_ERR; PID operation period is smaller than 100(10ms)
16#0C00 HBD_WRONG_DIR In case of combined operation, direction parameter of forward

operation loop is set as reverse or direction parameter of
reverse operation loop is set as forward

16#0D00 HBD_SV_NOT_MATCH In case of combined operation, Set values of two loops are
different.

16#0E00 LOOP_EXCEED PID LOOP number is larger than 15

(4) Each state may be presented simultaneously.

Chapter 13. Process Control Library

13-7

PIDCAS
Cascade PID Operator

Availability XGI, XGR, XEC

Flags -

Function block Description

Input REQ :Function block execution request

BLOCK :Block number
LOOP_MST :Master loop number
LOOP_SLV :Slave loop number

Output
 DONE : On if done without error

MST_STAT : Master loop state alarm
SLV_STAT : Slave loop state alarm

■ Functions

(1) Executes Cascade PID operation with a combination of two loops for a block.
(2) Block may be 0 ~ 7 (In case of XEC, 0), and master loop and slave loop should be between 0 ~ 31 (in case of XEC, 0~15) in a

same block and differently.
(3) MST_STAT and SLV_STAT for output are hexadecimal and represent the states of master and slave respectively as

presented in the above table.
(4) Each state may be presented simultaneously.

 Chapter 13. Process Control Library

13-8

PIDHBD
Forward-reverse combined output PID operator

Availability XEC

Flags -

Function block Description

Input REQ : Function block execution request

BLOCK : Block number
LOOP_FWD : Forward direction loop number
LOOP_REV : reverse direction loop number

Output DONE : On if done without error
FWD_STAT : Forward direction loop state alarm
REV_STAT : Reverse direction loop state alarm

■ Function

(1) Combines two related loops of related block and executes Forward/reverse combined output PID operation.
(2) Block is 0 and master loop and slave loop should use different number of 0~ 15 in the same block.
(3) Output FWD_STAT, REV_STAT are hexadecimal and each represents the status like <Table 13.2> of forward direction and

reverse direction.
(4) Each state may be presented simultaneously

Chapter 13. Process Control Library

13-9

PIDINIT
PID Initialize

Availability XGI, XGR

Flags -

Function block Description

Input REQ : Function block execution request

BLOCK : Block number
LOOP : Loop number

Output DONE : On if done without error

■ Function

(1) Initializes all loop PID settings of a block to 0.

■ Program Example

Once input contact REQ is set, it initializes every setting of PID block 0 and loop 0 to 0.

 Chapter 13. Process Control Library

13-10

PIDPRMT
PID Parameter Change

Availability XGI, XGR

Flags -

Function block Description

Input REQ : Function block execution request

BLOCK : Block number
LOOP : Loop number
SV : Set value
T_s : Operation cycle
K_p : Proportional constant
Ti : Integral constant
T_d : Differential constant

Output DONE : On if done without error

■ Functions

(1) It changes PID settings of loop and block to input value.
(2) The setting items to be changed are SV, T_s, K_p, T_i and T_d as expressed in input.
(3) Since applying PIDPPMT instruction may change coefficient according to the conditions of a PID loop, pattern control may

be executed in accordance with system response.

■ Program Example

REQ

BLOCK

DONE

PIDPRMT

0

REQ

LOOP0

SV1000

T_s

K_p

T_i

T_d

1000

5.7

6.8

0.01

Main setting of PID block 0 and loop 0 is changed with the input values as seen in the above figure.

Chapter 13. Process Control Library

13-11

ONOFF
ON / OFF Control

Availability XGI, XGR, XEC(U)

Flags -

Function block Description

MV BOOL

DONE BOOLREQBOOL

PVREAL
SVREAL

PLREAL
PH_DTTIME
PL_DTTIME

MAN_MVBOOL

PH_OFFBOOL
PL_OFFBOOL

PV_maxREAL
PV_minREAL

PH_AL BOOL
PL_AL BOOL

MANBOOL

PHREAL

HYSREAL

EV REAL

PV_max_AL BOOL
PV_min_AL BOOL

STAT USINT

Input REQ : Function block execution request

MAN : Manual mode conversion bit
MAN_MV : Manual mode conversion value
SV : Set value
PV : Present value
PH_OFF : PV High section cancel bit
PL_OFF : PV Low section cancel bit
PH : PV High section set value
PL : PV Low section set value
PH_DT : PV High section set delay time
PL_DT : PV Low section set delay time
HYS : Hysterisis radius setting
PV_max : PV max. limit
PV_min : PV min. limit

Output DONE : On if done without error

STAT : State alarm
MV : Output value
EV : Error value
PH_AL : PV High alarm
PL_AL : PV Low alarm
PV_max_AL : PV max. high alarm
PV_min_AL : PV min. low alarm

■ Functions

(1) ON/OFF control creating Booltype output MV
(2) If PV is received from AD, it is necessary to convert the data type to REAL prior to use.
(3) Once setting MAN, it is converted to manual mode and MAN_MV value is output to MV, irrespective of the operation results.
(4) In case of (SV – HYS) > PV, MV = On
(5) In case of (SV + HYS) < PV, MV = Off
(6) In case of (SV – HYS) ≤ PV ≤ (SV + HYS), MV = MV(previous)
(7) It represents ‘Error value EV = SV – PV’.
(8) If setting each up/down section of PV to PH/PL, it displays the corresponding PH_AL/PL_AL alarm when it is beyond the

sections.
(9) However, if PH_OFF/PL_OFF bit is on, it does not execute each PH_AL/PL_AL operation.
(10) In PH_DT/PL_DT, the output delay time of PH_AL/PL_AL may be set.
(11) PV input may be limited by setting the max./min. value of each PV in PV_max/PV_min. When it reaches the limits,

PV_max_AL/PV_min_AL alarms are on.
(12) If EV is out of the real number data range, the output displays with ‘1.#inf00000 E+000’ or ‘-1.#inf00000 E+000’but the

output except EV is normally operates.

 Chapter 13. Process Control Library

13-12

■ Program Example

REQ

MV

DONEREQ

PVPV
SV8000.0

PL4000.0
PH_DTT#0ms
PL_DTT#0ms

MAN_MV0

PH_OFF0
PL_OFF0

PV_max16000.0
PV_min0.0

PH_AL
PL_AL

MAN0

PH12000.0

HYS100.0

EV

PV_max_AL
PV_min_AL

STAT

- If PV is over 8100 (8000+100), MV is off while if PV is less than 7900 (8000-100), MV is on.
- If PV is not less than 16000, it is regarded as 16000 and PV_max_AL is set; if it is not more than 0, it is regarded as 0 and

PV_min_AL is set.
- If PV is not less than 12000, PH_AL is set; in case of not more than 4000, PL_AL is set.

Chapter 13. Process Control Library

13-13

SW_L
1 Input latch

Availability XGI, XGR, XEC(U)

Flags -

Function block Description

Input REQ : Function block execution request

REM : Remote input setting
L_IN : Local input
R_IN : Remote input
CH_B : Check back input
TIMER : Check back queue time

Output DONE : On if done without error

Y : Output value
T_OVER : Time over alarm
T_LEFT : Left time display
FAULT : Check back failure alarm

■ Functions

(1) If using pump control, it may not work due to a fault/trouble or it may cause an accident due to any other reasons,
as it outputs continuous operation instruction unless it is checked whether a pump actually works with a check back
signal after receiving pump operation instruction. Against it, it is designed that it determines a trouble and outputs
fault without any operation instruction unless CHECK_BACK signal (RUN signal of a pump) is input after an
operation instruction Y is output.

(2) If REM is off, it receives L_IN as its input; in case of on, it receives R_IN as its input.
(3) Once the first input is on, output Y is on and it waits for CH_B (check back) signal for a time set in TIMER.
(4) At the moment, T_LEFT shows the left time and T_OVER is on after the left time passes.
(5) If CH_B and input are on after a time set in TIMER, Y continues to be on; if CH_B is off even for a while, it regards it

as system fault, outputs off to Y and turns FAULT on. Then it outputs off to Y even though CH_B is on again.
(6) If input is off, it operates from the first step.

■ Program Example

If IN is on with REQ set, Y is on and timer works for 10s, during while T_LEFT shows the left time. In 10 s, T_OVER is on; if CH_B
is on, Y is maintained as on while if CH_B is off, Y is off and Fault is on.

 Chapter 13. Process Control Library

13-14

SW_2V
2-Way Valve Control

Availability XGI, XGR, XEC(U)

Flags -

Function block Description

Input REQ : Function block execution request
REM : Remote input setting
V2_IN : Select local valve2/1
RV2_IN : Select remote valve2/1
CH_B1 : Input valve 1 check back
CH_B2 : Input valve 2 check back
TIMER : Check back queue time

Output DONE : On if done without error

Y1 : Output 1
Y2 : Output 2
T_OVER : Time over
T_LEFT : Left time display
FAULT : Check back failure alarm

■ Functions

(1) In case of 2-way valve, the only selected side should be open and the other side should be closed. In addition, if
check back signal is inputted, a valve may work properly unless it generates any output. If check back signal is not
input in a check back input delay time after open instruction, fault is output.

(2) If REM is off, it receives V2_IN as its input ;if REM is on, it receives RV2_IN as its input.
(3) If input is changed from/to off -> on, output Y2 is on and it waits for CH_B2 signal for a time set in timer.
(4) If input is reversely changed from/to on -> off, output Y1 is on and it waits for CH_B1 signal for a time set in timer.
(5) At the moment, T_LEFT shows the left time and T_OVER is on once the queue time passes.
(6) if a time set in timer, the output is off; if CH_B is on, fault is off. If CH_B is off, fault is on.
(7) It works from the first with input changed, and the output may be secured as long as timer setting is set more than

twice of scan cycle.

■ Program Example

If IN is on with REQ set, Y2 is on and the timer works for 10s, during which T_LEFT shows the left time. In 10s, T_OVER is on,
and the output, Y1 and Y2 are off. if CH_B2 is on, fault is off; if CH_B2 is off, the fault is on.

Chapter 13. Process Control Library

13-15

SW_3V
3-Way Valve Control

Availability XGI, XGR, XEC(U)

Flags -

Function block Description

Input REQ : Function block execution request

REM : Remote input setting
V_IN : Local input selection (1~3)
RV_IN : Remote input selection (1~3)
CH_B1 : Input valve1 check back
CH_B2 : Input valve2 check back
CH_B2 : Input valve3 check back
TIMER : Check back queue time

Output

DONE : On if done without error
Y1 : Output 1
Y2 : Output 2
Y3 : Output 3
T_OVER : Time over
T_LEFT : Left time display
FAULT : Check back failure alarm

■ Functions

(1) In case of 3-way valve, the only selected side should be open and the other side should be closed. In addition, if
check back signal is input, a valve may work properly unless it generates any output. If check back signal is not
input in a check back input delay time after open instruction, fault is output.

(2) If REM is off, it receives V_IN as its input ;if REM is on, it receives RV_IN as its input.
(3) If input is changed from/to Vm -> Vn, output Yn is on and it waits for CH_Bn signal for a time set in timer.
(4) T_LEFT shows the left time and T_OVER is on once the queue time passes.
(5) If a time set in timer, the output is off; if CH_Bn is on, fault is off. If CH_Bn is off, fault is on.
(6) It works from the first with input changed, and the output may be secured as long as timer setting is set more than

twice of scan cycle.
(7) Input should have a value between 1 ~ 3, and if it is not in the range, it outputs 8 to STAT.

 Chapter 13. Process Control Library

13-16

■ Program Example

REQ
REQ DONE

Y1REM1

CH_B1CH_B1 T_OVER
T_LEFT
FAULT

TIMERT#10s

CH_B2CH_B2

Y2
RV_ININ
V_IN0

CH_B3CH_B3

Y3

If IN is changed to 4 with REQ set, Y3 is on and timer works for 10s.
During the time, T_LEFT shows the left time.
In 10s, T_OVER is on and the output, Y1, Y2 and Y3 are off.
If CH_B3 is on, fault is off; if CH_B3 is off, fault is on.

Chapter 13. Process Control Library

13-17

13.3 Data Process Function, Function Block

LIM_PL(_R)
Max./Min. value limit

Availability XGI, XGR, XEC(U)

Flags -

Function Description

Input EN : Function execution request

X : Input
Y_max : Max. output limit
Y_min : Min. output limit

Output ENO : On if done without error

STAT : State alarm
Y : Output
Y_max_AL : Over max. output alarm
Y_min_AL : Less min. output alarm

■ Functions

(1) It generates output Y by limiting input X within the max./min. values.
(2) A value between Y_max and Y_min passes without restriction.
(3) If max. limit is not less than Y_max, Y_max_AL is on and it outputs Y_max to Y.
(4) If min. limit is not more than Y_min, Y_min_AL is on and it outputs Y_min to Y.
(5) If Y_max is not more than Y_min, STAT indicates 4 and it outputs 0.

■ Program Example

(1) If INPUT is 20 : it outputs 10 (Y_max) to Y and Y_max_AL is on.
(2) If INPUT is 3 : it outputs 3 to Y without restriction.
(3) If INPUT is -12 : it outputs -10 (Y_min) to Y and Y_min_AL is on.

 Chapter 13. Process Control Library

13-18

LIMR(_R)
Max./Min. value, max. variance limit

Availability XGI, XGR, XEC(U)

Flags -

Function block Description

Input REQ : Function block execution request

MAN : Manual mode setting
MAN_Y : Manual output
RESET : Block operation reset
X : Input
RATE : Max. variance rate limit
Y_max : Max. output limit
Y_min : Min. output limit

OutputDONE : On if done without error

STAT : State alarm
Y : Output value
RATE_AL : Max. variance rate limit state alarm
Y_max_AL : Over max. output alarm
Y_min_AL : Less min. output alarm

■ Functions

(1) It limits the max. variance rate of input X and outputs by limiting the max./min. value.
(2) The function block saves the internal state even though REQ is off and it resumes the previous operation if REQ is on again.

(3) Variance limit equation :
100

-
+≤≤

100

-
 -

)minYmaxRATE(Y

old
YY

)minYmaxRATE(Y

old
Y

(4) If variation is limited, it indicates RATE_AL; if max./min. values are limited, it indicates Y_max_AL or Y_min_AL.
(5) If MAN is on, it outputs the value of MAN_Y to Y; if MAN is off again, the variance is limited from the state.
(6) If RESET is on, it initializes the output Y to 0.
(7) It may work at a desirable cycle if using the volume conversion detection contact of clock (i.e. _T1s) or other volume

conversion detection contact (that is, P contact) to REQ.

Chapter 13. Process Control Library

13-19

■ Program Example

(1) X is changed from/to 0  3000 : the max. variance is allowed up to
100

)minYmaxRATE(Y  = 5000, so it passes the

variance limit and max./min. value limits and outputs Y = 3000.
(2) X is changed from/to 0  10000 : the max. variance is allowed up to 5000, so it is restricted to the variance limit for

2 scans. Then, it increases by 5000, outputs Y = 10000 and Y_max_AL is on.
(3) X is changed from/to 0  30000 : the max. variance is allowed up to 5000, so it is restricted to the variance limit for

6 scans. Then, it increases by 5000, outputs Y = 10000 due to max. value limit and Y_max_AL is on.

 Chapter 13. Process Control Library

13-20

LIMR_DR(_R)
Directional max. variance limit

Availability XGI, XGR, XEC(U)

Flags -

Function block Description

XINT(REAL)
STAT USINT
DONE BOOLREQBOOL

Y INT(REAL

DN_valINT(REAL)
UP_valINT(REAL)

DN_AL BOOL
UP_AL BOOL

RESETBOOL

Input REQ : Function block execution request

RESET : Block operation reset
X : Input
UP_val : Up limit
DN_val : Down limit

Output DONE : On if done without error

STAT : State alarm
Y : Output value
UP_AL : Up limit alarm
DN_AL : Down limit alarm

■ Functions

(1) It outputs by limiting the max. up/down variation of input X, respectively.
(2) The function block saves the internal state even though REQ is off and it resumes the previous operation if REQ is on again.
(3) For the variation of X, Y may be increased or decreased as much as UP_val or DN_val.
(4) In case the Up/Dn limits are applied, it displays with UP_AL or DN_AL bit.
(5) In case of RESET, the input X is directly reflected to Output Y.
(6) If UP_val or DN_val is negative, it outputs 8 to STAT.
(7) It may work at a desirable cycle if using the volume conversion detection contact of clock (i.e. _T1s) or other

volume conversion detection contact (i.e. P contact) to REQ.

■ Program Example

(1) X is changed from/to 0  3000 : since the max. up variation is 5, Y increases by 5 for 600 scans, during which
UP_AL is on ; if it outputs Y = 3000, UP_AL is off.

(2) X is changed from/to 1000  0 : since the max. down variation is 2, Y decreases by 2 for 500 scans, during which
DN_AL is on; if it outputs Y = 0, DN_AL is off.

Chapter 13. Process Control Library

13-21

RATIO(_R)
Ratio converter

Availability XGI, XGR, XEC(U)

Flags -

Function block Description

Input REQ : Function block execution request

X : Input
RATE : Rate
X_max : Max. input limit
X_min : Min. input limit
Y_max : Max. output limit
Y_min : Min. output limit

Output DONE : On if done without error

STAT : State alarm
Y : Output value
X_max_AL : Input high alarm
X_min_AL : Input low alarm
Y_max_AL : Output high alarm
Y_min_AL : Output low alarm

■ Functions

(1) It outputs a certain ratio of input X to Y.
(2) Note that the reference point is not 0 but X_min.

(3) Output Y is calculated from the equation, X_min
100

RATE
X_min)-XY  (.

(4) X_max and X_min limit the max./min. values of X; it operates with X_max, instead of X if X is not less than X_max, and vice
versa.

(5) Y_max and Y_min limit the max./min. values of Y; it operates with Y_max if Y is not less than Y_max, and vice versa.
(6) In case of not less than the max. value or not more than the min. value set in I/O, it displays X_max_AL, X_min_AL,

Y_max_AL or Y_min_AL alarm.

 Chapter 13. Process Control Library

13-22

■ Program Example

1. In case of X = 20000 & RATE = 50 : If X is not less than X_max, X_max, 10000 is input,

)(+×(= -10000
100
50

(-10000))-10000Y , X_max_AL = on

Y = 0

2. In case of X=1000 & RATE=20 : X is input with 1000,

)(+×(= -10000
100
20

(-10000))-1000Y

Y = -7800

3. In case of X = 20000, RATE = -250 : since X is not less than X_max, it is operated with X_max, 10000,

(-10000)
100
250-

(-10000))-1000060000- +×(= ,X_max_AL = on, Y_min_AL = on

Since Y is not more than Y_min, it is output with Y_min,
Y = -20000

Chapter 13. Process Control Library

13-23

SCALE(_UI, _R)
Scale converter

Availability XGI, XGR, XEC(U)

Flags -

Function Description

Input EN : Function execution request

X : Input
X_max : Max. input limit
X_min : Min. input limit
Y_max : Max. output scale
Y_min : Min. output scale

Output ENO : On if done without error

STAT : State alarm
Y : Output value

■ Functions

(1) It changes input X to the scale set after limiting the max./min. values.
(2) It sets the range of input X to X_max, X_min and that of Y to Y_max, Y_min.
(3) The output equation is as follows.

min
Y

min
X

max
X

min
Y

max
Y

min
X-XY 




)(

(4) If X_max and X_min are same, it outputs 8 to STAT because the denominator of the equation is 0.
(5) If X input value exceeds X_min ~ X_max, it outputs each X_max, X_min.

■ Program Example

REQ
EN ENO
XX

X_min
X_max16000

Y_min
Y_max

Y
0

100
-100

STAT

It scales the value between 0 ~ 16000 to a value between -100 ~ 100.

(1) If X is 4000: 50100
016000

100100
)04000(




Y

(2) If X is 20000: it limits X to 16000, 150100
016000

100100
)020000(




Y

Despite of Y = 150, it outputs Y = 100 because of Y_max = 100.

 Chapter 13. Process Control Library

13-24

TIME_EN(_UI)

Converting day, hour, minute, second and 1/1000 sec to TIME

type data

Availability XGI, XGR, XEC(U)

Flags -

Function block Description

Input REQ : Function block execution request

DAY : day
HOUR : hour
MIN : minute
SEC : second
mSEC : 1/1000 second

Output DONE : On if done without error

STAT : State alarm
OUT : Time output value

■ Functions

(1) It converts day, hour, minute, second and 1/1000 second data to TIME type parameter.
(2) If input is negative or if output result is output of the data expression range (0~49d17h2m47s295ms) of TIME type data, it

generates STAT 8 and does not execute any operation.

■ Program Example

(1) In case of DAY=1, HOUR=1, MIN= 1, SEC=1, mSEC=1, it is OUT = T#1d1h1m1s1ms
(2) In case of DAY=0, HOUR=0, MIN=30000, SEC=0, mSEC=0, it is OUT = T#0d20h20m0s0ms

Chapter 13. Process Control Library

13-25

TIME_DE(_UI)

Separating TIME type data to day, hour, minute, second and

1/1000 second

Availability XGI, XGR, XEC(U)

Flags -

Function block Description

Input REQ : Function block execution request

IN : Time input
MODE : Output mode(0~4)

Output DONE : On if done without error

STAT : State alarm
DAY : Day
HOUR : Hour
MIN : Minute
SEC : Second
mSEC : 1/1000 second
OVER_AL : Overflow alarm

■ Functions

(1) It outputs TIME type input separately by day, hour, minute, second and 1/1000 second.
(2) It outputs as follows, depending on mode.

A. MODE 0 : display all day/hour/minute/second/ms
B. MODE 1 : display hour/minute/second/ms
C. MODE 2 : display minute/second/ms
D. MODE 3 : display second/ms
E. MODE 4 : display ms only

(3) If it is out of the range of output data, it outputs the max. value, (65535 in case of TIME_DE_UI) and sets OVER_AL.
(4) If MODE is more than 5, it indicates STAT 8 and does not work.

 Chapter 13. Process Control Library

13-26

■ Program Example

(1) In case of IN =T#1d1h1m1s1ms, MODE = 0; DAY =1, HOUR= 1, MIN= 1, SEC= 1, mSEC= 1,
OVER_AL=off

(2) In case of IN =T#1d1h1m1s1ms, MODE = 1; DAY =0, HOUR=25, MIN= 1, SEC= 1, mSEC= 1,
OVER_AL=off

(3) IN case of IN =T#1d1h1m1s1ms, MODE = 2; DAY =0, HOUR= 0, MIN=1501, SEC= 1, mSEC= 1,
OVER_AL=off

(4) In case of IN =T#1d1h1m1s1ms, MODE = 3; DAY =0, HOUR= 0, MIN= 0, SEC=32767, mSEC= 1,
OVER_AL=on

(5) In case of IN =T#1d1h1m1s1ms, MODE = 4; DAY =0, HOUR= 0, MIN= 0, SEC= 0, mSEC=32767,
OVER_AL=on

(6) In case of IN =T#90061001ms, MODE = 0; input is modified and displayed as T#1d1h1m1s1ms.

The results are DAY=1, HOUR=1, MIN=1, SEC=1, mSEC=1, OVER_AL=off.

Chapter 13. Process Control Library

13-27

CUT(_R)
Small signal cut filter

Availability XGI, XGR, XEC(U)

Flags -

Function Description

Input EN : Function execution request

X : Input
CUT : Small signal cut range (%)
X_max : Max. input limit
X_min : Min. input limit

Output ENO : On if done without error

STAT : State alarm
Y : Output value
CUT_ACT : CUT operation in progress.
X_max_AL : Input max. limit alarm
X_min_AL : Input min. limit alarm

■ Functions

(1) If input is a value between [X_min] and [CUT% of X_min ~ X_max], it is ignored and the system outputs X_min.
(2) Note that the reference point is not 0 but [X_min].
(3) For input, the max./min. values are limited by X_max/X_min, which is notified by alarm: X_max_AL and X_min_AL.

(4) If the input of max./min. limit is
100

X_min-X_max
CUT X_min X +≤ ,

it outputs Y = X_min and CUT_ACT is on.
(5) If X_min is larger than X_max, STAT indicates 2 and outputs 0.

■ Program Example

REQ
EN

STAT
ENO

XX

X_min0
X_max16000
CUT5 Y

X_max_AL
X_min_AL

CUT_ACT

(1) If X is 4000 : since it is not in 5% (CUT) of 16000 (Xmax - Xmin), 4000 is output with no change.
(2) If X is 18000 : since it is limited to 16000, the value of 16000 is output and X_max_AL is on.
(3) If X is 100 : since it is not more than 800, 5% of 16000, it outputs 0(X_min) and CUT_ACT is on.

 Chapter 13. Process Control Library

13-28

D_BAND(_R)
Deadband Application Output

Availability XGI, XGR, XEC(U)

Flags -

Function Description

Input EN : Function execution request

X : Input
OFFSET : Output offset
DB : Deadband half width
GAIN : GAIN(%) of Deadband section

Output ENO : On if done without error

Y : Output value
DB_ACT : Alarm if input is within DB

■ Functions

(1) Output Y is calculated by applying deadband to input X.
(2) Since DB represents scale, it should be used through absolute value operation like |DB|.
(3) Deadband is set with a range of –|DB| ~ |DB|.
(4) DB_ACT bit is on if input X is within deadband.
(5) Both ends of deadband affect the output outside the deadband.
(6) If operation result is out of the data expression range of integer(INT), the output is limited to INT (-32768 ~ 32767).
(7) If operation result is out of the data expression range of real number (REAL), output is indicated ‘1.#inf00000 E+000’ or ‘-

1.#inf00000 E+000’and in the case, ENO bit is off.
(8) The I/O equation of deadband is as follows.

A. UNDER THE BAND (X is not more than -|DB|) :

OFFSETDBDB
GAIN

XY )
100

(

B. IN THE BAND (X is within -|DB| ~ |DB|) :

OFFSETX
GAIN

Y )
100

(

Chapter 13. Process Control Library

13-29

C. OVER THE BAND (X is larger than |DB|) :

OFFSETDBDB
GAIN

XY )
100

(

■ Program Example

1. If INPUT is -8 :

)()()()(
)(

)(2105)5
100

100
(8 YOFFSETDBDB

GAIN
X 

2. If INPUT is 3 : X is within DB = 5, DB_ACT is on

)()()(
)(1310)3

100

100
(YOFFSETX

GAIN 

3. If INPUT is 16 :

)()()()(
)(

)(26105)5
100

100
(16 YOFFSETDBDB

GAIN
X 

 Chapter 13. Process Control Library

13-30

DELAY(_R)
Delay Output

Availability XGI, XGR, XEC(U)

Flags -

Function block Description

Input REQ : Function block execution request
MAN : Manual mode
MAN_Y : Manual mode output
PAUSE : Pause
X : Input
DELAY : No. of Delay sample
T_s : Operation cycle

Output DONE : On if done without error

STAT : State alarm
Y : Output value

■ Functions

(1) It generates output X of which input X is delayed as much as T_s * DELAY (T_s unit : [sec]).
(2) It saves the current input every scan cycle and outputs the previous input at the same time.
(3) If the first operation is permitted, it outputs 0 as much as T_s * DELAY because there is no previous value.
(4) It is possible to input DELAY scan up to 100 scans; if more value is input, it outputs 8 to the STAT and does not work.
(5) If PAUSE is on, output pauses and the current data are saved.
(6) If MAN is on, it outputs MAN_Y in manual mode and it does not save the current data, so it outputs 0 as much as T_s *

DELAY when it returns to auto mode.

■ Program Example

(1) Since DELAY is 20 and T_s is 500ms, Y outputs X value 10s before.

Chapter 13. Process Control Library

13-31

100

300

1100

1

900

700

500

65432 1110987 12 13 14 15

X

Y

 Chapter 13. Process Control Library

13-32

VAR_SW(_R)
Constant selection switch

Availability XGI, XGR, XEC(U)

Flags -

Function block Description

Input REQ : Function block execution request

SEL : Select Input 1/2
X1 : Input 1
X2 : Input 2
Y_max : Max. output limit
Y_min : Min. output limit
EX_IN : Select external input
EX_X : External input

Output DONE : On if done without error

STAT : State alarm
Y : Output value
Y_max_AL : Over max. output alarm
Y_min_AL : Less min. output alarm

■ Functions

(1) It outputs X1 or X2 depending on SEL bit setting.
(2) The max./min value of output may be limited by setting Y_max and Y_min.
(3) It is possible to output EX_IN by connecting external devices (MMI and etc) to EX_X.
(4) EX_X is also limited by the max./min. values.
(5) If Y_min is larger than Y_max, STAT outputs 4.

■ Program Example

REQ
REQ DONE

Y
SEL1

EX_INEX_IN

X11000
X2X2
Y_max16000
Y_min0

EX_XEX_X

STAT

Y_max_AL
Y_min_AL

Since SEL is 1, it outputs X2 if EX_IN is off.
(1) If X2 is 10000 and EX_IN is off: X2 is applied and it outputs 10000.
(2) If X2 is 20000 and EX_IN is off: X2 is applied and after being limited by the max. value, it outputs 16000 and

Y_max_AL is on.
(3) If X2 is 1000 and in case of EX_IN=on, EX_X=-1000: EX_IN is applied and after being limited by the min. value, it

outputs 0 and Y_min_AL is on.

Chapter 13. Process Control Library

13-33

ANA_RSW(_R)
Analog increment limit switch

Availability XGI, XGR, XEC(U)

Flags -

Function block Description

Input REQ : Function block execution request

SEL : Select input
X1 : Input 1
X2 : Input 2
DEL_Y : Output increment limit
T_s : Operation cycle

Output DONE : On if done without error

STAT : State alarm
Y : Output value

■ Functions

(1) It selectively outputs X1 or X2 depending on SEL bit setting.
(2) RESET works as soon as REQ is on. Therefore, it outputs the input selected by SEL as its initial value.
(3) If SEL bit is changed, it reaches to the value (X1 / X2) selected as Y increases or decreases as much as DEL_Y every T_s.
(4) Even though SEL bit is not changed, it reaches to the value selected as Y increases or decreases as much as DEL_Y every

T_s if the value selected by SEL (X1 / X2) is changed.

■ Program Example

(1) If it is changed from SEL=off to SEL=on, Y increases by 10 every 500ms and it reaches to Y=200.
(2) If X1 is changed to 300 with SEL=off, Y increases by 10 every 500ms and it reaches to Y=300 in 10s.

 Chapter 13. Process Control Library

13-34

ANA_TSW(_R)
Analog time limit switch

Availability XGI, XGR, XEC(U)

Flags -

Function block Description

Input REQ : Function block execution request

SEL : Select input
X1 : Input 1
X2 : Input 2
T_12 : Input 1->2 conversion time
T_21 : Input 2->1 conversion time

Output DONE : On if done without error

Y : Output value

■ Functions

(1) It selectively outputs X1 or X2 depending on SEL bit setting.
(2) RESET works as soon as REQ is on. Therefore, it outputs the input selected by SEL as its initial value.
(3) It changes the data before SEL change to the data after SEL change gradually (RAMP), based on the pre-determined time.
(4) If it is changed from X1 to X2, depending on SEL selection, it follows T_12 time; if it is conversely changed from X2 to X1, it

follows T_21 time.
(5) An integer type instruction, ANA_TSW is subject to round-off during the conversion, so it has an error up to 0.5. therefore, it

may reach to the target input earlier than the pre-determined time.
(6) If the operation result is out of the data expression range of integer (INT), the output is limited to INT (-32768 ~ 32767).
(7) If the operation result is out of the data expression range of real number (REAL), the output displays as ‘1.#inf00000

E+000’or ‘-1.#inf00000 E+000’ and in the case, DONE bit is off.

■ Program Example

REQ
REQ DONE

YSELSEL
X11000
X2-1000
T_12T#3s
T_21T#5s

(1) In case of SEL=off  on : it decreases toward Y=1000  -1000 for 3s.
(2) In case of SEL=on  off: it increases toward Y=-1000  1000 for 5s.

Chapter 13. Process Control Library

13-35

ANA_SEL(_R)
Analog scale comparative switch

Availability XGI, XGR, XEC(U)

Flags -

Function block Description

Input REQ : Function block execution request
HIGH : Select scale-based input
LOW : Select scale-based input
X1 : Input 1
X2 : Input 2
X3 : Input 3
X3_LOCK : Input 3 effective bit

Output DONE : On if done without error

Y : Output value
BS1 : Block select1
BS2 : Block select2
BS3 : Block select3

■ Functions

(1) In case of HIGH = on, LOW = off, it outputs the highest one among X1 ~ X3 and the corresponding BS is on.
(2) In case of HIGH = off, LOW = on, it outputs the lowest one among X1 ~ X3 and the corresponding BS is on.
(3) If HIGH = low (both on or off) is set, it selects a middle one. It outputs a middle value among X1 ~ X3 and the corresponding

BS is on.
(4) After selecting a middle value as above, if two inputs are same, it outputs the two values to output Y and the corresponding

two BS are on.
(5) After selecting a middle value, if three inputs are same, it outputs these three values to output Y and every BS is on.
(6) In case of X3_LOCK = on, X3 among the inputs is disregarded. In the case, it is equal to 2 input, so the middle value is

defined as a larger one between them.

■ Program Example

(1) In case of HIGH = on, LOW = off, X3_LOCK = off, it outputs Y = 5000 and BS2 is on.
(2) In case of HIGH = on, LOW = on, X3_LOCK = off, it outputs Y = 3000 and BS1 is on.
(3) In case of HIGH = off, LOW = off, X3_LOCK = off, it outputs Y = 3000 and BS1 is on.
(4) In case of HIGH = off, LOW = on, X3_LOCK = off, it outputs Y = 1000 and BS3 is on.

 Chapter 13. Process Control Library

13-36

(5) In case of HIGH = off, LOW = on, X3_LOCK = on, it outputs Y = 3000 and BS1 is on.
(6) In case of HIGH = on, LOW = on, X3_LOCK = on, it outputs Y = 5000 and BS2 is on.

Chapter 13. Process Control Library

13-37

LAG(_R)
HF limit filter

Availability XGI, XGR, XEC(U)

Flags -

Function block Description

INT GAIN
INT(REAL) X
BOOL FILT_ON
BOOL REQ DONE BOOL

STAT USINT
Y INT(REA

TIME LAG
INT(REAL) OFFSET

TIME T_s

Input REQ : Function block execution request

FILT_ON : Filter ON
X : Input
GAIN : Filter gain (%)
LAG : LAG filter coefficient
OFFSET : Output offset
T_s : Operation cycle

Output DONE : On if done without error

STAT : State alarm
Y : Output value

■ Functions

(1) It processes with filter limiting HF components.
(2) Input X is outputted to output Y via LAG filter.
(3) The input-output procedure may have an error lower than 0.001%.
(4) If FILT_ON bit is off, LAG filter does not filtrate input and the output equation is as follows.

X
100

GAIN
 Y' × =

(5) If FILT_ON bit is on, LAG filter operates and the output equation is as follows.

)-
+

×(×
+

+=
old

Y'
2

oldXX

100
GAIN

T_sLAG
T_s

old
Y'Y'

 [sec]:T_s
(6) After the filter operation, OFFSET is added to the internal output value and the offset does not pass the filter.

OFFSETY'Y +=

Note) in the above equation, Y represents actual output while Y' represents internal output.

(7) If in the LAG_R operation, the data are out of the expression range of real number parameter(REAL), it indicates
STAT 8 and outputs 0.

 Chapter 13. Process Control Library

13-38

■ Program Example

FILT_ON1
XX

LAGT#1s
GAIN100

DONE

Y
STAT

OFFSET100

REQ
REQ

T_sT#10ms

If input X is changed with REQ and FILT_ON turned on, it filtrates HF component and outputs.
It is operated by I/O equation every 10ms (T_s), it generates output.

Chapter 13. Process Control Library

13-39

LEADLAG(_R)
HF/LF limit filter

Availability XGI, XGR, XEC(U)

Flags -

Function block Description

Input REQ : Function block execution request

FILT_ON : Filter ON
X : Input
GAIN : Filter gain (%)
LEAD : LEAD filter coefficient
LAG : LAG filter coefficient
OFFSET : Output offset
T_s : Operation cycle

Output DONE : On if done without error

STAT : State alarm
Y : Output value

■ Functions

(1) It processes with filter limiting HF/LF components
(2) Output is generated through LEAD filter and LAG filter.
(3) The input-output procedure may have an error lower than 0.001%.
(4) If FILT_ON bit is off, LEADLAG filter does not filtrate input and the output equation is as follows.

X
100

GAIN
 Y' × =

(5) If FILT_ON bit is on, LEADLAG filter operates and the output equation is as follows.

T_sLAG
oldXLEAD-T_s)XGAIN((LEADoldY'LAG

Y'
+

)×++×
=

 [sec]:T_s
(6) After the filter operation, OFFSET is added to the internal output value and the offset does not pass the filter.

OFFSETY'Y +=
Note) in the above equation, Y represents actual output while Y' represents internal output.

(7) If in the LEADLAG_R operation, the data are out of the expression range of real number parameter (REAL), it
indicates STAT 8 and outputs 0.

 Chapter 13. Process Control Library

13-40

■ Program Example

REQ

REQ

XX
GAIN100
LEADT#1s
LAGT#1s

DONE
STAT

Y
FILT_ON1

OFFSET100
T_sT#10ms

If input X is changed with REQ and FILT_ON turned on, it filers HF/LF component and outputs.
It is operated by I/O equation every 10ms (T_s), it generates output.

Chapter 13. Process Control Library

13-41

13.4 Arithmetic Operation Function, Function Block

ADD2
Y = G1X1 + G2X2

Availability XGI, XGR, XEC(U)

Flags -

Function Description

Input EN : Function execution request

GAIN1 : Operation gain 1
X1 : Input 1
GAIN2 : Operation gain 2
X2 : Input 2

Output ENO : On if done without error

Y : Output value

■ Function

(1) It executes the pre-determined arithmetic operations.
(2) If the operation result is out of the data expression range of Y (REAL), ENO is off and it is displayed as 1.#inf00000 E+000’, ‘-

1.#inf00000 E+000’, ‘1.#QNAN0000e+000’and in the case, DONE bit is off.

X2*GAIN2 X1*GAIN1Y 

■ Program Example

In case of X1 = 10.0, X2 = 20.0, it results in ‘Y = 0.7 (10.0) + 1.3 (20.0) = 7.0 + 26.0 = 33.0.

 Chapter 13. Process Control Library

13-42

DIV2
Y = Gain (X1 / X2)

Availability XGI, XGR, XEC(U)

Flags -

Function Description

Input EN : Function execution request

GAIN : Operation gain
X1 : Input 1
X2 : Input 2

Output ENO : On if done without error

Y : Output value

■ Functions

(1) It executes the pre-determined arithmetic operations.

X2)/(X1GAINY 
(2) If X2 value is 0, it outputs ‘1.#QNAN0000 E+000’because its denominator is 0.
(3) If the operation result is out of the data expression range of Y(REAL), ENO is off and it is displayed as 1.#inf00000 E+000’or ‘-

1.#inf00000 E+000’and in the case, DONE bit is off.

■ Program Example

In case of X1 = 10.0, X2 = 20.0, it results in ‘Y = 0.4 (10.0 / 20.0) = 0.2.

Chapter 13. Process Control Library

13-43

ARITH1
Y = (G1X1+G2X2)G3 + G4

Availability XGI, XGR, XEC(U)

Flags -

Function Description

Input EN : Function execution request

GAIN1 : Operation gain 1
X1 : Input 1
GAIN2 : Operation gain 2
X2 : Input 2
GAIN3 : Operation gain 3
GAIN4 : Operation gain 4

Output ENO : On if done without error

Y : Output value

■ Functions

(1) It executes the pre-determined arithmetic operations.

GAIN4 X2)GAIN3 GAIN2X1 GAIN1Y  (

(2) If the operation result is out of the data expression range of Y(REAL), ENO is off and it is displayed as 1.#inf00000 E+000’, ‘-
1.#inf00000 E+000’, ‘1.#QNAN0000e+000’and in the case, DONE bit is off.

■ Program Example

EN
EN ENO

YGAIN10.4

GAIN20.15
X1X1

X2X2
GAIN32.0
GAIN410.0

In case of X1 = 10.0, X2 = 20.0, it results in ‘Y = (0.4(10.0)+0.15(20.0))2.0+10.0 = (4.0+3.0)2.0+10.0 = 24.0.

 Chapter 13. Process Control Library

13-44

ARITH2
Y = (G1X1+G2X2+G3X3+G4X4)G5 + G6

Availability XGI, XGR, XEC(U)

Flags -

Function Description

ENO BOOL
Y REAL

ENBOOL
GAIN1REAL

GAIN2REAL
X1REAL

X2REAL
GAIN3REAL

GAIN4REAL
X3REAL

X4REAL
GAIN5REAL
GAIN6REAL

Input EN : Function execution request
GAIN1 : Operation gain 1
X1 : Input 1
GAIN2 : Operation gain 2
X2 : Input 2
GAIN3 : Operation gain 3
X3 : Input 3
GAIN4 : Operation gain 4
X4 : Input 4
GAIN5 : Operation gain 5
GAIN6 : Operation gain 6

Output ENO : On if done without error

Y : Output value

■ Functions

(1) It executes the pre-determined arithmetic operations.

GAIN6 X4)GAIN5 GAIN4X3GAIN3X2 GAIN2X1 GAIN1Y  (

(2) If the operation result is out of the data expression range of Y (REAL), ENO is off and it is displayed as 1.#inf00000 E+000’, ‘-
1.#inf00000 E+000’, ‘1.#QNAN0000e+000’and in the case, DONE bit is off.

■ Program Example

In case of X1 = 10.0, X2 = 20.0, X3 = 10.0, x4 = 30.0, it results in ‘Y = (0.1(10.0)+0.5(20.0)+0.3(10.0)+0.2(30.0))0.7+10.0 =
(1+10+3+6)0.7+10.0 = 24.0.

Chapter 13. Process Control Library

13-45

SUMA(_R)
Analog Summer

Availability XGI, XGR, XEC(U)

Flags -

Function block Description

Input REQ : Function block execution request

RESET : Block operation reset
Y_RESET : reset value
MAN : manual mode
Y_MAN : Manual output value
X : Input
CUTOFF : Small signal cut width
SQRT : Square root setting
GAIN : Input gain (%)
TIMER : Timer setting
T_s : Operation cycle

Output DONE : On if done without error
STAT : State alarm
Y : Output value
T_LEFT : Timer left time
FIN : Timer finish display

■ Functions

(1) It sums up analog data inputted to X at the preset interval and outputs the result to Y.
(2) SUMA (INT type) instruction supports real number type output to prevent too fast saturation that may occur when

output rapidly increases if it is summed up to a direction, whether negative or positive.
(3) If RESET bit is on, it outputs Y_RESET value; if RESET bit is off, it resumes the operation from Y_RESET value.
(4) If MAN bit is on, MAN_Y value is output but if the bit is off, it operates from the first as much as from Y_RESET to

TIMER time.
(5) If |X| is equal to or not more than |CUTOFF|, it processes it as X = 0.
(6) If SQRT bit is on, it operates with square-rooted X.
(7) If program scan time is longer than 1m, it may have a skipping section of operation. Therefore, it may have an error less than

T_s set time when the timer is finished.
(8) If the operation results is out of the data expression range of Y(REAL), it is indicated with ‘1.#inf00000 E+000’ or ‘-1.#inf00000

E+000’ and in the case, DONE bit is off but the internal state(T_LEFT, FIN and etc) will be normally processed.

 Chapter 13. Process Control Library

13-46

■ Program Example

(1) In case of X=10, T_s= T#1s : If REQ is on, Y increases by 10 every second and it outputs Y = 300. Then, it results in ‘FIN =

on’.
(2) In case of X=10, T_s= T#2s : If REQ is on, Y increases by 10 every 2 seconds and it outputs Y = 150. Then, it results in ‘FIN

= on’.

Chapter 13. Process Control Library

13-47

TOTAL(_R)
Analog totalizer

Availability XGI, XGR, XEC(U)

Flags -

Function block Description

Input REQ : Function block execution request

RESET : Block operation reset
Y_RESET : Reset value
TARGET : Set value
X : Input value
CUTOFF : Small signal cut width
SQRT : Square root setting
GAIN : Input gain (%)
TIMER : Operation time
TP1 : Trip point 1
TP2 : Trip point 2
TP3 : Trip point 3
TP4 : Trip point 4
T_s : Operation cycle

Output DONE : On if done without error

STAT : State alarm
Y : Output value
TARG_AL : Set value alarm
FIN : Operation finish alarm
T_LEFT : Operation time end alarm
TP1_AL : Trip point 1 alarm
TP2_AL : Trip point 2 alarm
TP3_AL : Trip point 3 alarm
TP4_AL : Trip point 4 alarm

■ Functions

(1) It totals analog data input to X.
(2) Totaling is executed from Y_RESET.
(3) As in the below figure, it totals by means of the operation of trapezoid addition, in which the shaded area is added

every T_s of operation cycle, and it applies the delivery rate through gain.

[sec]:T_s 2 / X)T_s
old

(X GAIN/100
old

YY 

 Chapter 13. Process Control Library

13-48

(4) If RESET bit is on, it becomes reset and outputs Y_RESET.
(5) If RESET is canceled as RESET bit is off, it restarts the operation from Y_RESET value.
(6) After the set value is set, it notifies a user that output value is more than the set value by means of TARG_AL.
(7) If output value is within TARGET-TP[n] ≤ Y ≤ TARGET+TP[n], it turns on TP[n]_AL and shows how close it

approaches to the set value.
(8) Output Y increases or decreases with no influence of target.
(9) If |X| is not more than |CUTOFF|, it processes it as X = 0.
(10) If SQRT bit is on, it operates with square-rooted X.
(11) If program scan time is not less than 1m, it may have a skipping section of operation, so it may have an error less than T_s

time.
(12) Input-output may have an error less than 0.001%.
(13) If |GAIN * X| has a huge range over 1.0e+38, it may result in incorrect operation procedure.
(14) If operation result is out of the data expression range of integer(INT), the output is limited to INT (-32768 ~ 32767).
(15) If operation result is out of the data expression range of real number (REAL), output is displayed as 1.#inf00000 E+000’ or ‘-

1.#inf00000 E+000’. In the case, DONE bit is off but the internal state (T_LEFT, FIN and etc) is normally processed.

■ Program Example

REQ
REQ

CUTOFF1

DONE

Y
STAT

Y_RESET10.0

XX

GAIN100.0
SQRT0

T_sT#1s

TP12000
TP21000
TP3100
TP410

TARG_AL

TP1_AL
TP2_AL
TP3_AL
TP4_AL

TARGET5000

RESET0

FIN
T_LEFT

TIMERT#30s

(1) In case of X=200, T_s=T#1s: output Y increases from 10 (Y_RESET) by 100 for the first cycle (trapezoid addition). Then, it

increases by 200 per second from the next cycle and it outputs 5910 in 30s.
TARG_AL is on in case of Y ≥ 5000
TP1_AL is on in case of 5000 – TP1 ≤ Y ≤ 5000 + TP1
TP2_AL is on in case of 5000 – TP2 ≤ Y ≤ 5000 + TP2
TP3_AL is on in case of 5000 – TP3 ≤ Y ≤ 5000 + TP3
TP4_AL is on in case of 5000 – TP4 ≤ Y ≤ 5000 + TP4

(2) In case of X=200, T_s=T#5s: output Y increases from 10 (Y_RESET) by 500 for the first cycle (trapezoid addition). Then, it

increases by 1000 per 5 seconds from the next cycle and it outputs 5510 in 30s.
TARG_AL is on in case of Y ≥ 5000
TP1_AL is on in case of 5000 – TP1 ≤ Y ≤ 5000 + TP1
TP2_AL is on in case of 5000 – TP2 ≤ Y ≤ 5000 + TP2
TP3_AL is on in case of 5000 – TP3 ≤ Y ≤ 5000 + TP3
TP4_AL is on in case of 5000 – TP4 ≤ Y ≤ 5000 + TP4

Chapter 13. Process Control Library

13-49

AVG_NUM(_R)
Average number output

Availability XGI, XGR, XEC(U)

Flags _LER

Function block Description

Input REQ : Function block execution request

MAN : Manual mode setting
MAN_Y : Manual output
X : Input
N : Average number
T_s : Operation cycle

Output DONE : On if done without error

STAT : State alarm
Y : Output value

■ Functions

(1) It receives input X every T_s and outputs N average value.
(2) Output Y is updated with a new average every N * T_s.
(3) If MAN bit is on, T_s is disregarded; output Y has MAN_Y.
(4) If N is 0 or not less than 30001, it outputs 8 to STAT.
(5) If operation result is out of the data expression of integer(INT), the output is limited to INT (-32768 ~ 32767).
(6) If in the operation procedure, X * N is out of the data expression range of real number (REAL), the output is indicated as

‘1.#inf00000 E+000’ or ‘-1.#inf00000 E+000’ and _LER flag is set. In the case, DONE bit is off.

■ Program Example

REQ
REQ

XX

T_sT_s

MAN_Y0
STAT
DONE

MAN0
Y

NN

(1) X increases by 1 per second from 0, T_s= T#1s, N=3 : Y increases by 3 per 3s
(2) X increases by 1 per second from 0, T_s= T#2s, N=3 : Y increases by 6 per 6s
(3) X increases by 1 per second from 0, T_s= T#1s, N=6 : Y increases by 6 per 6s

 Chapter 13. Process Control Library

13-50

AVG_MOV(_R)
Moving average output

Availability XGI, XGR, XEC(U)

Flags -

Function block Description

Input REQ : Function block execution request

MAN : Manual mode setting
MAN_Y : Manual output
X : Input
N : Average number
T_s : Operation cycle

Output DONE : On if done without error

STAT : State alarm
Y : Output value

■ Functions

(1) It receives input X every T_s and outputs the values before the present time and N average value.
(2) Output Y is updated with a new average every T_s.
(3) If MAN bit is on, T_s is disregarded; output Y has MAN_Y.
(4) If N is 0 or not less than 101, it outputs 8 to STAT.
(5) If operation result is out of the data expression of integer (INT), the output is limited to INT (-32768 ~ 32767).
(6) If in the operation procedure, X * N is out of the data expression range of real number (REAL), the output is indicated as

‘1.#inf00000 E+000’ or ‘-1.#inf00000 E+000’ and in the case, DONE bit is off.

■ Program Example

(1) X increases by 1 from 0, T_s= T#1s, N=3 : Y increases by 1 per second
(2) X increases by 1 from 0, T_s= T#2s, N=3 : Y increases by 2 per 2 seconds
(3) X increases by 1 from 0, T_s= T#1s, N=6 : Y increases by 1 per second

Chapter 13. Process Control Library

13-51

13.5 Data Measuring Function, Function Block

ALARM_R
Alarm indicator

Availability XGI, XGR, XEC(U)

Flags -

Function block Description

DONE BOOLREQBOOL
XINT

YH1_AL BOOL
YH2_AL BOOL
YL1_AL BOOL
YL2_AL BOOL

X_max_AL BOOL
X_min_AL BOOL

YH2_OFFBOOL
YH1_OFFBOOL

YL1_OFFBOOL
YL2_OFFBOOL
YH1REAL
YH2REAL
YL1REAL
YL2REAL
YH1_DTTIME
YH2_DTTIME
YL1_DTTIME
YL2_DTTIME

Y REAL

X_MININT
X_MAXINT

Y_sMINREAL
Y_sMAXREAL

STAT USINT

Input REQ : Function block execution request

X : Input
YH1_OFF : Output value high 1 section off bit
YH2_OFF : Output value high 2 section off bit
YL1_OFF : Output value low 1 section off bit
YL2_OFF : Output value low 2 section off bit
YH1 : Output high 1 section value
YH2 : Output high 2 section value
YL1 : Output low 1 section value
YL2 : Output low 2 section value
YH1_DT : Output high 1 section waiting time (sec)
YH2_DT : Output high 2 section waiting time (sec)
YL1_DT : Output low 1 section waiting time (sec)
YL2_DT : Output low 2 section waiting time (sec)
X_MAX : Max. input limit
X_MIN : Min. input limit
Y_sMAX : Max. output scale
Y_sMIN : Min. output scale

Output DONE : On if done without error

Y : Output value
STAT : State alarm
YH1_AL : Output high 1 section alarm
YH2_AL : Output high 2 section alarm
YL1_AL : Output low 1 section alarm
YL2_AL : Output low 2 section alarm
X_max_AL: Input high alarm
X_max_AL: Input high alarm

■ Functions

(1) It changes and outputs integer input X to real number; it can execute the operations of 2 upper limits, 2 lower limits
and scale.

(2) Since input is integer type, it receives input from special module or external device and uses it as its input with no
conversion.

(3) It executes scale operation from the value between X_MIN ~ X_MAX to the value between Y_sMIN ~ Y_sMAX.
(4) YH1 and YH2 may set high limits and notify an operator of any fault; with it, an operator may set whether to use the

function (YH_OFF) and the delay time (YH_DT).
(5) YL1 and YL2 may set low limits and notify an operator of when it is not more than it; with it, an operator may set

whether to use the function (YL_OFF) and the delay time (YL_DT).
(6) In case of X_max = X_min, it does not work because the denominator is 0 and STAT outputs 8.

 Chapter 13. Process Control Library

13-52

■ Program Example

(1) In case of X = 8900: Y = 11125, YH2_AL on in 2s
(2) In case of X = 11000: Y = 13750, YH1_AL on in a second, YH2_AL on in 2s
(3) In case of X = 2100: Y = 2625, YL1_AL on in 3s
(4) In case of X = 1200: Y = 1500, YL1_AL on in 3s, YL2_AL on in 4s.

Chapter 13. Process Control Library

13-53

HYS(_R)
Directional deadband

Availability XGI, XGR, XEC(U)

Flags -

Function block Description

Input REQ : Function block execution request

X : Input
UP_in : Up set trigger
UP_out : Up reset trigger
DN_out : Down reset trigger
DN_in : Down set trigger

Output DONE : On if done without error

STAT : State alarm
UP_AL : Max. value high alarm
DN_AL : Min. value high alarm

■ Functions

(1) It receives input X, applies directional deadband (hysterisis) to it and notifies an operator of UP/DOWN state.
(2) In case of UP_in < X, UP_AL is on.
(3) In case of UP_out ≤ X ≤ UP_in, it maintains the previous UP_AL state.
(4) In case of X < UP_out, UP_AL is off.
(5) In case of X < DN_in, DN_AL is on.
(6) In case of DN_in ≤ X ≤ DN_out, it maintains the previous DN_AL state.
(7) In case of DN_out < X, DN_AL is off.
(8) In case UP_in value is not more than UP_out value, it outputs 8 to STAT.
(9) In case DN_out value is not more than DN_in value, it outputs 8 to STAT.

X

UP_AL

UP_out

UP_in

DN_out

DN_in

DN_AL

 Chapter 13. Process Control Library

13-54

■ Program Example

REQ
REQ

STAT
DONE

DN_AL
UP_AL

XX

UP_out600
UP_in700

DN_in100
DN_out200

(1) If X is changed from 0 to 800: UP_AL on, DN_AL off
(2) If X is changed from 800 to 650: UP_AL on, DN_AL off
(3) If X is changed from 650 to 300: UP_AL off, DN_AL off
(4) If X is changed from 300 to 50: UP_AL off, DN_AL on
(5) If X is changed from 50 to 150: UP_AL off, DN_AL on

Chapter 13. Process Control Library

13-55

RATE(_R)
Measuring Variation Per Section

Availability XGI, XGR, XEC(U)

Flags -

Function block Description

Input REQ : Function block execution request

MAN : Converting to Manual mode
MAN_Y : Manual output value
PAUSE : Pause
X : Input
LAG : LAG filter coefficient
T_s : Operation cycle

Output DONE : On if done without error

STAT : State alarm
Y : Output value
X_old : Previous X

■ Functions

(1) RATE function is the instruction indicating the variation per second of input X.
(2) If MAN bit is on, it outputs MAN_Y.
(3) If PAUSE bit is on, the block pauses.
(4) If setting time constant in LAG, it processes it with low pass filter of input.
(5) The I/O equation of RATE instruction including LAG is as follows.

sec]:[T_s
old

Y
Ts

oldXX

T_sLAG
T_s

old
YY)-

+
(×

+
+=

(6) The above equation may be summarized as follows if LAG is 0.

sec]:[T_s
Ts

oldXX
Y

-
=

(7) If the operation result is out of the data expression range of integer (INT), the output is limited to INT (-32768 ~ 32767).
(8) If the operation result is out of the data expression range of real number (REAL), the output displays as ‘1.#inf00000 E+000’

or ‘-1.#inf00000 E+000’. In the case, DONE bit is off but the internal state (i.e. X_old) is normally processed.

 Chapter 13. Process Control Library

13-56

■ Program Example

(1) If X increases by 1 per second, Y outputs 1
(2) If X increases from 10 by 1 per second, Y outputs 1
(3) If X decreases from 10 by 30 per second, Y outputs -30

Chapter 13. Process Control Library

13-57

DMON(_***)
Saving input array as much as output array

Availability XGI, XGR, XEC(U)

Flags -

Function block Description

Input REQ : Function block execution request

SNG/LOOP : Single/Loop operation
X : Input
T_s : Operation cycle
Y : Output value

Output DONE : On if done without error
STAT : State alarm
FULL : Output array full
LOOP : No. of full output array
INDEX : Array No. of location to save

■ Functions

(1) It is used to save the data that are changing temporally.
(2) It saves input X to Y (Array) every operation cycle (T_s).
(3) DMON function block is INT type instruction; the data type started with DMON such as _DI (DINT), _R (REAL), _UI (UINT),

_UDI (UDINT), _W (WORD) and _DW (DWORD) may be used selectively, depending on I/O data.
(4) If SNG_LOOP is off, it is engaged in single operation, saves as much as no. of array and stops with FULL on.
(5) If SNG_LOOP is on, it is engaged in loop operation, saves as much as no. of array and continues to rewrite the original

values from the first.
(6) If SNG_LOOP is converted to single/loop, it is necessary to allow REQ again and initialize it prior to use.
(7) During loop operation, LOOP increases ever time array is full. If LOOP value is over 65535, it is reset to 0.

■ Program Example

Y is set to ARRAY [0..10] of INT type.
(1) X increases from 0 by 1 per second Y[0]=0 … a value is saved in good order of Y[10]=10 and it results in FULL=on from 12s.
(2) X increases from 10 by 1 per second : a value is saved per second in good order of Y[0]=10 … Y[10]=20 and it results in

FULL=on from 12s.
(3) X decreases from 10 by 3 per seconds : a value is saved per second in good order of Y[0]=10 … Y[10]=-20 and it results in

FULL=on from 12s.

 Chapter 13. Process Control Library

13-58

13.6 Data Function Block, Function Block

POWF
PF Instrument

Availability XGI, XGR, XEC(U)

Flags -

Function block Description

Input REQ : Function block execution request

MODE : Mode conversion
PAUSE : Pause
X : Input
LEAD_OFF : Lead alarm off
LAG_OFF : Lag alarm off
LEAD_DT : Lead alarm ON delay time
LAG_DT : Lag alarm ON delay time
X_max : Max. input limit
X_min : Min. input limit

Output DONE : On if done without error

STAT : State alarm
Y : Output value
X_pcnt : Percent output
LEAD_AL : Lead alarm
LAG_AL : Lag alarm
X_max_AL : Max. value high alarm
X_min_AL : Min. value low alarm

■ Functions

(1) By referring to the input X receiving from PF sensor, it generates output Y along the PF profile.
(2) The max./min. value of input X is limited by setting X_max and X_min.
(3) Input X is converted to the unit of % by setting X_max and X_min, indicated in X_PCNT and executes operation

with %.
(4) Profile type is selected depending on mode (0 ~ 3 selectable). The outputs by modes are as presented in the figure below.

a) MODE 0 : inclination 0.5, lead offset 1 and lag offset -1.
b) MODE 1 : inclination 1, lead offset 1 and lag offset -1.
c) MODE 2 : inclination -0.5, lead offset -1 and lag offset 1.
d) MODE 3 : inclination -1, lead offset -1 and lag offset 1.

(5) At a point where X is 50%(center of the graph), output Y is defined as 0.
(6) If PAUSE is on, operation stops and it does not indicate alarm bit until operation resumes.
(7) It indicates lead and lag in LEAD_AL and LAG_AL and it is possible to set indication (_OFF) and delay time (_DT).
(8) It is possible to set the max./min. value of input X in X_max and X_min.
(9) When MODE is more than 3, it outputs 8 to STAT.
(10) In case of X_max = X_min, it does not operate because the denominator is 0 and STAT indicates 8.
(11) Input-output may have an error less than 0.001%.

Chapter 13. Process Control Library

13-59

50
%

52
%

47
%

al
ar

m
 O

F
F

 s
ec

ti
o

n

0.5

0

-0.5

1

-1

0%

10
0%

input X

Y

Y

LAG alarm
section

LEAD alarm
section

MODE = 2

50
%

52
%

47
%

al
ar

m
 O

F
F

 s
ec

ti
o

n
0.5

0

-0.5

1

-1

0%

10
0%

input X

Y

Y

LAG alarm
section

LEAD alarm
section

MODE = 3

■ Program Example

(1) If X is 0 : X_PCNT = 0 and Y = 0.5, in 1 second, LEAD_AL = on, LAG_AL = off
(2) If X is 1500 : X_PCNT = 50 and Y = 0, LEAD_AL = off, LAG_AL = off
(3) If X is 2000 : X_PCNT = 66 and Y = -0.84, LEAD_AL = off, in 2 seconds LAG_AL = on

 Chapter 13. Process Control Library

13-60

LOOKUP(_R)
LOOK-UP Table output

Availability XGI, XGR, XEC(U)

Flags -

Function block Description

Input REQ : Function block execution request

X : Input
REF_X : X coordinate array of LOOK-UP table
REF_Y : Y coordinate array of LOOK-UP table

Output DONE : On if done without error

STAT : State alarm
Y : Output value
X_max_AL : REF_X high alarm
X_min_AL : REF_X low alarm

■ Functions

(1) By using input array (REF_X) and output array (REF_Y), it creates LOOK-UP table by sections and gets output by applying
input X.

(2) Input array REF_X should be arranged in ascending order, and if the elements of array are same, it generates
alarm.

(3) If the value inputted through input X is same or out of the range of input array (REF_X), it indicates X_max_AL and
X_min_AL.

(4) If the elements of REF_X are not arranged in ascending order, STAT outputs 8.
(5) If the no. of REF_X and REF_Y arrays are different, STAT outputs 8.
(6) If operation result is out of the data expression range of integer (INT), the output is limited to INT (-32768 ~ 32767).
(7) If operation result is out of the data expression range of real number (REAL), it is indicated as ‘1.#inf00000 E+000’ or ‘-

1.#inf00000 E+000’, and in the case, DONE bit is off but the internal state (i.e. X_max_AL, X_min_AL) is normally processed.

Chapter 13. Process Control Library

13-61

■ Program Example

It sets REF_X as ARRAY [0..4] of INT and also sets the element of array as [10, 20, 30, 40, 50].
It sets REF_Y as ARRAY [0..4] of INT and also sets the elements of array as [10, 20, 10, 50, 20].
(1) If X is 5: Y = 10, X_min_AL = on, X_max_AL = off
(2) If X is 15 : Y = 15, X_min_AL = off, X_max_AL = off
(3) If X is 45 : Y = 35, X_min_AL = off, X_max_AL = off
(4) If X is 100 : Y = 20, X_min_AL = off, X_max_AL = on

 Chapter 13. Process Control Library

13-62

F_RAMP(_R)
Singular RAMP Function output

Availability XGI, XGR, XEC(U)

Flags -

Function block Description

DONE BOOLREQBOOL
STARTBOOL Y INT(REAL)
Y_FININT(REAL)
T_STARTTIME
T_RISETIME

FIN BOOL

Y_OFFSETINT(REAL)

Input REQ : Function block execution request

START : Operation start
Y_FIN : RAMP function target value
T_START : Operation waiting time
T_RISE : Total rise section
Y_OFFSET : Output offset

Output DONE : On if done without error

Y : Output
FIN : Normal state alarm

■ Functions

(1) It outputs RAMP function.
(2) In case of START on, it starts waveform output.
(3) If REQ is off, it maintains the value of last state in an operation.
(4) If START is off with REQ on, it initializes with its initial value and waits for operation start (START on).
(5) it sets RAMP function target value in Y_FIN, waiting time after start in T_START, waveform rise time in T_RISE and offset in

Y_OFFSET.
(6) If waveform rise is finished, FIN is on.
(7) F_RAMP: if Y_FIN + Y_OFFSET is out of the data expression range of Y (INT), it is limited to -32768 ≤ Y ≤ 32767.
(8) F_RAMP_R: if Y_FIN + Y_OFFSET is out of the data expression range of Y (REAL), the result is indicated as ‘1.#inf00000

E+000’ or ‘-1.#inf00000 E+000’ during operation and in the case, DONE bit is off but the internal state(that is, FIN)
is normally processed.

F
IN

Y
_

 The equation of each section is as follows.
 s0 : Y = Y_OFFSET

s1 : Y = Y_FIN * (t – T_START) / T_RISE + Y_OFFSET
s2 : Y = Y_FIN + Y_OFFSET
(where, t is the time passed after START)

Chapter 13. Process Control Library

13-63

■ Program Example

REQ
REQ DONE
STARTSTART Y
Y_FIN1000
T_STARTT#2s
T_RISET#8s

FIN

Y_OFFSET100

If setting START on with the above setting, it is possible to get a waveform increasing from 100 to 1000 in 2s.

 Chapter 13. Process Control Library

13-64

F_SAWS_R
SAW Tooth Wave Output

Availability XGI, XGR, XEC(U)

Flags -

Function block Description

Input REQ : Function block execution request
START : Operation start
AMP : SAWS function target value
T_HALF : Function half cycle
T_REST1 : Waveform waiting time 1
T_REST2 : Waveform waiting time 2
UNIPOLAR : Unipolar function output
Y_OFFSET : Output offset

Output DONE : On if done without error

Y : Output value
CNT : Output repeat frequency

■ Functions

(1) It outputs saw tooth wave.
(2) In case of START on, it starts waveform output.
(3) If REQ is off, it maintains the value of last state in an operation.
(4) If START is off with REQ on, it initializes with its initial value and waits for operation start (START on).
(5) It sets amplitude of SAWS function in AMP, rise time of saw tooth wave in T_HALF and offset in Y_OFFSET.
(6) If UNIPOLAR is on, it outputs unipolar function; in case of off, it outputs bipolar function.
(7) Function’s output count CNT increases once a cycle output ends; if it is over 65535, the range of UINT, it increases from 0

again.
(8) In case it skips a scan (if scan is longer than 1msec), scan may have an error at S2 and S5, the max./min. values; an error is

larger because as smaller H_HALF value as larger the inclination of a graph.
(9) F_SAWS: if Y_FIN + Y_OFFSET is out of the data expression range of Y (INT), it is limited to -32768 ≤ Y ≤ 32767.
(10) F_SAWS_R: if Y_FIN + Y_OFFSET is out of the data expression range of Y (REAL), it is indicates as ‘1.#inf00000 E+000’ or

‘-1.#inf00000 E+000’during operation and in the case, DONE bit is off but the internal state (that is, CNT) is
normally processed.

Chapter 13. Process Control Library

13-65

 Chapter 13. Process Control Library

13-66

■ Program Example

In case of START on in the above setting, it outputs the waveform.

Chapter 13. Process Control Library

13-67

F_TRIA_R
Triangular wave output

Availability XGI, XGR, XEC(U)

Flags -

Function block Description

Input REQ : Function block execution request

START : Operation start
AMP : TRIA function target value
T_HALF : Function half cycle
T_REST1 : Waveform waiting time 1
T_REST2 : Waveform waiting time 2
UNIPOLAR : Unipolar function output
Y_OFFSET : Output offset

Output DONE : On if done without error

Y : Output value
CNT : Output repeat frequency

■ Functions

(1) It outputs triangular wave.
(2) In case of START on, it starts waveform output.
(3) If REQ is off, it maintains the value of last state in an operation.
(4) If START is off with REQ on, it initializes with its initial value and waits for operation start (START on).
(5) It sets amplitude of TRIA function in AMP, triangular rise time in T_HALF and offset in Y_OFFSET.
(6) If UNIPOLAR is on, it outputs unipolar function; in case of off, it outputs bipolar function.
(7) Function’s output count CNT increases once a cycle output ends; if it is over 65535, the range of UINT, it increases from 0

again.
(8) In case it skips a scan (if scan is longer than 1m), scan may have an error at S2 and S5, the max./min. values; an error is

larger because as smaller H_HALF value as larger the inclination of a graph.
(9) F_TRIA: if Y_FIN + Y_OFFSET is out of the data expression range of Y (INT), it is limited to -32768 ≤ Y ≤ 32767.
(10) F_TRIA_R: if Y_FIN + Y_OFFSET is out of the data expression range of Y (REAL), it is indicates as ‘1.#inf00000 E+000’ or ‘-

1.#inf00000 E+000’during operation and in the case, DONE bit is off but the internal state (that is, CNT) is normally
processed.

 Chapter 13. Process Control Library

13-68

■ Program Example

In case of START on in the above setting, it outputs the waveform.

Chapter 13. Process Control Library

13-69

F_SQUR_R
Square wave output

Availability XGI, XGR, XEC(U)

Flags -

Function block Description

Input REQ : Function block execution request

START : Operation start
AMP : SQUR function target value
T_HALF : Function half cycle
T_REST1 : Waveform waiting time 1
T_REST1 : Waveform waiting time 2
UNIPOLAR : Unipolar function output
Y_OFFSET : Output offset

Output DONE : On if done without error

Y : Output value
CNT : Output repeat frequency

■ Functions

(1) It outputs square waveform.
(2) In case of START on, it starts waveform output.
(3) If REQ is off, it maintains the value of last state in an operation.
(4) If START is off with REQ on, it initializes with its initial value and waits for operation start (START on).
(5) It sets amplitude of SQUR function in AMP, rise half cycle of square wave in T_HALF and offset in Y_OFFSET.
(6) If UNIPOLAR is on, it outputs unipolar function; in case of off, it outputs bipolar function.
(7) Function’s output count CNT increases once a cycle output ends; if it is over 65535, the range of UINT, it increases from 0

again.
(8) F_SQUR: if Y_FIN + Y_OFFSET is out of the data expression range of Y (INT), it is limited to -32768 ≤ Y ≤ 32767.
(9) F_SQUR_R: if Y_FIN + Y_OFFSET is out of the data expression range of Y (REAL), it is indicates as ‘1.#inf00000 E+000’ or

‘-1.#inf00000 E+000’during operation and in the case, DONE bit is off but the internal state (that is, CNT) is
normally processed.

 Chapter 13. Process Control Library

13-70

■ Program Example

In case of START on in the above setting, it outputs the waveform.

Chapter 13. Process Control Library

13-71

F_TRAP_R
Trapezoid wave output

Availability XGI, XGR, XEC(U)

Flags -

Function block Description

Input\ REQ : Function block execution request
START : Operation start
AMP : TRAP function target value
T_HALF : Function half cycle
T_RISE : Trapezoid output time
T_REST1 : Waveform waiting time 1
T_REST1 : Waveform waiting time 2
UNIPOLAR : Unipolar function output
Y_OFFSET : Output offset

Output DONE : On if done without error

Y : Output value
CNT : Output repeat frequency

■ Functions

(1) It outputs trapezoid wave.
(2) In case of START on, it starts waveform output.
(3) If REQ is off, it maintains the value of last state in an operation.
(4) If START is off with REQ on, it initializes with its initial value and waits for operation start (START on).
(5) It sets amplitude of TRAP function in AMP, trapezoid output time in T_RISE, half cycle of waveform in T_HALF and offset in

Y_OFFSET.
(6) If UNIPOLAR is on, it outputs unipolar function; in case of off, it outputs bipolar function.
(7) Function’s output count CNT increases once a cycle output ends; if it is over 65535, the range of UINT, it increases from 0

again.
(8) If T_RISE is more than half of T_HALF, it outputs triangular wave and the output of AMP scale is not secured.
(9) F_TRAP: if Y_FIN + Y_OFFSET is out of the data expression range of Y (INT), it is limited to -32768 ≤ Y ≤ 32767.
(10) F_TRAP_R: if Y_FIN + Y_OFFSET is out of the data expression range of Y (REAL), it is indicates as ‘1.#inf00000 E+000’ or

‘-1.#inf00000 E+000’during operation and in the case, DONE bit is off but the internal state (that is, CNT) is
normally processed.

 Chapter 13. Process Control Library

13-72

P
A
M

P
A
M

■ Program Example

In case of START on in the above setting, it outputs the waveform.

Chapter 13. Process Control Library

13-73

F_SINE_R
Sine wave output

Availability XGI, XGR, XEC(U)

Flags _LER

Function block Description

Input REQ : Function block execution request

START : Operation start
AMP : SINE function target value
T_HALF : Function half cycle
T_REST1 : Waveform waiting time 1
T_REST2 : Waveform waiting time 2
UNIPOLAR : Unipolar function output
Y_OFFSET : Output offset

Output DONE : On if done without error

Y : Output value
CNT : Output repeat frequency

■ Functions

(1) It outputs sine wave.
(2) In case of START on, it starts waveform output.
(3) If REQ is off, it maintains the value of last state in an operation.
(4) If START is off with REQ on, it initializes with its initial value and waits for operation start (START on).
(5) It sets amplitude of SINE function in AMP, half cycle of sine wave in T_HALF and offset in Y_OFFSET.
(6) If UNIPOLAR is on, it outputs unipolar function; in case of off, it outputs bipolar function.
(7) Function’s output count CNT increases once a cycle output ends; if it is over 65535, the range of UINT, it increases from 0

again.
(8) In case it skips a scan (if scan is longer than 1m), scan may have an error at S2 and S5, the max./min. values; an error is

larger because as smaller H_HALF value as larger the inclination of a graph.
(9) F_SINE: if Y_FIN + Y_OFFSET is out of the data expression range of Y (INT), it is limited to -32768 ≤ Y ≤ 32767.
(10) F_SINE_R: if Y_FIN + Y_OFFSET is out of the data expression range of Y (REAL), it is indicates as ‘1.#inf00000 E+000’ or ‘-

1.#inf00000 E+000’during operation and _LER flag is set. In the case, DONE bit is off but the internal state (that is,
CNT) is normally processed.

 Chapter 13. Process Control Library

13-74

■ Program Example

ON
REQ

Y_OFFSET100

STARTSTART
AMP1000

T_REST2T#4s
UNIPOLAR0

T#10s T_HALF
T#4s

DONE BOOL
Y INT

CNT INT

T_REST1

In case of START on in the above setting, it outputs the waveform.

Chapter 13. Process Control Library

13-75

F_USER(_DI, _R)
User-defined wave output

Availability XGI, XGR, XEC(U)

Flags -

Function block Description

Input REQ : Function block execution request

PAUSE : Pause
RPT : Repeat
REF_TIME : Time array
REF_DATA : Data array

Output DONE : On if done without error
STAT : State alarm
Y : Output value
FIN : Output complete (if not repetitive)
CNT : Repeat frequency
TIMER : Timer value within FB

■ Functions

(1) It outputs user-defined waveform.
(2) If REQ is off, it maintains the value of last state in an operation.
(3) If the data of initial state (0 second) is not defined, it is regarded as the first value of REF_DATA. That is, if it is defined as the

first data (2 seconds, 3000), it outputs 3000 for 2 seconds just after wave start.
(4) Output pauses if PAUSE bit is on. However, the initialize output with REQ on is not limited by PAUSE.
(5) If RPT bit is on, the wave is repetitively output.
(6) A user defines the wave by using REF_TIME and REF_DATA.
(7) In case of singular (RPT = off), FIN is on after output is complete and TIMER indicates the progress time.
(8) In case of repetitive (RPT = on), it outputs repetitively from the first after output is complete. CNT indicates function output

count while timer displays the progress time of the cycle.
(9) The output count CNT of repetitive function increases if a cycle of output ends; if it is over 65535, the range of UINT, it

increases from 0 again.
(10) As soon as a waveform ends, RPT is checked; if RPT is on, it is regarded as repetitive function, and in case of off, it is

regarded as singular function. Even in case of repetitive waveform, it is regarded as singular function if RPT is off when the
waveform ends.

(11) If waveform output ends in singular function, FIN is on and waveform output does not resume even though RPT is changed.
It may be initialized after REQ is off.

(12) In case the elements of REF_TIME are not arranged in ascending order, STAT outputs 8.
(13) In case the number of REF_TIME and REF_DATA are different, STAT outputs 8.

 Chapter 13. Process Control Library

13-76

■ Program Example

REQ
REQ

STAT
DONE

PAUSE0
Y

FINREF_TIMEREF_TIME
RPT1

REF_DATAREF_DATA CNT
TIMER

It sets REF_TIME as ARRAY [0..2] of INT and also sets the element of array as [T#0s, T#5s, T#15s].
It sets REF_DATA as ARRAY [0..2] of INT and also sets the element of array as [10, 20, 5].
If you executes the above, the following waveform is outputted when REQ is allowed in the following block.

Chapter 14. ST (Structured Text)

14-1

Chapter 14. ST (Structured Text)

14.1 General
▷ ST program can use all of text editor and has high portability.

▷ It can express complicated expression and algorithm well

▷ A person skilled at computer language can use easily.

14.2 Comments
There are two types in comments, one line comment and block comment.

- One line comment uses “//”, that line is used as comment line.

- Block comment considers text between “*” and “*”.

For example)

 Chapter 14. ST (Structured Text)

14-2

14.3 Expression
1) Expression always has result value.

2) Expression consists of operator and operand. Operand may be constant, character, character string, time character,

defined variable (named variable, direct variable), defined function (function, function block). Operator of ST is

described in the follow table. And also expression is calculated according to order of operator of ST language table.

3) Among same operations which have same order, operation in left of expression has higher order.

For example: A+B-C: first, adds A to B and subtracts C from result of A+B.

If operator has two operands, left operand executes first.

For example, SIN(A)*COS(B): SIN(A) executes first and COS(B) executes last.

4) When executing operation, the following condition is dealt with error.

 - Division by 0

 - Operand is not applicable data type for operation.

 For example, ADD(1,2,3): unable to determine the data type of number so compile error occurs

- Result of arithmetic operation exceeds range of data type.

For example, B*C: When B, C are UINT type, result is higher than 65,535, operation error occurs.

Number Operation Symbol Order

1 Parenthesis (Expression) High

Low

2 Function Function name (Parameter list)

Ex.) ADD(X, Y)

3 not

Complement

-

NOT

4 Exponent **

5 Multiplication

Division

Remain

*

/

MOD

6 Add

Subtract

+

-

7 Compare <, >, <=, >=

8 same

Not same

=

<>

9 Bool logical AND &

AND

10 Bool logical Exclusive OR XOR

11 Bool logical OR OR

Chapter 14. ST (Structured Text)

14-3

<Table 1> Operator of ST language

5) Bool type expression is calculated until determining the result value.

6) Function is recalled as an expression factor which has function name and parenthesis including parameter. When function is used in

the expression, operand and conversion of result follows as in the following table.

Method
Characteristic

OUT := LIMIT(MIN, IN, MX); Variable
Assignment

Variable Order No. of Variable

Fixed
type

Available Changeable Changeable Function Ex.
A:= LIMIT(IN:= B, MX:= 5, MIN:= 1);
Function block Ex.
INST_TOF (BOOL_IN,TIME_PT, BOOL_Q,TIME_ET)

Non-fixed

type

Unavailable Fixed Fixed Function Ex
A:= LIMIT(1, B, 5);
Function block Ex.
INST_TOF (BOOL_IN,TIME_PT, BOOL_Q,TIME_ET)

- EN, ENO parameter cannot be used.

- VAR_IN_OUT can be used one time.

- Function block uses instant name. Ex: INST_TON1(IN := TRUE, PT := T#100MS, Q =>Q_OUT, ET => ET_OUT).

- In fixed type, in case, inner parameter is VAR_INPUT, VAR_IN_OUT, ‘:=’ is used.

- In fixed type, in case, inner parameter is VAR_OUTPUT, ‘=>’ is used.

 Chapter 14. ST (Structured Text)

14-4

14.3.1 + Operator

1) + Operator is used to add two operands.

2) Expression

result := expression1 + expression2

Example Description

Val1 := 20;

Val2 := 4;

Result := Val1 + Val2;

Adds Val1(20) to Val2(4) and inputs result

Value of Result becomes 24.

Constant and variable can be used as operands (Val1, Val2).

Note

ANY_NUM includes ANY_REAL type and ANY_INT. For more detail, refer to data type layer of ch.3.2.2

14.3.2 - Operator

1) Subtracts right value from left value.

2) Expression

result := expression1 - expression2

Items Description

result Named variable or direct variable

expression1 ANY_NUM

expression2 ANY_NUM

Example Description

Val1 := 20;

Val2 := 4;

Result := Val1 - Val2;

Subtracts right value(Val2) from left value(Val1) and inputs result.

Value of result becomes 16

Constant and variable can be used as operands (Val1, Val2).

Items Description
Result Named variable or direct variable

expression1 ANY_NUM type

expression2 ANY_NUM type

Chapter 14. ST (Structured Text)

14-5

14.3.3 * Operator

1) Multiplies two operands

2) Expression

result := expression1 * expression2

Items Description

result Named variable or direct variable
expression1 ANY_NUM type
expression2 ANY_NUM type

Example Description

In1 := 2 ;

Result := 20 * In1 ;

Multiplies 20 by In1(2) and inputs result.

Value of result becomes 40.

Constant and variable can be used as operands (Val1, Val2).

14.3.4 / Operator

1) Divides left value by right value.

2) Data type of result is different according to data type of operand. If operand is REAL type, result is also REAL type. If

operand is integer, result is also integer. If 5 (int) is divided by 3 (int), result is real but number less than decimal point

is removed.

3) Expression

result := expression1 / expression2
Item Description

result Named variable or direct variable
expression1 ANY_NUM type
expression2 ANY_NUM type

Example Description

In1 := 2 ;

Result := 20 / In1 ;

Divides 20 by 2(ln1) and inputs result.
Result becomes 10.
Constant and variable can be used as operands.

 Chapter 14. ST (Structured Text)

14-6

Notes

If some value is divided by 0, operation error flag (_ERR) is on and CPU is in RUN mode.

14.3.5 MOD operation

1) Finds remain when dividing left value by right value

2) Expression

result := expression1 MOD expression2
Item Description

result Named variable or direct variable
expression1 ANY_NUM type
expression2 ANY_NUM type

Example Description

In1 := 10 ;

Result := 12 MOD In1 ;

Divides 12 by 10(ln1) and inputs remain into result

Constant and variable can be used as operands.

Notes

If some value is divided by 0, operation error flag (_ERR) is on and CPU is in RUN mode.

14.3.6 ** Operator

1) Exponential operator is used to multiply left number as many as right number times

2) Expression

result := expression1 ** expression2
Items Description

result Named variable or direct variable
expression1 ANY_REAL type
expression2 ANY_REAL type

Example Description

In1 := 3 ;

Result := 10 ** In1 ;

Multiplies 10 as many as 3 times and inputs it to result.
Result becomes 1000.
Constant and variable can be used as operands.

Chapter 14. ST (Structured Text)

14-7

14.3.7 AND or & Operator

1) Executes logical bit AND operation.

2) Expression

result := expression1 AND expression2 or result := expression1 & expression2

Item Description

result Named variable or direct variable
expression1 ANY_BIT type
expression2 ANY_BIT type

Result of logical bit AND operation is as follows.

expression1 expression2 result

0 0 0

0 1 0

1 0 0

1 1 1

Example Description

Result := 2#10010011 AND 2#00111101 ; Since first bit and 5th bit of two operands are both 1, result is

2#00010001.

Constant and variable can be used as operands.

14.3.8 OR operator

1) Executes logical bit OR operation.

2) Expression

result := expression1 OR expression2
Items Description

result Named variable or direct variable
expression1 ANY_BIT type
expression2 ANY_BIT type

Result of logical bit OR operation is as follows.

expression1 expression2 result

0 0 0

0 1 1

1 0 1

1 1 1

 Chapter 14. ST (Structured Text)

14-8

Example Description

Result := 2#10010011 OR 2#00111101 ; Since there are 1 except 7th bit in two operands, result is

2#10111111.

14.3.9 XOR operator

1) If bits of two operands are different, result bit is 1.

2) Expression

result := expression1 XOR expression2
Item Description

result Named variable or direct variable
expression1 ANY_BIT type
expression2 ANY_BIT type

Result of logical bit XOR operation is as follows.

expression1 expression2 result

0 0 0

0 1 1

1 0 1

1 1 0

Example Description

Result := 2#10010011 XOR 2#00111101; Since first bits of two operands are 1, first bit of result is 0.

Result is 2#10101110.

14.3.10 Operator

1) Compares two operands if they are same.

2) Expression

result := expression1 = expression2
Item Description

result Named variable or direct variable
expression1 ANY type
expression2 ANY type

Chapter 14. ST (Structured Text)

14-9

Result of logical bit = operation is as follows.

expression1 expression2 result

0 0 1

0 1 0

1 0 0

1 1 1

Example Description

Val1 := 20;

Val2 := 20 ;

Result := Val1 = Val2 ;

Compares Val1 and Val2 and output result.

Result is 1.

14.3.11 <> operator

1) Compares two operands if they are not same.

2) Expression

result := expression1 <> expression2
Item Description

result Named variable or direct variable
expression1 ANY type
expression2 ANY type

Result of logical bit <> operation is as follows.

expression1 expression2 result

0 0 0

0 1 1

1 0 1

1 1 0

Example Description

Val1 := 20;

Val2 := 20 ;

Result := Val1 <> Val2 ;

Compares Val1 and Val2 and output result.

Result is 0.

14.3.12 > operator

1) Compares two operands if left one is larger than right one.

2) Expression

result := expression1 > expression2

 Chapter 14. ST (Structured Text)

14-10

Item Description
result Named variable or direct variable
expression1 ANY type
expression2 ANY type

Result of logical bit > operation is as follows.

expression1 expression2 result

0 0 0

0 1 0

1 0 1

1 1 0

Example Description

Val1 := 20;

Val2 := 10 ;

Result := Val1 > Val2 ;

Compares two operands if left one is larger than right one.

Result is 1.

14.3.13 < operator

1) Compares two operands if left one is smaller than right one.

2) Expression

result := expression1 < expression2
Item Description

result Named variable or direct variable
expression1 ANY type
expression2 ANY type

Result of logical bit < operation is as follows.

expression1 expression2 result

0 0 0

0 1 1

1 0 0

1 1 0

Example Description

Val1 := 20;

Val2 := 10 ;

Result := Val1 < Val2 ;

Compares two operands if left one is smaller than right one.

Result is 0.

Chapter 14. ST (Structured Text)

14-11

14.3.14 >= operator

1) Compares two operands if left one is larger than right one or same.

2) Expression

result := expression1 >= expression2
Item Description

result Named variable or direct variable
expression1 ANY type
expression2 ANY type

Result of logical bit >= operation is as follows.

expression1 expression2 result

0 0 1

0 1 0

1 0 1

1 1 1

Example Description

Val1 := 20;

Val2 := 20 ;

Result := Val1 >= Val2 ;

Compares two operands if left one is larger than right one or same.

Result is 1.

14.3.15 <= operator

1) Compares two operands if left one is smaller than right one or same.

2) Expression

result := expression1 <= expression2
Item Description

result Named variable or direct variable
expression1 ANY type
expression2 ANY type

Result of logical bit <= operation is as follows.

expression1 expression2 result

0 0 1

0 1 0

1 0 1

1 1 1

 Chapter 14. ST (Structured Text)

14-12

Example Description

Val1 := 2;

Val2 := 20 ;

Result := Val1 <= Val2 ;

Compares two operands if left one is smaller than right one or same.

Result is1.

14.3.16 NOT operator

1) Changes bit value from 1 to 0 or from 0 to 1.

2) Expression

result := NOT expression
Item Description

result Named variable or direct variable
expression ANY_BIT type

Example Description

Val1 = 2#1100;

Result:= NOT Val1 ;

Changes Val1 and output Result.

Result is 2#0011.

14.3.17 - operator

1) Adds negative sign into value.

2) Expression

result := - expression
item Description

result Named variable or direct variable
expression ANY_NUM type

Example Description

Val1 = 10;

Result:= - Val1 ;

Adds negative sign into value and output is result.

Result is -10.

Chapter 14. ST (Structured Text)

14-13

14.4 Statements
 Statement is ended by semi colon(;).

14.4.1 Assignment statements

1) Assignment statement consists of Variable, operator(:=) and expression.

Ex.) A := B + C ;

2) It is available to assign return value of function.

14.4.2 Selection statements

1) There are two types: IF and CASE.

2) According to specific condition, selection statement executes one statement or one group of statements among

diverse statements.

- IF

 (1) If condition of Bool expression is 1, it executes a group of statements.

(2) If condition is not 1, it does not execute group of statements. But there is ELSE, it executes a group of

statements following ELSE. If condition of ELSEIF is 1, a group of statements following ELEIF executes.

 - CASE

 (1) It consists of list of groups of statements and expression that calculates variable of INT type.

 (2) Each group can be set as integer and range of integer.

(3) A group of statements in range of Selector executes and if any value is not in range of Selector, a group of

statements following ELSE executes. If there is no ELSE, group of statements is not executed.

14.4.3 Iteration statements

1) There are three types, FOR, WHILE and REPEAT.

2) Some group executes repeatedly by iteration statement.

 - FOR

 (1) It is used when number of repetition is already determined.

 (2) In FOR statement, a group of statements executes repeatedly until END_FOR and status of repetition is

saved in control variable of FOR loop.

(3) Control variable, initial value and final value is expressed as integer type (SINT, INT, DINT) and does not

change by repeated statement. Checking the condition for the end executes at the start of each repetition. If

initial value exceeds the final value, a group of statements is not executed any more.

 - WHILE and REPEAT

(1) WHILE statement (ended by END_WHILE) executes repeatedly until Bool expression is 0.

(2) REPEAT statement (ended by UNTIL) executes repeatedly until Bool expression is 1.

 Chapter 14. ST (Structured Text)

14-14

(A group of statements executes at least one time)

(3) WHILE and REPEAT is not used for synchronizing process like “wait loop” which has the end condition

determined exteriorly.

(4) EXIT statement is used to end iteration statements before meeting the end condition.

(5) EXIT statement is used to stop repetition before meeting the condition. When EXIT statement is used in

overlapped repetition statements, relevant EXIT is applied to the loop in which EXIT exists. So, statements

after first loop terminator (END_FOR, END_WHILE, END_REPEAT) are executed.

(6) IF WHILE and REPEAT are executed in unlimited loop, error occurs.

Number Command Example

1 Assignment A:=B; CV:= CV+1; C:=SIN(X);

2 Recall of FB

Using output of FB

CMD_TMR(IN:=%IX5, PT:= T#300ms);

A:=CMD_TMR.Q;

3 RETURN RETURN;

4 IF D:=B*B -4*A*C;

IF D<1.0 THEN NROOTS :=0;

ELSIF D= 0.0 THEN

 NROOTS := 1;

 X1:= -B/(2.0*A);

ELSE
 X1:= (-B+SQRT(D))/(2.0*A);

 X2:= (-B-SQRT(D))/(2.0*A);

END_IF;

5 CASE TW := BCD_TO_INT(THUMBWHEEL);

TW_ERROR := 0;

CASE TW OF

1, 5: DISPLAY := OVEN_TEMP;

2: DISPLAY := MOTOR_SPEED;

3: DISPLAY := GROSS – TARE;

4,6..10: DISPLAY := STATUS(TW-4);

ELSE DISPLAY := 0;

TW_ERROR := 1;

END_CASE;

QW100 := INT_TO_BCD(DISPLAY);

6 FOR J := 101;

FOR I := 1 TO 100 BY 2 DO

Chapter 14. ST (Structured Text)

14-15

Number Command Example

 IF WORDS[I] = ‘KEY’ THEN

 J := I;

 EXIT;

 END_IF;

END_FOR ;

7 WHILE J := 1;

WHILE J <= 100 & WORDS[J] <> ‘KEY’ DO

 J := J+2;

END_WHILE;

8 REPEAT J := -1;

REPEAT
 J := J+2;

UNTIL J = 101 OR WORDS[J] = ‘KEY’

END_REPEAT ;

9 EXIT EXIT;

10 Null/Space command text ;

EXIT is used for all repetition texts (FOR, WHILE, REPEAT).
<Table 3> Command for ST

14.4.4 IF

1) It is used for program to select more than one

2) Expression

IF condition THEN statements [ELSE elsestatements] END_IF

Or

IF condition THEN
 statements
[ELSIF condition-n THEN
 elseifstatements] . . .
[ELSE
 elsestatements]
END_IF

Item Description

condition If condition is TRUE, a statement following THEN is executed.
In case of FLASE, ELSIF or ELSE executes.

statements If condition is TRUE, a statement more than one executes.

 Chapter 14. ST (Structured Text)

14-16

Item Description

condition-n N conditions can be used.

elseifstatements If condition-n is TRUE, a statement more than one executes.

elsestatements If condition or condition-n is false, a statement more than one executes.

Example Description
IF Val1 <= 10 THEN
 Result := 10;
END_IF;

If condition (Val1 <= 10) is TRUE, 10 is assigned into result.

IF Val1 <= 10 THEN
 Result := 10;
ELSE
 Result := 20;
END_IF;

If condition (Val1 <= 10) is TRUE, 10 is assigned into result.

If condition is FALSE, 20 is assigned into result.

IF Val1 <= 10 THEN

 Result := 10;

ELSIF Val1 <= 20 THEN

 Result := 20;

ELSE

 Result := 30;

END_IF;

If condition (Val1 <= 10) is TRUE, 10 is assigned into result.

If condition is FALSE, ELSEIF executes. If second condition (Val <= 20) is

TRUE, 20 is assigned into result. If second is FALSE, a statement under

ELSE executes. Namely, 30 is assigned into result.

14.4.5 CASE

1) Diverges according to value of expression following CASE. Expression should be integer. When value of expression is

not included in case list, a statement after ELSE executes. If there is no ELSE, no statement list executes.

2) Expression

CASE expression OF

case_list : statement_list

{ case_list : statement_list}

[ELSE

statement_list]

END_CASE

Item Description

expression Only INT type is available.

case_list case_list_element {',' case_list_element}

There are diverse statement like above.

Chapter 14. ST (Structured Text)

14-17

Item Description

case_list_element Subrange or signed_integer are available

subrange signed_integer .. signed_integer type

statement_list Executes more than one statements

Example Description

CASE Val1 OF

1 : Result := 10 ;

2..5 : Result := 20 ;

7, 10 : Result := 30 ;

ELSE

Result := 40 ;

END_CASE ;

If value of Val1 is 1, 10 is assigned into result.

If value of Val1 is 2~5, 20 is assigned into result.

If value of Val1 is 7 or 10, 30 is assigned into result.

In case of other values, 40 is assigned into result.

14.4.6 FOR

1) It is used to deal with repetition and uses three control statements. First, statement for initialization is necessary. If To

expression is TRUE (present counter value is less than end value), loop executes one time. Then counter values

increases as many as BY value and condition is checked again. In FOR statement, condition is checked first and loop

executes later. So no loop may be executed.

2) Expression

FOR counter := start TO end [BY step] DO

 statements

END_FOR

Item Description

counter Integer (SINT, INT, DINT) s

start, end, step should be the same type.

start Initial value of counter

end Last value of counter

step Indicates increment of count variable whenever loop executes. If this is not used,

increment is 1.

statements It executes according to three control texts.

Example Description

SUM := 0;

FOR counter := 0 TO 10 DO

Counter variable increases from 0 to 10 as many as 1. 1 is added

into SUM variable repeatedly. Final value of SUM is 11.

 Chapter 14. ST (Structured Text)

14-18

 SUM := SUM + 1;

END_FOR ;

SUM := 0;

FOR counter = 0 TO 10 BY 2 DO

 SUM := SUM + 1;

END_FOR ;

Counter variable increases from 0 to 10 as many as 2. 1 is added

into SUM variable repeatedly. Final value of SUM is 6.

Note

1) Because of long scan time, watch - dog may be on.

2) BY part can be skipped. In case of skip, it increases as many as 1.

3) If start is larger than end, FOR text is not executed.

14.4.7 WHILE

1) It executes repeatedly until condition is 0. In WHILE statement, condition is checked first and loop is executed later. So

no loop executes.

2) Expression

WHILE condition DO

 statements

END_ WHILE

Item Description

condition If condition is TRUE, statements after DO executes.

In case of FLASE, it goes out from loop.

statements If condition is TRUE, statements more than one executes.

Example Description
Counter := 0
WHILE Counter < 20 DO
 Counter := Counter + 1;
END_WHILE ;

If condition that counter is less than 20 is TRUE, a statement executes.

If condition is FALSE, it goes out from loop.

Note

In WHILE statement, in case, condition does not become 0, it cannot go out from loop. In this case, due to

long scan time, watch-dog is on. So be careful so that condition is not always TRUE.

14.4.8 REPEAT

1) Statement executes repeatedly until condition is TRUE. In REPEAT statement, loop executes first and condition is

Chapter 14. ST (Structured Text)

14-19

checked later. So loop executes at least one time.

2) Expression

REPEAT

statements

UNTIL condition

END_REPEAT

Item Description

condition If condition is FALSE, it executes repeatedly and if TRUE, goes out from

loop.
statements Loop executes repeatedly until condition is TRUE.

Example Description
Counter := 0;
REPEAT DO
 Counter := Counter + 1;
UNTIL Counter > 20

END_REPEAT ;

First, Counter variable is set to 1. If the condition that Counter variable is

larger than 2 is met, it goes out from loop or it executes loop.

If Counter variable is 21, condition is TRUE and it goes out from loop.

Note

In REPEAT statement, in case condition doesn’t become 1, it cannot go out from loop. In this case, due to

long scan time, watch-dog is on. So be careful so that condition is not always FALSE.

 Chapter 14. ST (Structured Text)

14-20

14.4.9 EXIT

1) It is used to go out from iteration statements (WHILE, FOR, REPEAT).

2) If it is used outside iteration statements, error occurs.

3) Expression

EXIT

Example Description

SUM := 0;

FOR Counter := 0 TO 10 DO

 SUM := SUM + 1;

EXIT;

END_FOR ;

Counter variable increases from 0 to 10 as many as1. But because of EXT,

loop ends. Counter variable becomes 0 and SUM becomes 1.

Counter := 0;
WHILE Counter < 20 DO
 Counter := Counter + 1 ;

 IF Counter = 10 THEN
EXIT;

END_IF;
END_WHILE ;

Text executes repeatedly when Counter is less than 20 and if Counter is

larger than 20, loop ends. But because of IF statement and EXIT statement,

loop ends when Counter is 10.

Counter := 0;
REPEAT DO
 Counter := Counter + 1 ;
 IF Counter = 10 THEN

EXIT;
END_IF;

UNTIL Counter > 20
END_REPEAT ;

Counter variable increase as many as 1. If Counter is larger than 20, loop

ends otherwise loop executes repeatedly. But because of IF statement and

EXIT statement, loop ends when Counter is 10.

Chapter 14. ST (Structured Text)

14-21

14.5 Function and Function Block

14.5.1 How to use

1) There are two types (Standard type, nonstandard type) for use of function and function block. Both are available

according to environment.

(1) Standard type:

It writes the input, output parameter name of function and function block

Parameter Function Function Block

Common

Order of parameter does not matter.

Q1 := LIMIT(MN := B, MX := 20, IN := 10) ;

Q1 := LIMIT(MX := 20, MN := B, IN := 10) ;

EN, ENO can be omitted.

Q1 := LIMIT(EN := A, MN := B, MX := 20, IN :=

10, ENO => Q2) ;

Order of parameter does not matter.

INST(IN := %IX0.0.0, PT := T#1s, Q => A, ET =>

E) ;

INST(PT := T#1s, IN := %IX0.0.0, Q => A, ET =>

E) ;

Input

Use“:=” for input parameter allocation.

C := LIMIT(MN := B, MX := 20, IN := 10) ;

Use “:=” for input parameter allocation..

INST(IN := %IX0.0.0, PT := T#1s, Q => A, ET =>

B) ;

Output

If output parameter name is OUT or Y (For

user defined function, function name), allocate

as the return value.

For other output parameters, use“=>”.

Q1 := ARY_SCH(DATA := B, IN := C, P =>

Q2, N => Q3) ;

Use “=>” for out parameter allocation

Output parameter allocation can be omitted.

INST(IN := %IXunction 0.0.0, PT := T#1s, Q => A,

ET => E) ;

 Chapter 14. ST (Structured Text)

14-22

Parameter Function Function Block

Not used output parameter can be omitted as

follows. (Q2, Q3 have been omitted)

Q1 := ARY_SCH(DATA := B, IN := C) ;

INST(IN := %IX0.0.0, PT := T#1s) ;

T1 := INST.ET;

Note

To use the function block, write instance name of function block. Declare the function block as how to declare

the variable and write this variable name (instance name)

Ex.) Use of timer

INST_TON1(IN := TRUE, PT := T#100MS, Q => Q_OUT, ET => ET_OUT);

Chapter 14. ST (Structured Text)

14-23

(2) Nonstandard type

In this type, I/O parameter name of function and function block is omitted

Parameter Function Function Block

Common

You cannot change the order of all

parameters.

You cannot omit any parameter

Q1 := LIMIT(B, 20, 10) ;

You cannot use EN, ENO

You cannot change the order of all

parameters.

You cannot omit any parameter

INST(%IX0.0.0, T#1s, A, E) ;

Input

You cannot change the order of input

parameter.

C := LIMIT(B, 20, IN := 10) ;

You cannot change the order of input

parameter.

INST(%IX0.0.0, T#1s, A, E) ;

Output

If output parameter name is OUT or Y

(For user defined function, function

name), allocate as the return value.

For other output parameters, input in

order of position

Q1 := ARY_SCH(B, C, Q2, Q3) ;

For all output parameters, input in order of

position

INST(%IX0.0.0, T#1s, A, E) ;

 Chapter 14. ST (Structured Text)

14-24

Note

For function whose parameter type is variable, input parameter type should be determined.

Example Description

INT1 := ADD(1, 2, 3); Error occurs while determining function type

For normal operation, choose one among below three examples

Example Description

INT1 := ADD(INT#1, 2, 3); Sets the type of constant

INT1 := ADD(B, 2, 3); Uses variable (B)

INT1 := ADD_INT(1, 2, 3); Uses the type-defined function

Note

- Input parameter EN is condition to execute the function. If you use the EN as follows, LIMIT function

executes

 when A is 1.

OUT := LIMIT(EN := A, MX := 20, MN := B, IN := 10) ;

ENO parameter becomes 1 when function executes without error. It cannot be used in ST and available

in LD

Note

1. ST does not support the extension functions(BREAK, CALL, END, FOR, INIT_DONE, JMP, NEXT, RET,

SBRT)

2. You cannot use the function whose name is same as operator name. (OR, XOR, AND, MOD, NOT)

Chapter 14. ST (Structured Text)

14-25

14.5.2 Example
1) Function

Use of LD Use of ST

1) Standard type

EN used

OutValue := ADD(EN := A, IN1 := Value1, IN2 := Value2);

EN not used

OutValue := ADD(IN1 := Value1, IN2 := Value2);

2) Nonstandard type

OutValue := ADD(Value1, Value2);

EN, ENO cannot be used

2) Function Block

Use of LD Use of ST

1) Standard type

INST(IN := A, PT := T#10S, Q => TimeOut);

2) Nonstandard type

INST(A, T#10S, TimeOut, TimeValue);

Output variable cannot be omitted. So you have to allocate

the applicable variable to output parameter ET.

(TimeValue)

 Chapter 14. ST (Structured Text)

14-26

3) Application

Use of LD Use of ST

INST1(CD := _T1S, PV := 10, RST := RESET, Q =>

COMPLETE,

CV => CURRENTVALUE);

%QX0.1.0 := Complete;

NOTENOUGH := LT(IN1 := CURRENTVALUE,

IN2 := 5);

Chapter 15. Safety Function Blocks

15-1

Chapter 15. Safety Function Blocks

15.1. Safety Function Blocks List

No Function Block

1 SF_ANTIVALENT

2 SF_EDM

3 SF_ENABLESWITCH

4 SF_EQUIVALENT

5 SF_ESPE

6 SF_ESTOP

7 SF_GUARDLOCKING

8 SF_MODESEL

9 SF_MUTINGPAR

10 SF_MUTINGPAR_2SENSOR

11 SF_MUTINGSEQ

12 SF_OUTCONTROL

13 SF_SAFEGUARD

14 SF_SAFETYREQUEST

15 SF_TESTABLESAFETYSENSOR

16 SF_TWOHANDCTRLII

17 SF_TWOHANDCTRLIII

 Chapter 15. Safety Function Blocks

15-2

15.2. Safety Function Blocks

 15.2.1 SF_ANTIVALENT

1) Overview
This function block converts two antivalent SAFEBOOL inputs (NO/NC pair) to one SAFEBOOL output with discrepancy time
monitoring. This FB should not be used stand-alone since it has no restart interlock. It is required to connect the output to other
safety related functionalities.

SF_Antivalent

Activate

S_ChannelNC

S_ChannelNO

BOOL

SAFEBOOL

BOOL

WORDTIME

SAFEBOOL

SAFEBOOL

BOOL

DiscrepancyTime

Ready

S_AntivalentOut

Error

DiagCode

2) Input / Output Variables

Type Name Data Type Initial Value Description

Input

Activate BOOL 0 Activation of the FB
S_ChannelNC SAFEBOOL 0 Variable. NC stands for Normally Closed.

Input for NC connection.
FALSE: NC contact open.
TRUE: NC contact closed.

S_ChannelNO SAFEBOOL 1 Variable. NO stands for Normally Open.
Input for NO connection.
FALSE: NO contact open
TRUE: NO contact closed

DiscrepancyTime TIME T#0ms Constant. Maximum monitoring time for
discrepancy status of both inputs.

Output

Ready BOOL 0 If TRUE, indicates that the FB is activated
and the output results are valid.

S_AntivalentOut SAFEBOOL 0 Safety related output
FALSE: Minimum of one input signal "not
active" or status change outside of
monitoring time.
TRUE: Both inputs signals "active" and
status change within monitoring time.

Error BOOL 0 Error flag
DiagCode WORD 16#0000 Diagnostic register.

All states of the FB are represented by this
register. This information is encoded in
hexadecimal format in order to represent
more then 16 codes.

Chapter 15. Safety Function Blocks

15-3

3) Functional Description
This function block converts two equivalent SAFEBOOL inputs to one SAFEBOOL output with discrepancy time monitoring.
Both input Channels A and B are interdependent. The function block output shows the result of the evaluation of both channels.
If one channel signal changes from TRUE to FALSE the output immediately switches off (FALSE) for safety reasons.
Discrepancy time monitoring: The discrepancy time is the maximum period during which both inputs may have different states
without the function block detecting an error. Discrepancy time monitoring starts when the status of an input changes. The
function block detects an error when both inputs do not have the same status once the discrepancy time has elapsed.
The inputs must be switched symmetrically. This means that monitoring is performed for both the switching on process as well
as the switching off process.

4) Typical Timing Diagrams

 Chapter 15. Safety Function Blocks

15-4

5) Error Detection
The function block monitors the discrepancy time between Channel NO and Channel NC.

6) Error Behavior
The output SF_AntivalentOut is set to FALSE. Error is set to TRUE. DiagCode indicates the Error states.
There is no Reset defined as an input coupled with the reset of an error. If an error occurs in the inputs, one new set of inputs
with the correct value must be able to reset the error flag. (Example: if a switch is faulty and replaced, using the switch again
results in a correct output)

7) Error Codes

DiagCode State Name State Description and Output Setting

C001 Error 1

Discrepancy time elapsed in state 8004.
Ready = TRUE
S_AntivalentOut = FALSE
Error = TRUE

C002 Error 2

Discrepancy time elapsed in state 8014.
Ready = TRUE
S_AntivalentOut = FALSE
Error = TRUE

C003 Error 3

Discrepancy time elapsed in state 8005.
Ready = TRUE
S_AntivalentOut = FALSE
Error = TRUE

Chapter 15. Safety Function Blocks

15-5

8) Status codes

DiagCode State Name State Description and Output Setting

0000 Idle

The function block is not active (initial state).
Ready = FALSE
S_AntivalentOut = FALSE
Error = FALSE

8001 Init

An activation has been detected by the FB and the FB is now
activated.
Ready = TRUE
S_AntivalentOut = FALSE
Error = FALSE

8000 Safety Output Enabled

The inputs switched to the Active state in antivalent mode.
Ready = TRUE
S_AntivalentOut = TRUE
Error = FALSE

8004 Wait for NO

ChannelNC has been switched to TRUE - waiting for
ChannelNO to be switched to FALSE; discrepancy timer started.
Ready = TRUE
S_AntivalentOut = FALSE
Error = FALSE

8014 Wait for NC

ChannelNO has been switched to FALSE - waiting for
ChannelNC to be switched to TRUE; discrepancy timer started.
Ready = TRUE
S_AntivalentOut = FALSE
Error = FALSE

8005 From Active Wait

One channel has been switched to inactive; waiting for the
second channel to be switched to inactive too.
Ready = TRUE
S_AntivalentOut = FALSE
Error = FALSE

 Chapter 15. Safety Function Blocks

15-6

 15.2.2 SF_EDM

1) Overview
External device monitoring – The FB controls a safety output and monitors controlled actuators, e.g. subsequent contactors

BOOL

SF_EDM

Activate

S_OutControl

S_EDM1

BOOL

SAFEBOOL

BOOL

WORDSAFEBOOL

SAFEBOOL

SAFEBOOL

BOOL

S_EDM2

Ready

S_EDM_Out

Error

DiagCode

MonitoringTime

S_StartReset

Reset

BOOL

SAFEBOOL

2) Input / Output Variables

 Type Name Data Type Initial Value Description

Input

Activate BOOL 0 Activation of the FB

S_OutControl SAFEBOOL 0

Control signal of the preceeding safety FB’s.
Typical function block signals from the library
(e.g.,SF_OutControl, SF_TwoHandControlTypeII,
and/or others).
FALSE: Disable safety output (S_EDM_Out).
TRUE: Enable safety output (S_EDM_Out).

S_EDM1 SAFEBOOL 0

Feedback signal of the first connected actuator.
FALSE: Switching state of the first connected
actuator.
TRUE: Initial state of the first connected actuator.

S_EDM2 SAFEBOOL 0

Feedback signal of the second connected
actuator.
If using only one signal in the application, the user
must use a graphic connection to jumper the
S_EDM1 and S_EDM2 parameters. S_EDM1
and S_EDM2 are then controlled by the same
signal.
FALSE: Switching state of the second connected
actuator.
TRUE: Initial state of the second connected
actuator.

MonitoringTime TIME #0ms
Max. response time of the connected and
monitored actuators.

S_StartReset

FALSE (= initial value): Manual reset when PES is
started (warm or cold).
TRUE: Automatic reset when PES is started
(warm or cold).

Reset BOOL 0 Reset

Chapter 15. Safety Function Blocks

15-7

Type Name Data Type Initial Value Description

Output

Ready BOOL 0
If TRUE, indicates that the FB is activated and the
output results are valid.

S_EDM_Out SAFEBOOL 0

Controls the actuator. The result is monitored by
the feedback signal S_EDMx.
FALSE: Disable connected actuators.
TRUE: Enable connected actuators.

Error BOOL 0 Error flag

DiagCode WORD 16#0000

Diagnostic register.
All states of the FB are represented by this
register. This information is encoded in
hexadecimal format in order to represent more
then 16 codes.

3) Functional Description
General:
The SF_EDM FB controls a safety output and monitors controlled actuators.
This function block monitors the initial state of the actuators via the feedback signals (S_EDM1 and S_EDM2) before the
actuators are enabled by the FB.
The function block monitors the switching state of the actuators (MonitoringTime) after the actuators have been enabled by the
FB.
Two single feedback signals must be used for an exact diagnosis of the connected actuators. A common feedback signal from
the two connected actuators must be used for a restricted yet simple diagnostic function of the connected actuators. When
doing so, the user must connect this common signal to both parameter S_EDM1 and parameter S_EDM2. S_EDM1 and
S_EDM2 are then controlled by the same signal.
The switching devices used in the safety function should be selected from the category specified in the risk analysis (EN 954-1).

Optional startup inhibits:
• Startup inhibit in the event of block activation.

The S_StartReset input shall only be activated if it is ensured that no hazardous situation can occur when the PES is started.

 Chapter 15. Safety Function Blocks

15-8

4) Typical Timing Diagrams

< S_StartReset=Off >

< S_StartReset=On >

5) Error Detection
The following conditions force a transition to the Error state:
• Invalid static Reset signal in the process.
• Invalid EDM signal in the process.
• S_OutControl and Reset are incorrectly interconnected due to programming error.

6) Error Behavior
In error states, the outputs are as follows:
• In the event of an error, the S_EDM_Out is set to FALSE and remains in this safe state.
• An EDM error message must always be reset by a rising trigger at Reset.
• A Reset error message can be reset by setting Reset to FALSE.
After block activation, the optional startup inhibit can be reset by a rising edge at the Reset input.

Chapter 15. Safety Function Blocks

15-9

7) Error Codes

DiagCode State Name State Description and Output Setting

C001 Reset Error 1

Static Reset signal in state 8001.
Ready = TRUE
S_EDM_Out = FALSE
Error = TRUE

C011 Reset Error 21

Static Reset signal or same signals at EDM1 and Reset (rising
trigger at Reset and EDM1 at the same time) in state C010.
Ready = TRUE
S_EDM_Out = FALSE
Error = TRUE

C021 Reset Error 22

Static Reset signal or same signals at EDM2 and Reset (rising
trigger at Reset and EDM2 at the same time) in state C020.
Ready = TRUE
S_EDM_Out = FALSE
Error = TRUE

C031 Reset Error 23

Static Reset signal or same signals at EDM1, EDM2, and Reset
(rising trigger at Reset, EDM1, and EDM2 at the same time) in
state C030.
Ready = TRUE
S_EDM_Out = FALSE
Error = TRUE

C041 Reset Error 31

Static Reset signal or same signals at EDM1 and Reset (rising
trigger at Reset and EDM1 at the same time) in state C040.
Ready = TRUE
S_EDM_Out = FALSE
Error = TRUE

C051 Reset Error 32

Static Reset signal or same signals at EDM2 and Reset (rising
trigger at Reset and EDM2 at the same time) in state C050.
Ready = TRUE
S_EDM_Out = FALSE
Error = TRUE

C061 Reset Error 33

Static Reset signal or same signals at EDM1, EDM2, and Reset
(rising trigger at Reset, EDM1, and EDM2 at the same time) in
state C060.
Ready = TRUE
S_EDM_Out = FALSE
Error = TRUE

C071 Reset Error 41

Static Reset signal in state C070.
Ready = TRUE
S_EDM_Out = FALSE
Error = TRUE

C081 Reset Error 42

Static Reset signal in state C080.
Ready = TRUE
S_EDM_Out = FALSE
Error = TRUE

 Chapter 15. Safety Function Blocks

15-10

DiagCode State Name State Description and Output Setting

C091 Reset Error 43

Static Reset signal in state C090.
Ready = TRUE
S_EDM_Out = FALSE
Error = TRUE

C010 EDM Error 11

The signal at EDM1 is not valid in the initial actuator state. In state
8010 the EDM1 signal is FALSE when enabling O_OutControl.
Ready = TRUE
S_EDM_Out = FALSE
Error = TRUE

C020 EDM Error 12

The signal at EDM2 is not valid in the initial actuator state. In state
8010 the EDM2 signal is FALSE when enabling O_OutControl.
Ready = TRUE
S_EDM_Out = FALSE
Error = TRUE

C030 EDM Error 13

The signals at EDM1 and EDM2 are not valid in the initial actuator
states. In state 8010 the EDM1 and EDM2 signals are FALSE
when enabling O_OutControl.
Ready = TRUE
S_EDM_Out = FALSE
Error = TRUE

C040 EDM Error 21

The signal at EDM1 is not valid in the initial actuator state. In state
8010 the EDM1 signal is FALSE and the monitoring time has
elapsed.
Ready = TRUE
S_EDM_Out = FALSE
Error = TRUE

C050 EDM Error 22

The signal at EDM2 is not valid in the initial actuator state. In state
8010 the EDM2 signal is FALSE and the monitoring time has
elapsed.
Ready = TRUE
S_EDM_Out = FALSE
Error = TRUE

C060 EDM Error 23

The signals at EDM1 and EDM2 are not valid in the initial actuator
states. In state 8010 the EDM1 and EDM2 signals are FALSE and
the monitoring time has elapsed.
Ready = TRUE
S_EDM_Out = FALSE
Error = TRUE

C070 EDM Error 31

The signal at EDM1 is not valid in the actuator switching state.
In state 8000 the EDM1 signal is TRUE and the monitoring time
has elapsed.
Ready = TRUE
S_EDM_Out = FALSE
Error = TRUE

Chapter 15. Safety Function Blocks

15-11

DiagCode State Name State Description and Output Setting

C080 EDM Error 32

The signal at EDM2 is not valid in the actuator switching state.
In state 8000 the EDM2 signal is TRUE and the monitoring time
has elapsed.
Ready = TRUE
S_EDM_Out = FALSE
Error = TRUE

C090 EDM Error 33

The signals at EDM1 and EDM2 are not valid in the actuator
switching state. In state 8000 the EDM1 and EDM2 signals are
TRUE and the monitoring time has elapsed.
Ready = TRUE
S_EDM_Out = FALSE
Error = TRUE

C111 Init Error

S Similar signals at S_OutControl and Reset (R_TRIG at same
cycle) detected (may be a programming error)
Ready = TRUE
S_EDM_Out = FALSE
Error = TRUE

8) Status codes

DiagCode State Name State Description and Output Setting

0000 Idle

The function block is not active (initial state).
Ready = FALSE
S_EDM_Out = FALSE
Error = FALSE

8001 Init

Block activation startup inhibit is active. Reset required.
Ready = TRUE
S_EDM_Out = FALSE
Error = FALSE

8010 Output Disable

EDM control is not active. Timer starts when state is entered
Ready = TRUE
S_EDM_Out = FALSE
Error = FALSE

8000 Output Enable

EDM control is active. Timer starts when state is entered
Ready = TRUE
S_EDM_Out = TRUE
Error = FALSE

 Chapter 15. Safety Function Blocks

15-12

 15.2.3 SF_ENABLESWITCH

1) Overview
The SF_EnableSwitch FB evaluates the signals of an enable switch with three positions.

SF_EnableSwitch

Activate

S_SafetyActive

S_EnableSwitchCh1

BOOL

SAFEBOOL

BOOL

WORDSAFEBOOL

SAFEBOOL

SAFEBOOL

BOOL

S_EnableSwitchCh2

Ready

S_EnableSwitchOut

Error

DiagCode

S_AutoReset

Reset

SAFEBOOL

BOOL

2) Input / Output Variables

Type Name Data Type Initial Value Description

Input

Activate BOOL 0 Activation of the FB

S_SafetyActive SAFEBOOL 0

Confirmation of the safe mode (limitation of
the speed or the power of motion, limitation
of the range of motion).
FALSE: Safe mode is not active.
TRUE: Safe mode is active.

S_EnableSwitchCh1 SAFEBOOL 0

Signal of contacts E1 and E2 of the
connected enable switch.
FALSE: Connected switches are open.
TRUE: Connected switches are closed.

S_EnableSwitchCh2 SAFEBOOL 0

Signal of contacts E3 and E4 of the
connected enable switch.
FALSE: Connected switches are open.
TRUE: Connected switches are closed.

S_AutoReset SAFEBOOL 0

FALSE (= initial value): Manual reset when
emergency stop button is released.
TRUE: Automatic reset when emergency
stop button is released.
This function shall only be activated if it is
ensured that no hazard can occur at the
start of the PES. Therefore the use of the
Automatic Circuit Reset feature of the
function blocks requires implementation of
other system or application measures to
ensure that unexpected (or unintended)
startup does not occur.

Reset BOOL 0 Reset
Type Name Data Type Initial Value Description

Chapter 15. Safety Function Blocks

15-13

Output

Ready BOOL 0
If TRUE, indicates that the FB is activated
and the output results are valid.

S_EnableSwitchOut SAFEBOOL 0

Safety related output: Indicates suspension
of guard.
FALSE: Disable suspension of
safeguarding.
TRUE: Enable suspension of safeguarding.

Error BOOL 0 Error flag

DiagCode WORD 16#0000

Diagnostic register.
All states of the FB are represented by this
register. This information is encoded in
hexadecimal format in order to represent
more then 16 codes.

3) Functional Description
The SF_EnableSwitch FB supports the suspension of safeguarding using enable switches, if the relevant operating mode is
selected and active. The relevant operating mode (limitation of the speed or the power of motion, limitation of the range of
motion) must be selected outside the SF_EnableSwitch FB.
The SF_EnableSwitch FB evaluates the signals of an enable switch with three positions
The S_EnableSwitchCh1 and S_EnableSwitchCh2 input parameters process the following signal levels of contacts E1 to E4:

The signal from E1+E2 must be connected to the S_EnableSwitchCh1 parameter. The signal from E3+E4 must be connected
to the S_EnableSwitchCh2 parameter. The position of the enable switch is detected in the FB using this signal sequence. The
transition from position 2 to 3 can be different from shown here.
The switching direction (position 1 => position 2/position 3 => position 2) can be detected in the FB using the defined signal
sequence of the enable switch contacts. The suspension of safeguarding can only be enabled by the FB after a move from
position 1 to position 2. Other switching directions or positions may not be used to enable the suspension of safeguarding.
In order to meet the requirements of DIN EN 60204 Section 9.2.4, the user shall use a suitable switching device. In addition, the
user must ensure that the relevant operating mode is selected in the application (automatic operation must be disabled in this
operating mode using appropriate measures).
The operating mode is usually specified using an operating mode selection switch in conjunction with the SF_ModeSelector FB
and the SF_SafeRequest or SF_SafelyLimitedSpeed FB.
The SF_EnableSwitch FB processes the confirmation of the "safe mode" state via the "S_SafetyActive" parameter. On

 Chapter 15. Safety Function Blocks

15-14

implementation in an application of the safe mode without confirmation, a static TRUE signal is connected to the
"S_SafetyActive" parameter. The S_AutoReset input shall only be activated if it is ensured that no hazardous situation can occur
when the PES is started.

4) Typical Timing Diagrams

Chapter 15. Safety Function Blocks

15-15

5) Error Detection
The following conditions force a transition to the Error state:
• Invalid static Reset signal in the process.
• Invalid switch positions.

6) Error Behavior
In the event of an error, the S_EnableSwitchOut safe output is set to FALSE and remains in this Safe state. Different from other
FBs, a Reset Error state can be left by the condition Reset = FALSE or, additionally, when the signal S_SafetyActive is FALSE.
Once the error has been removed, the enable switch must be in the initial position specified in the process before the
S_EnableSwitchOut output can be set to TRUE using the enable switch. If S_AutoReset = FALSE, a rising trigger is required at
Reset.

7) Error Codes

DiagCode State Name State Description and Output Setting

C001 Reset Error 1

Static Reset signal detected in state C020.
Ready = TRUE
S_EnableSwitchOut = FALSE
Error = TRUE

C002 Reset Error 2

Static Reset signal detected in state C040.
Ready = TRUE
S_EnableSwitchOut = FALSE
Error = TRUE

C010 Operation Error 1

Enable switch not in position 1 during activation of S_SafetyActive.
Ready = TRUE
S_EnableSwitchOut = FALSE
Error = TRUE

C020 Operation Error 2

Enable switch in position 1 after C010.
Ready = TRUE
S_EnableSwitchOut = FALSE
Error = TRUE

C030 Operation Error 3

Enable switch in position 2 after position 3.
Ready = TRUE
S_EnableSwitchOut = FALSE
Error = TRUE

C040 Operation Error 4

Enable switch not in position 2 after C030.
Ready = TRUE
S_EnableSwitchOut = FALSE
Error = TRUE

 Chapter 15. Safety Function Blocks

15-16

8) Status codes

DiagCode State Name State Description and Output Setting

0000 Idle

The function block is not active (initial state).
Ready = FALSE
S_EnableSwitchOut = FALSE
Error = FALSE

8004 Basic Operation Mode

Safe operation mode is not active.
Ready = TRUE
S_EnableSwitchOut = FALSE
Error = FALSE

8005 Safe Operation Mode

Safe operation mode is active.
Ready = TRUE
S_EnableSwitchOut = FALSE
Error = FALSE

8006 Position 1

Safe operation mode is active and the enable switch is in
position 1.
Ready = TRUE
S_EnableSwitchOut = FALSE
Error = FALSE

8007 Position 3

Safe operation mode is active and the enable switch is in
position 3.
Ready = TRUE
S_EnableSwitchOut = FALSE
Error = FALSE

8000 Position 2

Safe operation mode is active and the enable switch is in
position 2.
Ready = TRUE
S_EnableSwitchOut = TRUE
Error = FALSE

Chapter 15. Safety Function Blocks

15-17

 15.2.4 SF_EQUIVALENT

1) Overview
This function block converts two equivalent SAFEBOOL inputs (both NO or NC) to one SAFEBOOL output, including
discrepancy time monitoring. This FB should not be used stand-alone since it has no restart interlock. It is required to connect
the output to other safety related functionalities.

SF_Equivalent

Activate

S_ChannelA

S_ChannelB

BOOL

SAFEBOOL

BOOL

WORDTIME

SAFEBOOL

SAFEBOOL

BOOL

DiscrepancyTime

Ready

S_EquivalentOut

Error

DiagCode

2) Input / Output Variables

Type Name Data Type Initial Value Description

Input

Activate BOOL 0 Activation of the FB

S_ChannelA SAFEBOOL 0
Input A for logical connection.
FALSE: Contact A open
TRUE: Contact A closed.

S_ChannelB SAFEBOOL 0
Input B for logical connection.
FALSE: Contact B open
TRUE: Contact B closed.

DiscrepancyTime TIME T#0ms 2개 Input의 Discrepancy time 설정
0 ~ 65535ms

Output

Ready BOOL 0
Maximum monitoring time for discrepancy
status of both inputs.

S_EquivalentOut SAFEBOOL 0

Safety related output
FALSE: Minimum of one input signal =
"FALSE" or status
change outside of monitoring time.
TRUE: Both input signals "active" and status
change within monitoring time

Error BOOL 0 Error flag

DiagCode WORD 16#0000

Diagnostic register.
All states of the FB are represented by this
register. This information is encoded in
hexadecimal format in order to represent
more then 16 codes.

 Chapter 15. Safety Function Blocks

15-18

3) Functional Description
This function block converts two equivalent SAFEBOOL inputs to one SAFEBOOL output with discrepancy time monitoring.
Both input Channels A and B are interdependent. The function block output shows the result of the evaluation of both channels.
If one channel signal changes from TRUE to FALSE the output immediately switches off for safety reasons. Discrepancy time
monitoring: The discrepancy time is the maximum period during which both inputs may have different states without the function
block detecting an error. Discrepancy time monitoring starts when the status of an input changes. The function block detects an
error when both inputs do not have the same status once the discrepancy time has elapsed.
The inputs must be switched symmetrically. This means that monitoring is performed for both the switching on process as well
as the switching off process.

4) Typical Timing Diagrams

Chapter 15. Safety Function Blocks

15-19

5) Error Detection
The function block monitors the discrepancy time between Channel A and B, when switching to TRUE and also when switching
to FALSE.

6) Error Behavior
S_EquivalentOut is set to FALSE. Error is set to TRUE. DiagCode indicates the Error states. There is no Reset defined as an
input coupled with the reset of an error. If an error occurs in the inputs, a new set of inputs with correct S_EquivalentOut must be
able to reset the error flag. (Example: if a switch is faulty and replaced, using the switch again results in a correct output)

7) Error Codes

DiagCode State Name State Description and Output Setting

C001 Error 1

Discrepancy time elapsed in state 8004.
Ready = TRUE
S_EquivalentOut = FALSE
Error = TRUE

C002 Error 2

Discrepancy time elapsed in state 8014.
Ready = TRUE
S_EquivalentOut = FALSE
Error = TRUE

C003 Error 3

Discrepancy time elapsed in state 8005.
Ready = TRUE
S_EquivalentOut = FALSE
Error = TRUE

 Chapter 15. Safety Function Blocks

15-20

8) Status codes

DiagCode State Name State Description and Output Setting

0000 Idle

The function block is not active (initial state).
Ready = FALSE
S_EquivalentOut = FALSE
Error = FALSE

8001 Init

An activation has been detected by the FB and the FB is now
activated.
Ready = TRUE
S_EquivalentOut = FALSE
Error = FALSE

8000 Safety Output Enabled

The inputs switched to TRUE in equivalent mode.
Ready = TRUE
S_EquivalentOut = TRUE
Error = FALSE

8004 Wait for Channel B

Channel A has been switched to TRUE - waiting for Channel B;
discrepancy timer started.
Ready = TRUE
S_EquivalentOut = FALSE
Error = FALSE

8014 Wait for Channel A

Channel B has been switched to TRUE - waiting for Channel A;
discrepancy timer started.
Ready = TRUE
S_EquivalentOut = FALSE
Error = FALSE

8005 From Active Wait

One channel has been switched to FALSE; waiting for the
second channel to be switched to FALSE, discrepancy timer
started.
Ready = TRUE
S_EquivalentOut = FALSE
Error = FALSE

Chapter 15. Safety Function Blocks

15-21

 15.2.5 SF_ESPE

1) Overview
This function block is a safety-related function block for monitoring electro-sensitive protective equipment (ESPE).

SF_ESPE

Activate

S_ESPE_IN

S_StartReset

BOOL

SAFEBOOL

BOOL

WORDSAFEBOOL

SAFEBOOL

SAFEBOOL

BOOL

S_AutoReset

Ready

S_ESPE_Out

Error

DiagCode

BOOL Reset

2) Input / Output Variables

Type Name Data Type Initial Value Description

Input

Activate BOOL 0 Activation of the FB

S_ESPE_In SAFEBOOL 0

Safety demand input.
FALSE: ESPE actuated, demand for safety-
related response.
TRUE: ESPE not actuated, no demand for
safety-related response.
Safety control system must be able to detect
a very short interruption of the sensor (which
is specified in 61496-1: minimum 80 ms),
when the ESPE is used in applications as a
trip device

S_StartReset SAFEBOOL 0

FALSE (= initial value): Manual reset when
PES is started (warm or cold).
TRUE: Automatic reset when PES is started
(warm or cold).
This function shall only be activated if it is
ensured that no hazard can occur at the
start of the PES. Therefore the use of the
Automatic Circuit Reset feature of the
function blocks requires implementation of
other system or application measures to
ensure that unexpected (or unintended)
startup does not occur.

 Chapter 15. Safety Function Blocks

15-22

Type Name Data Type Initial Value Description

Input
S_AutoReset SAFEBOOL 0

FALSE (= initial value): Manual reset when
emergency stop button is released.
TRUE: Automatic reset when emergency
stop button is released.
This function shall only be activated if it is
ensured that no hazard can occur at the
start of the PES. Therefore the use of the
Automatic Circuit Reset feature of the
function blocks requires implementation of
other system or application measures to
ensure that unexpected (or unintended)
startup does not occur.

Reset BOOL 0 Reset

Output

Ready BOOL 0
If TRUE, indicates that the FB is activated
and the output results are valid.

S_ESPE_OUT SAFEBOOL 0

Output for the safety-related response.
FALSE: Safety output disabled.
Demand for safety-related response (e.g.,
reset required or internal errors active).
TRUE: Safety output enabled. No demand
for safety-related response.

Error BOOL 0 Error flag

DiagCode WORD 16#0000

Diagnostic register.
All states of the FB are represented by this
register. This information is encoded in
hexadecimal format in order to represent
more then 16 codes.

3) Functional Description
This function block is a safety-related function block for monitoring electro-sensitive protective equipment (ESPE). The function
is identical to SF_EmergencyStop. The S_ESPE_Out output signal is set to FALSE as soon as the S_ESPE_In input is set to
FALSE. The S_ESPE_Out output signal is set to TRUE only if the S_ESPE_In input is set to TRUE and a reset occurs. The
enable reset depends on the defined S_StartReset, S_AutoReset, and Reset inputs.

If S_AutoReset = TRUE, acknowledgment is automatic.
If S_AutoReset = FALSE, a rising trigger at the Reset input must be used to acknowledge the enable.
If S_StartReset = TRUE, acknowledgment is automatic the PES is started the first time.
If S_StartReset = FALSE, a rising trigger at the Reset input must be used to acknowledge the enable.

The S_StartReset and S_AutoReset inputs shall only be activated if it is ensured, that no hazardous situation can occur when
the PES is started.

Chapter 15. Safety Function Blocks

15-23

4) Typical Timing Diagrams

< S_StartReset=Off, S_AutoReset=Off >

< S_StartReset=On, S_AutoReset=Off >

 Chapter 15. Safety Function Blocks

15-24

< S_StartReset=Off, S_AutoReset=On >

5) Error Detection
The function block detects a static TRUE signal at Reset input.

6) Error Behavior
S_ESPE_Out is set to FALSE. In case of a static TRUE signal at the Reset input, the DiagCode output indicates the relevant
error code and the Error output is set to TRUE.
To leave the error states, the the Reset must be set to FALSE.

7) Error Codes

DiagCode State Name State Description and Output Setting

C001 Reset Error 1

Reset is TRUE while waiting for S_ESPE_In = TRUE.
Ready = TRUE
S_ESPE_Out = FALSE
Error = TRUE

C002 Reset Error 2

Reset is TRUE while waiting for S_ESPE_In = TRUE.
Ready = TRUE
S_ESPE_Out = FALSE
Error = TRUE

Chapter 15. Safety Function Blocks

15-25

8) Status codes

DiagCode State Name State Description and Output Setting

0000 Idle

The function block is not active (initial state).
Ready = FALSE
S_ESPE_Out = FALSE
Error = FALSE

8001 Init

Activation is TRUE. The function block was enabled. Check if
S_StartReset is required.
Ready = TRUE
S_ESPE_Out = FALSE
Error = FALSE

8002 Wait for S_ESPE_In 1

Activation is TRUE. Check if Reset is FALSE and wait for
S_ESPE_In =
TRUE.
Ready = TRUE
S_ESPE_Out = FALSE
Error = FALSE

8003 Wait for Reset 1

Activation is TRUE. S_ESPE_In = TRUE. Wait for rising trigger
of Reset.
Ready = TRUE
S_ESPE_Out = FALSE
Error = FALSE

8004 Wait for S_ESPE_In 2

Activation is TRUE. Safety demand detected. Check if Reset is
FALSE
and wait for S_ESPE_In = TRUE.
Ready = TRUE
S_ESPE_Out = FALSE
Error = FALSE

8005 Wait for Reset 2

Activation is TRUE. S_ESPE_In = TRUE. Check for
S_AutoReset or
wait for rising trigger of Reset.
Ready = TRUE
S_ESPE_Out = FALSE
Error = FALSE

8000 Safety Output Enabled

Activation is TRUE. S_ESPE_In = TRUE. Functional mode with
S_ESPE_Out = TRUE.
Ready = TRUE
S_ESPE_Out = TRUE
Error = FALSE

 Chapter 15. Safety Function Blocks

15-26

 15.2.6 SF_ESTOP

1) Overview
 This function block is a safety-related function block for monitoring an emergency stop button. This FB can be used for
emergency switch off functionality (stop category 0), or - with additional peripheral support - as emergency stop.

SF_EmergencyStop

Activate

S_EStopIn

S_StartReset

BOOL

SAFEBOOL

BOOL

WORDSAFEBOOL

SAFEBOOL

SAFEBOOL

BOOL

S_AutoReset

Ready

S_EStopOut

Error

DiagCode

BOOL Reset

2) Input / Output Variables

Type Name Data Type Initial Value Description

Input

Activate BOOL 0 Activation of the FB

S_EStopIn SAFEBOOL 0

Safety demand input.
FALSE: Demand for safety-related
response (e.g., emergency stop button is
engaged).
TRUE: No demand for safety-related
response (e.g., emergency stop button not
engaged).

S_StartReset SAFEBOOL 0

FALSE (= initial value): Manual reset when
PES is started (warm or cold).
TRUE: Automatic reset when PES is started
(warm or cold).
This function shall only be activated if it is
ensured that no hazard can occur at the
start of the PES. Therefore the use of the
Automatic Circuit Reset feature of the
function blocks requires implementation of
other system or application measures to
ensure that unexpected (or unintended)
startup does not occur.

Chapter 15. Safety Function Blocks

15-27

Type Name Data Type Initial Value Description

Input
S_AutoReset SAFEBOOL 0

FALSE (= initial value): Manual reset when
emergency stop button is released.
TRUE: Automatic reset when emergency
stop button is released.
This function shall only be activated if it is
ensured that no hazard can occur at the
start of the PES. Therefore the use of the
Automatic Circuit Reset feature of the
function blocks requires implementation of
other system or application measures to
ensure that unexpected (or unintended)
startup does not occur.

Reset BOOL 0 Reset

Output

Ready BOOL 0
If TRUE, indicates that the FB is activated
and the output results are valid.

S_EStopOut SAFEBOOL 0

Output for the safety-related response.
FALSE: Safety output disabled.
Demand for safety-related response (e.g.,
emergency stop button engaged, reset
required or internal errors active)
TRUE: Safety output enabled.
No demand for safety-related response
(e.g., emergency stop button not engaged,
no internal errors active).

Error BOOL 0 Error flag

DiagCode WORD 16#0000

Diagnostic register.
All states of the FB are represented by this
register. This information is encoded in
hexadecimal format in order to represent
more then 16 codes.

3) Functional Description
The S_EStopOut enable signal is reset to FALSE as soon as the S_EStopIn input is set to FALSE. The S_EStopOut enable
signal is reset to TRUE only if the S_EStopIn input is set to TRUE and a reset occurs. The enable reset depends on the defined
S_StartReset, S_AutoReset, and Reset inputs.
If S_AutoReset = TRUE, acknowledgment is automatic.
If S_AutoReset = FALSE, a rising trigger at the Reset input must be used to acknowledge the enable.
If S_StartReset = TRUE, acknowledgment is automatic the fist time the PES is started.
If S_StartReset = FALSE, a rising trigger at the Reset input must be used to acknowledge the enable.

The S_StartReset and S_AutoReset inputs shall only be activated if it is ensured that no hazardous situation can occur when
the PES is started.

SF_EmergencyStop can be used to monitor both single and two-channel emergency stop buttons. For example, for twochannel
applications, the additional function blocks SF_Equivalent can be used to detect whether the contact synchronization has been
exceeded. The category classification in accordance with EN 954-1 will depend on the final elements that are used.

 Chapter 15. Safety Function Blocks

15-28

The SF_EmergencyStop automatically detects a static TRUE on Reset. Further error detection, e.g., wire break, short circuit
depends on the dedicated hardware that is used.

4) Typical Timing Diagrams

< S_StartReset=Off, S_AutoReset=Off >

< S_StartReset=On, S_AutoReset=Off >

Chapter 15. Safety Function Blocks

15-29

< S_StartReset=Off, S_AutoReset=On >

5) Error Detection
The function block detects a static TRUE signal at Reset input.

6) Error Behavior
S_EStopOut is set to FALSE. In case of a static TRUE signal at the Reset input, the DiagCode output indicates the relevant
error code and the Error output is set to TRUE.
To leave the error states, the Reset must be set to FALSE.

7) Error Codes

DiagCode State Name State Description and Output Setting

C001 Reset Error 1

Reset is TRUE while waiting for S_EStopIn = TRUE.
Ready = TRUE
S_EStopOut = FALSE
Error = TRUE

C002 Reset Error 2

Reset is TRUE while waiting for S_EStopIn = TRUE.
Ready = TRUE
S_EStopOut = FALSE
Error = TRUE

 Chapter 15. Safety Function Blocks

15-30

8) Status codes

DiagCode State Name State Description and Output Setting

0000 Idle

The function block is not active (initial state).
Ready = FALSE
S_EStopOut = FALSE
Error = FALSE

8001 Init

Activation is TRUE. The function block was enabled. Check if
S_StartReset is required.
Ready = TRUE
S_EStopOut = FALSE
Error = FALSE

8002 Wait for S_EstopIn 1

Activation is TRUE. Check if Reset is FALSE and wait for
S_EStopIn = TRUE.
Ready = TRUE
S_EStopOut = FALSE
Error = FALSE

8003 Wait for Reset 1

Activation is TRUE. S_EStopIn = TRUE. Wait for rising trigger of
Reset.
Ready = TRUE
S_EStopOut = FALSE
Error = FALSE

8004 Wait for S_EstopIn 2

Activation is TRUE. Safety demand detected. Check if Reset is
FALSE and wait for S_EStopIn = TRUE.
Ready = TRUE
S_EStopOut = FALSE
Error = FALSE

8005 Wait for Reset 2

Activation is TRUE. S_EStopIn = TRUE. Check for
S_AutoReset or wait for rising trigger of Reset.
Ready = TRUE
S_EStopOut = FALSE
Error = FALSE

8000 Safety Output Enabled

Activation is TRUE. S_EStopIn = TRUE. Functional mode with
S_EStopOut = TRUE.
Ready = TRUE
S_EStopOut = TRUE
Error = FALSE

Chapter 15. Safety Function Blocks

15-31

 15.2.7 SF_GUARDLOCKING

1) Overview
This FB controls an entrance to a hazardous area via an interlocking guard with guard locking (“four state interlocking”)

SAFEBOOL

SF_GuardLocking

Activate

S_GuardMonitoring

S_SafetyActive

BOOL

SAFEBOOL

SAFEBOOL

BOOLSAFEBOOL

SAFEBOOL

SAFEBOOL

BOOL

S_GuardLock

Ready

S_GuardLocked

S_UnlockGuard

Error

UnlockRequest

S_StartReset

S_AutoReset

BOOL

SAFEBOOL

ResetBOOL

WORDDiagCode

2) Input / Output Variables

Type Name Data Type Initial Value Description

Input

Activate BOOL 0 Activation of the FB

S_GuardMonitoring SAFEBOOL 0

Variable.
Monitors the guard interlocking.
FALSE: Guard open.
TRUE: Guard closed.

S_SafetyActive SAFEBOOL 0

Status of the hazardous area (EDM), e.g.,
based on speed monitoring or safe time off
delay.
FALSE: Machine in "non-safe" state.
TRUE: Machine in safe state.

S_GuardLock SAFEBOOL 0
Status of the mechanical guard locking.
FALSE: Guard is not locked.
TRUE: Guard is locked.

UnlockRequest BOOL 0

Operator intervention – request to unlock
the guard.
FALSE: No request.
TRUE: Request made.

 Chapter 15. Safety Function Blocks

15-32

Type Name Data Type Initial Value Description

Input

S_StartReset SAFEBOOL 0

FALSE (= initial value): Manual reset when
PES is started (warm or cold).
TRUE: Automatic reset when PES is started
(warm or cold).
This function shall only be activated if it is
ensured that no hazard can occur at the
start of the PES. Therefore the use of the
Automatic Circuit Reset feature of the
function blocks requires implementation of
other system or application measures to
ensure that unexpected (or unintended)
startup does not occur.

S_AutoReset SAFEBOOL 0

FALSE (= initial value): Manual reset when
emergency stop button is released.
TRUE: Automatic reset when emergency
stop button is released.
This function shall only be activated if it is
ensured that no hazard can occur at the
start of the PES. Therefore the use of the
Automatic Circuit Reset feature of the
function blocks requires implementation of
other system or application measures to
ensure that unexpected (or unintended)
startup does not occur.

Reset BOOL 0 Reset

Output

Ready BOOL 0
If TRUE, indicates that the FB is activated
and the output results are valid.

S_GuardLocked SAFEBOOL 0

Interface to hazardous area which must be
stopped.
FALSE: No safe state.
TRUE: Safe state.

S_UnlockGuard SAFEBOOL 0
Signal to unlock the guard.
FALSE: Close guard.
TRUE: Unlock guard.

Error BOOL 0 Error flag

DiagCode WORD 16#0000

Diagnostic register.
All states of the FB are represented by this
register. This information is encoded in
hexadecimal format in order to represent
more then 16 codes.

Chapter 15. Safety Function Blocks

15-33

3) Functional Description
The function controls the guard lock and monitors the position of the guard and the lock. This function block can be used with a
mechanical locked switch.
The operator requests to get access to the hazardous area. The guard can only be unlocked when the hazardous area is in a
safe state.The guard can be locked if the guard is closed. The machine can be started when the guard is closed and the guard
is locked. An open guard or unlocked guard will be detected in the event of a safety-critical situation.
The S_StartReset and S_AutoReset inputs shall only be activated if it is ensured that no hazardous situation can occur when
the PES is started.

Operation Sequence

NO Position Operation

1 External Request to get the hazardous area to a safe state - not part of this FB
2 In Feedback from applicable hazardous area that it is in a safe state (via S_SafetyActive)
3 In Operator request to unlock the guard (via UnlockRequest)
4 Out Enable guard to be opened (via S_UnlockGuard)
5

In
Guard unlocked (via S_GuardLock). Guard can be opened now. (S_GuardLocked =
FALSE)

- - Operator opens the guard
6 In Monitoring of status guard via S_GuardMonitoring – signals when guard is closed again
7 In Feedback from operator to restart the hazardous area (Reset)
8 Out Lock guard guard (S_UnlockGuard)
9 In Check if guard is locked (S_GuardLock)
10 Out Hazardous area can operate again (S_GuardLocked = TRUE)
11 Extern Restart the operation in the hazardous area

 Chapter 15. Safety Function Blocks

15-34

4) Typical Timing Diagrams

5) Error Detection
Static signals are detected at Reset. Errors are detected at the Guard switches.

6) Error Behavior
In the event of an error the S_GuardLocked and S_UnlockGuard outputs are set to FALSE, the DiagCode output indicates the
relevant error code, and the Error output is set to TRUE.
An error must be acknowledged by a rising trigger at the Reset input.

Chapter 15. Safety Function Blocks

15-35

7) Error Codes

DiagCode State Name State Description and Output Setting

C001 Reset Error1

Static Reset detected in state 8001.
Ready = TRUE
S_GuardLocked = FALSE
S_UnlockGuard = FALSE
Error = TRUE

C002 Reset Error2

Static Reset detected in state C004.
Ready = TRUE
S_GuardLocked = FALSE
S_UnlockGuard = FALSE
Error = TRUE

C003 Reset Error3

Static Reset detected in state 8011.
Ready = TRUE
S_GuardLocked = FALSE
S_UnlockGuard = FALSE
Error = TRUE

C004 Safety Lost

Safety lost, guard opened or guard unlocked.
Ready = TRUE
S_GuardLocked = FALSE
S_UnlockGuard = FALSE
Error = TRUE

 Chapter 15. Safety Function Blocks

15-36

8) Status codes

DiagCode State Name State Description and Output Setting

0000 Idle

The function block is not active (initial state).
Ready = FALSE
S_GuardLocked = FALSE
S_UnlockGuard = FALSE
Error = FALSE

8000 Guard Closed and Locked

Guard is locked.
Ready = TRUE
S_GuardLocked = TRUE
S_UnlockGuard = FALSE
Error = FALSE

8001 Init

Function block was activated and initiated.
Ready = TRUE
S_GuardLocked = FALSE
S_UnlockGuard = FALSE
Error = FALSE

8003 Wait for Reset

Door is closed and locked, now waiting for operator reset
Ready = TRUE
S_GuardLocked = FALSE
S_UnlockGuard = FALSE
Error = FALSE

8011 Wait for Operator

Waiting for operator to either unlock request or reset.
Ready = TRUE
S_GuardLocked = FALSE
S_UnlockGuard = FALSE
Error = FALSE

8012
Guard Open and
Unlocked

Lock is released and guard is open.
Ready = TRUE
S_GuardLocked = FALSE
S_UnlockGuard = TRUE
Error = FALSE

8013 Guard Closed but Unlocked

Lock is released but guard is closed.
Ready = TRUE
S_GuardLocked = FALSE
S_UnlockGuard = TRUE
Error = FALSE

8014 Safety Return

Return of S_SafetyActive signal, now waiting for operator
acknowledge.
Ready = TRUE
S_GuardLocked = FALSE
S_UnlockGuard = FALSE
Error = FALSE

Chapter 15. Safety Function Blocks

15-37

 15.2.8 SF_MODESEL

1) Overview
This function block selects the system operation mode, such as manual, automatic, semi-automatic, etc.

SAFEBOOL

SF_ModeSelector

Activate

S_Mode0

S_Mode1

BOOL

SAFEBOOL

SAFEBOOL

BOOLSAFEBOOL

SAFEBOOL

SAFEBOOL

BOOL

S_Mode2

Ready

S_Mode0Sel

S_Mode1Sel

S_Mode2Sel

S_Mode3

S_Mode4

S_Mode5

SAFEBOOL

SAFEBOOL

S_Mode6SAFEBOOL

WORDS_Mode3Sel

S_Mode7SAFEBOOL

S_UnlockSAFEBOOL

S_SetModeSAFEBOOL

AutoSetModeBOOL

ModeMonitorTimeTIME

ResetBOOL

BOOL

SAFEBOOL

SAFEBOOL

BOOL

S_Mode4Sel

S_Mode5Sel

S_Mode6Sel

S_Mode7Sel

WORDS_AnyModeSel

BOOLError

WORDDiagCode

2) Input / Output Variables

Type Name Data Type Initial Value Description

Input

Activate BOOL 0 Activation of the FB

S_ModeX
(X = 0~7)

SAFEBOOL 0

Input X from mode selector switch
FALSE: Mode X is not requested by
operator.
TRUE: Mode X is requested by operator.

S_Unlock SAFEBOOL 0

Locks the selected mode
FALSE: The actual S_ModeXSel output is
locked therefore a change of any S_ModeX
input does not lead to a change in the
S_ModeXSel output even in the event of a
rising edge of Set-Mode.
TRUE: The selected S_ModeXSel is not
locked; a mode selection change is
possible.

S_SetMode SAFEBOOL 0

Sets the selected mode
Operator acknowledges the setting of a
mode.
Any change to new S_ModeX = TRUE
leads to S_AnyModeSel/S_ModeXSel =
FALSE, only a rising SetMode trigger then
leads to new S_ModeXSel = TRUE.

 Chapter 15. Safety Function Blocks

15-38

Type Name Data Type Initial Value Description

Input

AutoSetMode BOOL 0

Parameterizes the acknowledgement
modeFALSE: A change in mode must be
acknowledged by the operator via SetMode.
TRUE: A valid change of the S_ModeX
input to another S_ModeX automatically
leads to a change in S_ModeXSel without
operator acknowledgment via SetMode (as
long as this is not locked by S_Unlock).

ModeMonitorTime TIME T#0
Maximum permissible time for changing the
selection input.

Reset BOOL 0 Reset

Output

Ready BOOL 0
If TRUE, indicates that the FB is activated
and the output results are valid.

S_ModeXSel
(X = 0~7)

SAFEBOOL 0

Indicates that mode X is selected and
acknowledged.
FALSE: Mode X is not selected or not
active.
TRUE: Mode X is selected and active.

S_AnyModeSel SAFEBOOL 0

Indicates that any of the 8 modes is selected
and acknowledged.
FALSE: No S_ModeX is selected.
TRUE: One of the 8 S_ModeX is selected
and active

Error BOOL 0 Error flag

DiagCode WORD 16#0000

Diagnostic register.
All states of the FB are represented by this
register. This information is encoded in
hexadecimal format in order to represent
more then 16 codes.

3) Functional Description
This function block selects the system operation mode, such as manual, automatic, semi-automatic, etc. On controller startup, it
should be assumed that the machine is in safe mode. On machine startup, the transition to the mode set by the mode selector
switch must be initiated by a function block input (e.g., machine START button).
The default state following activation of the FB is the ModeChanged state. This is also the safe state of the FB, where all
S_ModeXSel and S_AnyModeSel are FALSE.
If the FB is in the ModeChanged state:
• The new S_ModeX input must be acknowledged by a rising S_SetMode trigger (if AutoSetMode = FALSE), which leads to a

new S_ModeXSel output.
• The new S_ModeX input automatically leads to a new S_ModeXSel output (if AutoSetMode = TRUE).
• Such a transition from state 8005 to 8000 is only valid, if one S_ModeX input is TRUE. As long as all S_ModeX are FALSE,
the FB remains in state 8005, even if the S_SetMode triggers.

The transition from the ModeChanged to ModeSelected state, i.e., S_SetMode set by the operator, is not monitored by a timer.
If the FB is in the ModeSelected state, the simultaneous occurrence of a new S_ModeX input (higher priority) and the NOT
S_Unlock signal (lower priority) leads to the ModeChanged state.
The S_ModeX input parameters, which are not used for mode selection, should be called with the default value FALSE to

Chapter 15. Safety Function Blocks

15-39

simplify program verification.
The AutoSetMode input shall only be activated if it is ensured that no hazardous situation can occur when the PES is started.

4) Typical Timing Diagrams

< Timing diagram for SF_ModeSelector, valid change in Mode input with acknowledgment>

< Timing diagram for SF_ModeSelector, error condition 2 at Mode inputs >

 Chapter 15. Safety Function Blocks

15-40

< Timing diagram for SF_ModeSelector, reset of error condition >

5) Error Detection
The FB detects whether none of the mode inputs is selected. This invalid condition is detected after ModeMonitorTime has
elapsed:
• Which restarts with each falling trigger of an S_ModeX switched mode input
• Which is then in the ModeChanged state following activation of the FB
In contrast, the FB directly detects whether more than one S_ModeX mode input is selected at the same time.
A static reset condition is detected when the FB is either in Error state C001 or C002.

6) Error Behavior
In the event of an error, the S_ModeXSel and S_AnyModeSel outputs are set to safe state = FALSE. The DiagCode output
indicates the relevant error code and the Error output is set to TRUE.
An error must be acknowledged with the rising trigger of the Reset BOOL input. The FB changes from an error state to the
ModeChanged state.

Chapter 15. Safety Function Blocks

15-41

7) Error Codes
DiagCode State Name State Description and Output Setting

C001
Error
Short-circuit

The FB detected that two or more S_ModeX are TRUE, e.g., short-
circuit of cables.
Ready = TRUE
Error = TRUE
S_AnyModeSel = FALSE
All S_ModeXSel = FALSE

C002
Error
Open-circuit

The FB detected that all S_ModeX are FALSE: The period
following a falling S_ModeX trigger exceeds ModeMonitorTime,
e.g., open-circuit of cables.
Ready = TRUE
Error = TRUE
S_AnyModeSel = FALSE
All S_ModeXSel = FALSE

C003 Reset Error 1

Static Reset signal detected in state C001.
Ready = TRUE
Error = TRUE
S_AnyModeSel = FALSE
All S_ModeXSel = FALSE

C004 Reset Error 2

Static Reset signal detected in state C002.
Ready = TRUE
Error = TRUE
S_AnyModeSel = FALSE
All S_ModeXSel = FALSE

8) Status codes

DiagCode State Name State Description and Output Setting

0000 Idle

The function block is not active (initial state).
Ready = FALSE
Error = FALSE
S_AnyModeSel = FALSE
All S_ModeXSel = FALSE

8005 ModeChanged

State after activation or when S_ModeX has changed (unless
locked) or after Reset of an error state.
Ready = TRUE
Error = FALSE
S_AnyModeSel = FALSE
All S_ModeXSel = FALSE

8000 ModeSelected

Valid mode selection, but not yet locked.
Ready = TRUE
Error = FALSE
S_AnyModeSel = TRUE
S_ModeXSel = Selected X is TRUE, others are FALSE.

8004 ModeLocked

Valid mode selection is locked.
Ready = TRUE
Error = FALSE
S_AnyModeSel = TRUE
S_ModeXSel = Selected X is TRUE, others are FALSE

 Chapter 15. Safety Function Blocks

15-42

 15.2.9 SF_MUTINGPAR

1) Overview
Muting is the intended suppression of the safety function. In this FB, parallel muting with four muting sensors is specified.

SAFEBOOL

SF_MutingPar

Activate

S_AOPD_In

MutingSwitch11

BOOL

SAFEBOOL

SAFEBOOL

BOOLBOOL

BOOL

SAFEBOOL

BOOL

MutingSwitch12

Ready

S_AOPD_Out

S_MutingActive

Error

MutingSwitch21

MutingSwitch22

S_MutingLamp

BOOL

DiscTime11_12TIME

WORDDiagCode

DiscTime21_22TIME

MaxMutingTimeTIME

MutingEnableBOOL

S_StartResetSAFEBOOL

ResetBOOL

BOOL

2) Input / Output Variables

Type Name Data Type Initial Value Description

Input

Activate BOOL 0 Activation of the FB

S_AOPD_In SAFEBOOL 0
OSSD signal from AOPD.
FALSE: Protection field interrupted.
TRUE: Protection field not interrupted.

MutingSwitch11 BOOL 0

Status of Muting sensor 11.
FALSE: Muting sensor 11 not actuated.
TRUE: Workpiece actuates muting sensor 11.
It shall be noted in the FB manual that a
SAFEBOOL must be connected instead of a
BOOL depending on the safety requirements.

MutingSwitch12 BOOL 0

Status of Muting sensor 12.
FALSE: Muting sensor 12 not actuated.
TRUE: Workpiece actuates muting sensor 12.
It shall be noted in the FB manual that a
SAFEBOOL must be connected instead of a
BOOL depending on the safety requirements.

Chapter 15. Safety Function Blocks

15-43

Type Name Data Type Initial Value Description

Input

MutingSwitch21 BOOL 0

Status of Muting sensor 21.
FALSE: Muting sensor 21 not actuated.
TRUE: Workpiece actuates muting sensor 21.
It shall be noted in the FB manual that a
SAFEBOOL must be connected instead of a
BOOL depending on the safety requirements.

MutingSwitch22 BOOL 0

Status of Muting sensor 22.
FALSE: Muting sensor 22 not actuated.
TRUE: Workpiece actuates muting sensor 22.
It shall be noted in the FB manual that a
SAFEBOOL must be connected instead of a
BOOL depending on the safety requirements.

S_MutingLamp SAFEBOOL 0
Indicates operation of the muting lamp.
FALSE: Muting lamp failure.
TRUE: Muting lamp no failure.

DiscTime11_12 TIME T#0s
Constant 0..4 s;
Maximum discrepancy time for
MutingSwitch11 and MutingSwitch12.

DiscTime21_22 TIME T#0s
Constant 0..4 s;
Maximum discrepancy time for
MutingSwitch21 and MutingSwitch22

MaxMutingTime TIME T#0s

Constant 0..10 min;
Maximum time for complete muting
sequence, timer started when first muting
sensor is actuated.

MutingEnable BOOL 0

Command by the control system that enables
the start of the muting function when needed
by the machine cycle. After the start of the
muting function, this signal can be switched
off.
FALSE: Muting not enabled
TRUE: Start of Muting function enabled

S_StartReset SAFEBOOL 0

FALSE (= initial value): Manual reset when
PES is started (warm or cold).
TRUE: Automatic reset when PES is started
(warm or cold).
This function shall only be activated if it is
ensured that no hazard can occur at the start
of the PES. Therefore the use of the
Automatic Circuit Reset feature of the function
blocks requires implementation of other
system or application measures to ensure that
unexpected (or unintended) startup does not
occur.

Reset BOOL 0 Reset

 Chapter 15. Safety Function Blocks

15-44

Type Name Data Type Initial Value Description

Output

Ready BOOL 0
If TRUE, indicates that the FB is activated and
the output results are valid.

S_AOPD_Out SAFEBOOL 0

Safety related output, indicates status of the
muted guard.
FALSE: AOPD protection field interrupted and
muting not active.
TRUE: AOPD protection field not interrupted
or muting active.

S_MutingActive SAFEBOOL 0
Indicates status of Muting process.
FALSE: Muting not active.
TRUE: Muting active.

Error BOOL 0 Error flag

DiagCode WORD 16#0000

Diagnostic register.
All states of the FB are represented by this
register. This information is encoded in
hexadecimal format in order to represent
more then 16 codes.

3) Functional Description
Muting is the intended suppression of the safety function. This is required, e.g., when transporting the material into the danger
zone without causing the machine to stop. Muting is triggered by muting sensors. The use of two or four muting sensors and
correct integration into the production sequence must ensure that no persons enter the danger zone while the light curtain is
muted. Muting sensors can be proximity switches, photoelectric barriers, limit switches, etc. which do not have to be failsafe.
Active muting mode must be indicated by indicator lights.
There are sequential and parallel muting procedures. In this FB, parallel muting with four muting sensors was used; an
explanation is provided below. The FB can be used in both directions, forward and backward. The muting should be enabled
with the MutingEnable signal by the process control to avoid manipulation.
The FB input parameters include the signals of the four muting sensors (MutingSwitch11 ... MutingSwitch22), the OSSD signal
from the "active opto-electronic protective device", S_AOPD_In, as well as three parameterizable times (DiscTime11_12,
DiscTime21_22, and MaxMutingTime).
The S_StartReset input shall only be activated if it is ensured that no hazardous situation can occur when the PES is started.

Step 1: If the muting sensors MutingSwitch11 (MS_11) and MutingSwitch12 (MS_12) are activated by the product within the
time DiscTime11_12, muting mode is activated (S_MutingActive = TRUE).
Step 2: Muting mode remains active as long as MutingSwitch11 (MS_11) and MutingSwitch12 (MS_12) are activated by the
product. The product may pass through the light curtain without causing a machine stop.
Step 3: Before muting sensors MutingSwitch11 (MS_11) and MutingSwitch12 (MS_12) are disabled, muting sensors
MutingSwitch21 (MS_21) and MutingSwitch22 (MS_22) must be activated. This ensures that muting mode remains active. The
time discrepancy between switching of MutingSwitch21 and MutingSwitch22 is monitored by the time DiscTime21_22.
Step 4: Muting mode is terminated if either muting sensor MutingSwitch21 (MS_21) or MutingSwitch22 (MS_22) is disabled by
the product. The maximum time for muting mode to be active is the Max-MutingTime.

Chapter 15. Safety Function Blocks

15-45

No. Figure

1

2

3

4

 Chapter 15. Safety Function Blocks

15-46

4) Typical Timing Diagrams

5) Error Detection
The FB detects the following error conditions:
• DiscTime11_12 and DiscTime21_22 have been set to values less than T#0s or greater than T#4s.
• MaxMutingTime has been set to a value less than T#0s or greater than T#10min.
• The discrepancy time for the MutingSwitch11/MutingSwitch12 or MutingSwitch21/MutingSwitch22 sensor pairs has been
exceeded.
• The muting function (S_MutingActive = TRUE) exceeds the maximum muting time MaxMutingTime.
• Muting sensors MutingSwitch11, MutingSwitch12, MutingSwitch21, and MutingSwitch22 are activated in the wrong order.
• Muting sequence starts without being enabled by MutingEnable
• A faulty muting lamp is indicated by S_MutingLamp = FALSE.
• A static Reset condition is detected in state 8001 and 8003.

6) Error Behavior
In the event of an error, the S_AOPD_Out and S_MutingActive outputs are set to FALSE. The DiagCode output indicates the
relevant error code and the Error output is set to TRUE.
A restart is inhibited until the error conditions are cleared and the Safe state is acknowledged with Reset by the operator.

7) Error Codes

DiagCode State Name State Description and Output Setting

C001 Reset Error 1

Static Reset condition detected after FB activation in state 8001.
Ready = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = TRUE

C002 Reset Error 2

Static Reset condition detected in state 8003.
Ready = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = TRUE

Chapter 15. Safety Function Blocks

15-47

DiagCode State Name State Description and Output Setting

C003 Error Muting Lamp

Error detected in muting lamp.
Ready = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = TRUE

CYx4 Error Muting sequence

Error detected in muting sequence state 8000, 8011, 8311, 8012,
8021, 8014, 8314, 8122, 8422, 8121, 8112, 8114 or 8414.
Ready = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = TRUE
Y = Status in the sequence (6 states for forward and 6 states for
backward direction).
C0x4 = Error occurred in state 8000
C1x4 = Error occurred in state Forward 8011
C2x4 = Error occurred in state Forward 8311
C3x4 = Error occurred in state Forward 8012
C4x4 = Error occurred in state Forward 8014
C5x4 = Error occurred in state Forward 8314
C6x4 = Error occurred in state Forward 8021
C7x4 = Error occurred in state Backward 8122
C8x4 = Error occurred in state Backward 8422
C9x4 = Error occurred in state Backward 8121
CAx4 = Error occurred in state Backward 8114
CBx4 = Error occurred in state Backward 8414
CCx4 = Error occurred in state Backward 8112
CFx4 = Muting Enable missing
x = Status of the sensors when error occurred (4 bits: LSB =
MS_11; MS_12; MS_21; MSB = MS_22)

C005 Parameter Error

DiscTime11_12, DiscTime21_22 or MaxMutingTime value out of
range.
Ready = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = TRUE

C006 Error Timer MaxMuting

Timing error: Active muting time (when S_MutingActive = TRUE)
exceeds MaxMutingTime.
Ready = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = TRUE

 Chapter 15. Safety Function Blocks

15-48

DiagCode State Name State Description and Output Setting

C007 Error Timer MS11_12

Timing error: Discrepancy time for switching MutingSwitch11 and
MutingSwitch12 > DiscTime11_12.
Ready = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = TRUE

C008 Error Timer MS21_22

Timing error: Discrepancy time for switching MutingSwitch21 and
MutingSwitch22 > DiscTime21_22.
Ready = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = TRUE

Chapter 15. Safety Function Blocks

15-49

8) Status codes

DiagCode State Name State Description and Output Setting

0000 Idle

The function block is not active (initial state).
Ready = FALSE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = FALSE

8000 AOPD Free

Muting not active and no safety demand from AOPD. If timers
from subsequent muting are still running, they are stopped.
Ready = TRUE
S_AOPD_Out = TRUE
S_MutingActive = FALSE
Error = FALSE

8001 Init

Function block has been activated.
Ready = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = FALSE

8002 Safety Demand AOPD

Safety demand detected by AOPD, muting not active.
Ready = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = FALSE

8003 Wait for Reset

Safety demand or errors have been detected and are now
cleared. Operator acknowledgment by Reset required.
Ready = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = FALSE

8005 Safe

Safety function activated.
Ready = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = FALSE

8011 Muting Forward Start 1

Muting forward sequence is in starting phase after rising trigger
of MutingSwitch 11. Monitoring of DiscTime11_12 is activated.
Monitoring of MaxMutingTime is activated.
Ready = TRUE
S_AOPD_Out = TRUE
S_MutingActive = FALSE
Error = FALSE

8311 Muting Forward Start 2

Muting forward sequence is in starting phase after rising trigger
of MutingSwitch 12. Monitoring of DiscTime11_12 is activated.
Monitoring of MaxMutingTime is activated.
Ready = TRUE
S_AOPD_Out = TRUE
S_MutingActive = FALSE
Error = FALSE

 Chapter 15. Safety Function Blocks

15-50

DiagCode State Name State Description and Output Setting

8012 Muting Forward Active 1

Muting forward sequence is active either:
- After rising trigger of the second entry MutingSwitch 12 or 11
has been detected.
- When both MutingSwitch 11 and 12 have been actuated in the
same cycle.
Monitoring of DiscTime11_12 is stopped. Monitoring of
MaxMuting-Time is activated, when transition came directly from
state 8000.
Ready = TRUE
S_AOPD_Out = TRUE
S_MutingActive = TRUE
Error = FALSE

8014 Muting Forward Step 1

Muting forward sequence is active. MutingSwitch21 is the first
exit switch actuated. Monitoring of DiscTime21_22 is started.
Ready = TRUE
S_AOPD_Out = TRUE
S_MutingActive = TRUE
Error = FALSE

8314 Muting Forward Step 2

Muting forward sequence is active. MutingSwitch22 is the first
exit switch actuated. Monitoring of DiscTime21_22 is started.
Ready = TRUE
S_AOPD_Out = TRUE
S_MutingActive = TRUE
Error = FALSE

8021 Muting Forward Active 2

Muting forward sequence is still active. Both MutingSwitch21
and 22 are actuated, the monitoring of DiscTime21_22 is
stopped.
Ready = TRUE
S_AOPD_Out = TRUE
S_MutingActive = TRUE
Error = FALSE

8122 Muting Backward Start 1

Muting backward sequence is in starting phase after rising
trigger of MutingSwitch21. Monitoring of DiscTime21_22 is
activated. Monitoring of MaxMutingTime is activated.
Ready = TRUE
S_AOPD_Out = TRUE
S_MutingActive = FALSE
Error = FALSE

8422 Muting Backward Start 2

Muting backward sequence is in starting phase after rising
trigger of MutingSwitch22. Monitoring of DiscTime21_22 is
activated. Monitoring of MaxMutingTime is activated.
Ready = TRUE
S_AOPD_Out = TRUE
S_MutingActive = FALSE
Error = FALSE

Chapter 15. Safety Function Blocks

15-51

DiagCode State Name State Description and Output Setting

8121 Muting Backward Active 1

Muting backward sequence is active either:
- After rising trigger of the second MutingSwitch 21 or 22 has
been detected.
- When both MutingSwitch 21 and 22 have been actuated in the
same cycle.
Monitoring of DiscTime21_22 is stopped. Monitoring of
MaxMuting-Time is activated, when transition came directly from
state 8000.
Ready = TRUE
S_AOPD_Out = TRUE
S_MutingActive = TRUE
Error = FALSE

8114 Muting Backward Step 1

Muting backward sequence is active. MutingSwitch11 is the first
exit switch actuated. Monitoring of DiscTime11_12 is started.
Ready = TRUE
S_AOPD_Out = TRUE
S_MutingActive = TRUE
Error = FALSE

8414 Muting Backward Step 2

Muting backward sequence is active. MutingSwitch12 is the first
exit switch actuated. Monitoring of DiscTime11_12 is started.
Ready = TRUE
S_AOPD_Out = TRUE
S_MutingActive = TRUE
Error = FALSE

8112 Muting Backward Active 2

Muting backward sequence is still active. Both exit switches
MutingSwitch11 and 12 are actuated, the monitoring of
DiscTime11_12 is stopped.
Ready = TRUE
S_AOPD_Out = TRUE
S_MutingActive = TRUE
Error = FALSE

 Chapter 15. Safety Function Blocks

15-52

 15.2.10 SF_MUTINGPAR_2SENSOR

1) Overview
 Muting is the intended suppression of the safety function. In this FB, parallel muting with two muting sensors is specified..

TIME

SF_MutingPar_2Sensor

Activate

S_AOPD_In

S_MutingSwitch11

BOOL

SAFEBOOL

SAFEBOOL

BOOLSAFEBOOL

SAFEBOOL

SAFEBOOL

BOOL

S_MutingSwitch12

Ready

S_AOPD_Out

S_MutingActive

Error

S_MutingLamp

DiscTimeEntry

MaxMutingTime

TIME

MutingEnableBOOL

WORDDiagCode

S_StartResetSAFEBOOL

ResetBOOL

SAFEBOOL

2) Input / Output Variables

Type Name Data Type Initial Value Description

Input

Activate BOOL 0 Activation of the FB

S_AOPD_In SAFEBOOL 0
OSSD signal from AOPD.
FALSE: Protection field interrupted.
TRUE: Protection field not interrupted.

MutingSwitch11 BOOL 0
Status of Muting sensor 11.
FALSE: Muting sensor 11 not actuated.
TRUE: Workpiece actuates muting sensor 11.

MutingSwitch12 BOOL 0
Status of Muting sensor 12.
FALSE: Muting sensor 12 not actuated.
TRUE: Workpiece actuates muting sensor 12

S_MutingLamp SAFEBOOL 0
Indicates operation of the muting lamp.
FALSE: Muting lamp failure.
TRUE: Muting lamp no failure.

DiscTimeEntry TIME T#0s
Constant 0..4 s;
Max. discrepancy time for S_MutingSwitch11
and S_MutingSwitch12 entering muting gate

MaxMutingTime TIME T#0s

Constant 0..10 min;
Maximum time for complete muting
sequence, timer started when first muting
sensor is actuated.

Chapter 15. Safety Function Blocks

15-53

Type Name Data Type Initial Value Description

Input

MutingEnable BOOL 0

Command by the control system that enables
the start of the muting function when needed
by the machine cycle. After the start of the
muting function, this signal can be switched
off.
FALSE: Muting not enabled
TRUE: Start of Muting function enabled

S_StartReset SAFEBOOL 0

FALSE (= initial value): Manual reset when
PES is started (warm or cold).
TRUE: Automatic reset when PES is started
(warm or cold).
This function shall only be activated if it is
ensured that no hazard can occur at the start
of the PES. Therefore the use of the
Automatic Circuit Reset feature of the function
blocks requires implementation of other
system or application measures to ensure that
unexpected (or unintended) startup does not
occur.

Reset BOOL 0 Reset

Output

Ready BOOL 0
If TRUE, indicates that the FB is activated and
the output results are valid.

S_AOPD_Out SAFEBOOL 0

Safety related output, indicates status of the
muted guard.
FALSE: AOPD protection field interrupted and
muting not active.
TRUE: AOPD protection field not interrupted
or muting active.

S_MutingActive SAFEBOOL 0
Indicates status of Muting process.
FALSE: Muting not active.
TRUE: Muting active.

Error BOOL 0 Error flag

DiagCode WORD 16#0000

Diagnostic register.
All states of the FB are represented by this
register. This information is encoded in
hexadecimal format in order to represent
more than 16 codes.

 Chapter 15. Safety Function Blocks

15-54

3) Functional Description
Muting is the intended suppression of the safety function. This is required, e.g., when transporting the material into the danger
zone without causing the machine to stop. Muting is triggered by muting sensors. The use of two muting sensors and correct
integration into the production sequence must ensure that no persons enter the danger zone while the light curtain is muted.
Muting sensors can be push buttons, proximity switches, photoelectric barriers, limit switches, etc. which do not have to be
failsafe. Active muting mode must be indicated by indicator lights.

There are sequential and parallel muting procedures. In this FB, parallel muting with two muting sensors was used; an
explanation is provided below. The positioning of the sensors should be as described in Annex F.7 of IEC 62046, CD 2005, as
shown in Figure 48. The FB can be used in both directions, forward and backward. However, the actual direction cannot be
identified. The muting should be enabled with the MutingEnable signal by the process control to avoid manipulation.

The FB input parameters include the signals of the two muting sensors (S_MutingSwitch11 and S_MutingSwitch12), the OSSD
signal from the "active opto-electronic protective device", S_AOPD_In, as well as two parameterizable times (Disc-TimeEntry
and MaxMutingTime).

The S_StartReset input shall only be activated if it is ensured that no hazardous situation can occur when the PES is started
Step 1: If reflection light barriers are used as muting sensors, they are generally arranged diagonally. In general, this
arrangement of reflection light barriers as muting sensors requires only two light barriers, and only S_MutingSwitch11 (MS_11)
and S_MutingSwitch12 (MS_12) are allocated.

NO. Figure

1

Chapter 15. Safety Function Blocks

15-55

4) Typical Timing Diagrams

5) Error Detection
The FB detects the following error conditions:
• DiscTimeEntry has been set to value less than T#0s or greater than T#4s.
• MaxMutingTime has been set to a value less than T#0s or greater than T#10min.
• The discrepancy time for the S_MutingSwitch11/S_MutingSwitch12 sensor pair has been exceeded.
• The muting function (S_MutingActive = TRUE) exceeds the maximum muting time MaxMutingTime.
• Muting sensors S_MutingSwitch11,S_MutingSwitch12 are activated in the wrong order.
• Muting sequence starts without being enabled by MutingEnable
• Static muting sensor signals.
• A faulty muting lamp is indicated by S_MutingLamp = FALSE.
• A static Reset condition is detected in state 8001 and 8003.

6) Error Behavior
In the event of an error, the S_AOPD_Out and S_MutingActive outputs are set to FALSE. The DiagCode output indicates the
relevant error code and the Error output is set to TRUE.
A restart is inhibited until the error conditions are cleared and the Safe state is acknowledged with Reset by the operator.

 Chapter 15. Safety Function Blocks

15-56

7) Error Codes

DiagCode State Name State Description and Output Setting

C001 Reset Error 1

Static Reset condition detected after FB activation in state 8001.
Ready = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = TRUE

C002 Reset Error 2

Static Reset condition detected in state 8003.
Ready = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = TRUE

C003 Error Muting Lamp

Error detected in muting lamp.
Ready = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = TRUE

CYx4 Error Muting sequence

Error detected in muting sequence state 8000, 8011, 8311.
Ready = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = TRUE
Y = Status in the sequence
C0x4 = Error occurred in state 8000
C1x4 = Error occurred in state 8011
C2x4 = Error occurred in state 8311
CFx4 = Muting Enable missing
x = Status of the sensors when error occurred (4 bits: LSB =
MS_11; next to LSB = MS_12).

C005 Parameter Error

DiscTimeEntry or MaxMutingTime value out of range.
Ready = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = TRUE

C006 Error timer MaxMuting

Timing error: Active muting time (when S_MutingActive = TRUE)
exceeds MaxMutingTime.
Ready = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = TRUE

C007 Error timer Entry

Timing error: Discrepancy time for switching S_MutingSwitch11
and S_MutingSwitch12 from FALSE to TRUE > DiscTimeEntry.
Ready = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = TRUE

Chapter 15. Safety Function Blocks

15-57

8) Status codes

DiagCode State Name State Description and Output Setting

0000 Idle

The function block is not active (initial state).
Ready = FALSE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = FALSE

8000 AOPD Free

Muting not active and no safety demand from AOPD. If timers
from subsequent muting are still running, they are stopped.
Ready = TRUE
S_AOPD_Out = TRUE
S_MutingActive = FALSE
Error = FALSE

8001 Init

Function block was activated.
Ready = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = FALSE

8002 Safety Demand AOPD

Safety demand detected by AOPD, muting not active.
Ready = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = FALSE

8003 Wait for Reset

Safety demand or errors have been detected and are now
cleared. Operator acknowledgment by Reset required.
Ready = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = FALSE

8005 Safe

Safety function activated.
Ready = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = FALSE

8011 Muting Start 1

Muting sequence is in starting phase after rising trigger of
S_MutingSwitch11. Monitoring of DiscTimeEntry is activated.
Ready = TRUE
S_AOPD_Out = TRUE
S_MutingActive = FALSE
Error = FALSE

8311 Muting Start 2

Muting sequence is in starting phase after rising trigger of
S_MutingSwitch12. Monitoring of DiscTimeEntry is activated.
Ready = TRUE
S_AOPD_Out = TRUE
S_MutingActive = FALSE
Error = FALSE

 Chapter 15. Safety Function Blocks

15-58

DiagCode State Name State Description and Output Setting

8012 Muting Active

Muting sequence is active either:
- After rising trigger of the second S_MutingSwitch 12 or 11 has
been detected.
- When both S_MutingSwitch 11 and 12 have been actuated in
the same cycle.
Monitoring of DiscTimeEntry is stopped. Monitoring of
MaxMutingTime is activated.
Ready = TRUE
S_AOPD_Out = TRUE
S_MutingActive = TRUE
Error = FALSE

Chapter 15. Safety Function Blocks

15-59

 15.2.11 SF_MUTINGSEQ

1) Overview
Muting is the intended suppression of the safety function (e.g., light barriers). In this FB, sequential muting with four muting
sensors is specified.

SAFEBOOL

SF_MutingSeq

Activate

S_AOPD_In

S_MutingSwitch11

BOOL

SAFEBOOL

SAFEBOOL

BOOLBOOL

BOOL

SAFEBOOL

BOOL

S_MutingSwitch12

Ready

S_AOPD_Out

S_MutingActive

Error

S_MutingSwitch21

S_MutingSwitch22

S_MutingLamp

BOOL

MaxMutingTimeTIME

WORDDiagCode

MutingEnableBOOL

S_StartResetSAFEBOOL

BOOL

ResetBOOL

2) Input / Output Variables

Type Name Data Type Initial Value Description

Input

Activate BOOL 0 Activation of the FB

S_AOPD_In SAFEBOOL 0
OSSD signal from AOPD.
FALSE: Protection field interrupted.
TRUE: Protection field not interrupted.

MutingSwitch11 BOOL 0

Status of Muting sensor 11.
FALSE: Muting sensor 11 not actuated.
TRUE: Workpiece actuates muting sensor
11.
It shall be noted in the FB manual that a
SAFEBOOL must be connected instead of
a BOOL depending on the safety
requirements.

MutingSwitch12 BOOL 0

Status of Muting sensor 12.
FALSE: Muting sensor 12 not actuated.
TRUE: Workpiece actuates muting sensor
12.
It shall be noted in the FB manual that a
SAFEBOOL must be connected instead of
a BOOL depending on the safety
requirements.

 Chapter 15. Safety Function Blocks

15-60

Type Name Data Type Initial Value Description

Input

MutingSwitch21 BOOL 0

Status of Muting sensor 21.
FALSE: Muting sensor 21 not actuated.
TRUE: Workpiece actuates muting sensor
21.
It shall be noted in the FB manual that a
SAFEBOOL must be connected instead of
a BOOL depending on the safety
requirements.

MutingSwitch22 BOOL 0

Status of Muting sensor 22.
FALSE: Muting sensor 22 not actuated.
TRUE: Workpiece actuates muting sensor
22.
It shall be noted in the FB manual that a
SAFEBOOL must be connected instead of
a BOOL depending on the safety
requirements.

S_MutingLamp SAFEBOOL 0
Indicates operation of the muting lamp.
FALSE: Muting lamp failure.
TRUE: Muting lamp no failure

MaxMutingTime TIME T#0s

Constant 0 .. 10 min;
Maximum time for complete muting
sequence, timer started when first muting
sensor is actuated.

MutingEnable BOOL 0

Command by the control system that
enables the start of the muting function
when needed by the machine cycle. After
the start of the muting function, this signal
can be switched off.
FALSE: Muting not enabled
TRUE: Start of Muting function enabled

S_StartReset SAFEBOOL 0

FALSE (= initial value): Manual reset when
PES is started (warm or cold).
TRUE: Automatic reset when PES is started
(warm or cold).
This function shall only be activated if it is
ensured that no hazard can occur at the
start of the PES. Therefore the use of the
Automatic Circuit Reset feature of the
function blocks requires implementation of
other system or application measures to
ensure that unexpected (or unintended)
startup does not occur.

Reset BOOL 0 Reset

Chapter 15. Safety Function Blocks

15-61

Type Name Data Type Initial Value Description

Output

Ready BOOL 0
If TRUE, indicates that the FB is activated
and the output results are valid.

S_AOPD_Out SAFEBOOL 0

Safety related output, indicates status of the
muted guard.
FALSE: AOPD protection field interrupted
and muting not active.
TRUE: AOPD protection field not interrupted
or muting active.

S_MutingActive SAFEBOOL 0
Indicates status of Muting process.
FALSE: Muting not active.
TRUE: Muting active.

Error BOOL 0 Error flag

DiagCode WORD 16#0000

Diagnostic register.
All states of the FB are represented by this
register. This information is encoded in
hexadecimal format in order to represent
more than 16 codes.

3) Functional Description
Muting is the intended suppression of the safety function. This is required, e.g., when transporting the material into the danger
zone without causing the machine to stop. Muting is triggered by muting sensors. The use of two or four muting sensors and
correct integration into the production sequence must ensure that no persons enter the danger zone while the light curtain is
muted. Muting sensors can be proximity switches, photoelectric barriers, limit switches, etc. which do not have to be failsafe.
Active muting mode must be indicated by indicator lights.

There are sequential and parallel muting procedures. In this FB, sequential muting with four muting sensors was used; an
explanation for the forward direction of transportation is provided below. The FB can be used in both directions, forward and
backward. The muting should be enabled with the MutingEnable signal by the process control to avoid manipulation. When the
MutingEnable signal is not available, this input must be set to TRUE.

The FB input parameters include the signals of the four muting sensors (MutingSwitch11 ... MutingSwitch22) as well as the
OSSD signal from the "active opto-electronic protective device", S_AOPD_In.

The S_StartReset input shall only be activated if it is ensured that no hazardous situation can occur when the PES is started.

Step 1 : If muting sensor MutingSwitch12 (MS_12) is activated by the product after MutingSwitch11 (MS_11), the muting mode
is activated.

Step 2 : Muting mode remains active as long as MutingSwitch11 (MS_11) and MutingSwitch12 (MS_12) are activated by the
product. The product may pass through the light curtain without causing a machine stop.

Step 3 : Before muting sensors MutingSwitch11 (MS_11) and MutingSwitch12 (MS_12) are disabled, muting sensors
MutingSwitch21 (MS_21) and MutingSwitch22 (MS_22) must be activated. This ensures that muting mode remains active.

Step 4 : Muting mode is terminated if only muting sensor MutingSwitch22 (MS_22) is activated by the product.

 Chapter 15. Safety Function Blocks

15-62

NO. Figure

1

2

3

4

Chapter 15. Safety Function Blocks

15-63

4) Typical Timing Diagrams

5) Error Detection
The FB detects the following error conditions:
• Muting sensors MutingSwitch11, MutingSwitch12, MutingSwitch21, and MutingSwitch22 are activated in the wrong order.
• Muting sequence starts without being enabled by MutingEnable
• A faulty muting lamp is indicated by S_MutingLamp = FALSE.
• A static Reset condition.
• MaxMutingTime has been set to a value less than T#0s or greater than T#10min.
• The muting function (S_MutingActive = TRUE) exceeds the maximum muting time MaxMutingTime.

 Chapter 15. Safety Function Blocks

15-64

6) Error Behavior
In the event of an error, the S_AOPD_Out and S_MutingActive outputs are set to FALSE. The DiagCode output indicates the
relevant error code and the Error output is set to TRUE.
A restart is inhibited until the error conditions are cleared and the Safe state is acknowledged with Reset by the operator.

7) Error Codes

DiagCode State Name State Description and Output Setting

C001 Reset Error 1

Static Reset condition detected after FB activation.
Ready = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = TRUE

C002 Reset Error 2

Static Reset condition detected in state 8003.
Ready = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = TRUE

C003 Error Muting lamp

Error detected in muting lamp.
Ready = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = TRUE

CYx4 Error Muting sequence

Error detected in muting sequence in states 8000, 8011, 8012,
8112 or 8122.
Ready = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = TRUE
Y = Status in the sequence (2 states for forward and 2 states for
backward direction).
C0x4 = Error occurred in state 8000
C1x4 = Error occurred in state Forward 8011
C2x4 = Error occurred in state Forward 8012
C3x4 = Error occurred in state Backward 8122
C4x4 = Error occurred in state Backward 8112
CFx4 = Muting Enable missing
x = Status of the sensors when error occurred (4 bits: LSB =
MS_11; MS_12; MS_21; MSB = MS_22).

C005 Parameter Error

MaxMutingTime value out of range.
Ready = TRUE, Error = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE

C006 Error Timer MaxMuting

Timing error: Active muting time (when S_MutingActive = TRUE)
exceeds MaxMutingTime.
Ready = TRUE, Error = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE

8) Status codes

Chapter 15. Safety Function Blocks

15-65

DiagCode State Name State Description and Output Setting

0000 Idle

The function block is not active (initial state).
Ready = FALSE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = FALSE

8000 AOPD Free

Muting not active and no safety demand from AOPD.
Ready = TRUE
S_AOPD_Out = TRUE
S_MutingActive = FALSE
Error = FALSE

8001 Init

Function block has been activated.
Ready = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = FALSE

8002 Safety Demand AOPD

Safety demand detected by AOPD, muting not active.
Ready = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = FALSE

8003 Wait for Reset

Safety demand or errors have been detected and are now
cleared. Operator acknowledgment by Reset required.
Ready = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = FALSE

8005 Safe

Safety function activated.
Ready = TRUE
S_AOPD_Out = FALSE
S_MutingActive = FALSE
Error = FALSE

8011 Muting Forward Start

Muting forward, sequence is in starting phase and no safety
demand.
Ready = TRUE
S_AOPD_Out = TRUE
S_MutingActive = FALSE
Error = FALSE

8012 Muting Forward Active

Muting forward, sequence is active.
Ready = TRUE
S_AOPD_Out = TRUE
S_MutingActive = TRUE
Error = FALSE

 Chapter 15. Safety Function Blocks

15-66

DiagCode State Name State Description and Output Setting

8112 Muting Backward Active

Muting backward, sequence is active.
Ready = TRUE
S_AOPD_Out = TRUE
S_MutingActive = TRUE
Error = FALSE

8122 Muting Backward Start

Muting backward, sequence is in starting phase and no safety
demand.
Ready = TRUE
S_AOPD_Out = TRUE
S_MutingActive = FALSE
Error = FALSE

Chapter 15. Safety Function Blocks

15-67

 15.2.12 SF_OUTCONTROL

1) Overview
Control of a safety output with a signal from the functional application and a safety signal with optional startup inhibits.

BOOL

SF_OutControl

Activate

S_SafeControl

ProcessControl

BOOL

SAFEBOOL

BOOL

WORDBOOL

BOOL

SAFEBOOL

BOOL

StaticControl

Ready

S_OutControl

Error

DiagCode

S_StartReset

S_AutoReset

Reset

SAFEBOOL

SAFEBOOL

2) Input / Output Variables

Type Name Data Type Initial Value Description

Input

Activate BOOL 0 Activation of the FB

S_SafetyControl SAFEBOOL 0

Control signal of the preceding safety FB.
Typical function block signals from the library
(e.g., SF_EStop, SF_GuardMonitoring,
SF_TwoHandControlTypeII, and/or others).
FALSE: The preceding safety FB’s are in safe
state.
TRUE: The preceding safety FB’s enable
safety control.

ProcessControl BOOL 0

Control signal from the functional application.
FALSE: Request to set S_OutControl to
FALSE.
TRUE: Request to set S_OutControl to
TRUE.

StaticControl BOOL 0

Optional conditions for process control.
FALSE: Dynamic change at ProcessControl
(FALSE => TRUE) required after block
activation or triggered safety function.
Additional function start required.
TRUE: No dynamic change at ProcessControl
(FALSE => TRUE) required after block
activation or triggered safety function.

 Chapter 15. Safety Function Blocks

15-68

Type Name Data Type Initial Value Description

Input

S_StartReset SAFEBOOL 0

FALSE (= initial value): Manual reset when
PES is started (warm or cold).
TRUE: Automatic reset when PES is started
(warm or cold).
This function shall only be activated if it is
ensured that no hazard can occur at the start
of the PES. Therefore the use of the
Automatic Circuit Reset feature of the function
blocks requires implementation of other
system or application measures to ensure that
unexpected (or unintended) startup does not
occur.

S_AutoReset SAFEBOOL 0

FALSE (= initial value): Manual reset when
emergency stop button is released.
TRUE: Automatic reset when emergency stop
button is released.
This function shall only be activated if it is
ensured that no hazard can occur at the start
of the PES. Therefore the use of the
Automatic Circuit Reset feature of the function
blocks requires implementation of other
system or application measures to ensure that
unexpected (or unintended) startup does not
occur.

Reset BOOL 0 Reset

Output

Ready BOOL 0
If TRUE, indicates that the FB is activated and
the output results are valid.

S_OutControl SAFEBOOL 0
Controls connected actuators.
FALSE: Disable connected actuators.
TRUE: Enable connected actuators.

Error BOOL 0 Error flag

DiagCode WORD 16#0000

Diagnostic register.
All states of the FB are represented by this
register. This information is encoded in
hexadecimal format in order to represent
more than 16 codes.

3) Functional Description
General: The SF_OutControl FB is an output driver for a safety output.
The safety output is controlled via S_OutControl using a signal from the functional application (ProcessControl/BOOL to control
the process) and a signal from the safety application (S_SafeControl/SAFEBOOL to control the safety function).

Optional conditions for process control (ProcessControl):
• An additional function start (ProcessControl FALSE => TRUE) is required following block activation or feedback of the safe
signal (S_SafeControl). A static TRUE signal at ProcessControl does not set S_OutControl to TRUE.
• An additional function start (ProcessControl FALSE => TRUE) is not required following block activation or feedback of the safe

Chapter 15. Safety Function Blocks

15-69

signal (S_SafeControl). A static TRUE signal at ProcessControl sets S_OutControl to TRUE if the other conditions have been
met.

Optional startup inhibits:
• Startup inhibit after function block activation.
• Startup inhibit after interruption of the protective device.
The StaticControl, S_StartReset and S_AutoReset inputs shall only be activated if it is ensured that no hazardous situation can
occur when the PES is started.

4) Typical Timing Diagrams

< S_StartReset=Off >

< S_StartReset=On >

 Chapter 15. Safety Function Blocks

15-70

5) Error Detection
The following conditions force a transition to the Error state:
• Invalid static Reset signal in the process.
• Invalid static ProcessControl signal.
• ProcessControl and Reset are incorrectly interconnected due to programming error.

6) Error Behavior
In the event of an error, the S_OutControl output is set to FALSE and remains in this safe state.
To leave the Reset, Init or Lock error states, the Reset input must be set to FALSE. To leave the Control error state, the
ProcessControl input must be set to FALSE.
After transition of S_SafeControl to TRUE, the optional startup inhibit can be reset by a rising edge at the Reset input.
After block activation, the optional startup inhibit can be reset by a rising edge at the Reset input.

7) Error Codes

DiagCode State Name State Description and Output Setting

C001 Reset Error 1

Static Reset signal in state 8001.
Ready = TRUE
S_OutControl = FALSE
Error = TRUE

C002 Reset Error 2

Static Reset signal in state 8003.
Ready = TRUE
S_OutControl = FALSE
Error = TRUE

C010 Control Error

Static signal at ProcessControl in state 8010.
Ready = TRUE
S_OutControl = FALSE
Error = TRUE

C111 Init Error

Simultaneous rising trigger at Reset and ProcessControl in state
8001.
Ready = TRUE
S_OutControl = FALSE
Error = TRUE

C211 Lock Error

Simultaneous rising trigger at Reset and ProcessControl in state
8003.
Ready = TRUE
S_OutControl = FALSE
Error = TRUE

Chapter 15. Safety Function Blocks

15-71

8) Status codes

DiagCode State Name State Description and Output Setting

0000 Idle

The function block is not active (initial state).
Ready = FALSE
S_OutControl = FALSE
Error = FALSE

8001 Init

Block activation startup inhibit is active. Reset required.
Ready = TRUE
S_OutControl = FALSE
Error = FALSE

8002 Safe

Triggered safety function.
Ready = TRUE
S_OutControl = FALSE
Error = FALSE

8003 Lock

Safety function startup inhibit is active. Reset required.
Ready = TRUE
S_OutControl = FALSE
Error = FALSE

8010 Output Disable

Process control is not active.
Ready = TRUE
S_OutControl = FALSE
Error = FALSE

8000 Output Enable

Process control is active and safety is enabled.
Ready = TRUE
S_OutControl = TRUE
Error = FALSE

 Chapter 15. Safety Function Blocks

15-72

 15.2.13 SF_SAFEGUARD

1) Overview
This function block monitors the relevant safety guard. There are two independent input parameters for two switches at the
safety guard coupled with a time difference (MonitoringTime) for closing the guard.

BOOL

SF_GuardMonitoring

Activate

S_GuardSwitch1

S_GuardSwitch2

BOOL

SAFEBOOL

BOOL

WORDTIME

SAFEBOOL

SAFEBOOL

BOOL

DiscrepancyTime

Ready

S_GuardMonitoring

Error

DiagCode

S_StartReset

S_AutoReset

Reset

SAFEBOOL

SAFEBOOL

2) Input / Output Variables

Type Name Data Type Initial Value Description

Input

Activate BOOL 0 Activation of the FB

S_GuardSwitch1 SAFEBOOL 0
Guard switch 1 input.
FALSE: Guard is open.
TRUE: Guard is closed.

S_GuardSwitch2 SAFEBOOL 0
Guard switch 2 input.
FALSE: Guard is open.
TRUE: Guard is closed.

DiscrepancyTime Time T#0ms
Configures the monitored synchronous time
between S_GuardSwitch1 and S_GuardSwitch2.

S_StartReset SAFEBOOL 0

FALSE (= initial value): Manual reset when PES is
started (warm or cold).
TRUE: Automatic reset when PES is started
(warm or cold).
This function shall only be activated if it is ensured
that no hazard can occur at the start of the PES.
Therefore the use of the Automatic Circuit Reset
feature of the function blocks requires
implementation of other system or application
measures to ensure that unexpected (or
unintended) startup does not occur.

Chapter 15. Safety Function Blocks

15-73

Type Name Data Type Initial Value Description

S_AutoReset SAFEBOOL 0

FALSE (= initial value): Manual reset when
emergency stop button is released.
TRUE: Automatic reset when emergency stop
button is released.
This function shall only be activated if it is ensured
that no hazard can occur at the start of the PES.
Therefore the use of the Automatic Circuit Reset
feature of the function blocks requires
implementation of other system or application
measures to ensure that unexpected (or
unintended) startup does not occur.

Reset BOOL 0 Reset

Output

Ready BOOL 0
If TRUE, indicates that the FB is activated and the
output results are valid.

S_GuardMonitoring SAFEBOOL 0

Output indicating the status of the guard.
FALSE: Guard is not active.
TRUE: both S_GuardSwitches are TRUE, no
error and acknowledgment. Guard is active.

Error BOOL 0 Error flag

DiagCode WORD 16#0000

Diagnostic register.
All states of the FB are represented by this
register. This information is encoded in
hexadecimal format in order to represent more
than 16 codes.

3) Functional Description
The function block requires two inputs indicating the guard position for safety guards with two switches, a DiscrepancyTime input
and Reset input. If the safety guard only has one switch, the S_GuardSwitch1 and S_GuardSwitch2 inputs can be bridged. The
monitoring time is the maximum time required for both switches to respond when closing the safety guard. The Reset,
S_StartReset, and S_AutoReset inputs determine how the function block is reset after the safety guard has been opened.
When opening the safety guard, both S_GuardSwitch1 and S_GuardSwitch2 inputs should switch to FALSE. The
S_GuardMonitoring output switches to FALSE as soon as one of the switches is set to FALSE. When closing the safety guard,
both S_GuardSwitch1 and S_GuardSwitch2 inputs should switch to TRUE.
This FB monitors the symmetry of the switching behavior of both switches. The S_GuardMonitoring output remains FALSE if
only one of the contacts has completed an open/close process.
The behavior of the S_GuardMonitoring output depends on the time difference between the switching inputs. The discrepancy
time is monitored as soon as the value of both S_GuardSwitch1/S_GuardSwitch2 inputs differs. If the DiscrepancyTime has
elapsed, but the inputs still differ, the S_GuardMonitoring output remains FALSE. If the second corresponding
S_GuardSwitch1/S_GuardSwitch2 input switches to TRUE within the value specified for the DiscrepancyTime input, the
S_GuardMonitoring output is set to TRUE following acknowledgment.
The S_StartReset and S_AutoReset inputs shall only be activated if it is ensured that no hazardous situation can occur when
the PES is started.

 Chapter 15. Safety Function Blocks

15-74

4) Typical Timing Diagrams

Chapter 15. Safety Function Blocks

15-75

5) Error Detection
External signals: SAFEBOOL inputs provide inherent error detection. Mechanical setup combines that of an opening and
closing switch according to EN 954 (safety guard with two switches). Discrepancy time monitoring for time lag between both
mechanical switches reaction, according to EN 954 (to be considered as "application error" detection, i.e., generated by the
application).
An error is detected if the time lag between the first S_GuardSwitch1/S_GuardSwitch2 input and the second is greater than the
value for the DiscrepancyTime input. The Error output is set to TRUE.
The function block detects a static TRUE signal at the RESET input.

6) Error Behavior
The S_GuardMonitoring output is set to FALSE. If the two S_GuardSwitch1 and S_Guardswitch2 inputs are bridged, no error is
detected. To leave the Reset error state, the Reset input must be set to FALSE. To leave the discrepancy time errors, the inputs
S_GuardSwitch1 and 2 must both be set to FALSE.

7) Error Codes

DiagCode State Name State Description and Output Setting

C001 Reset Error

Static reset detected in state 8003.
Ready = TRUE
S_GuardMonitoring = FALSE
Error = TRUE

C011 Discrepancytime Error 1

DiscrepancyTime elapsed in state 8004.
Ready = TRUE
S_GuardMonitoring = FALSE
Error = TRUE

C012 Discrepancytime Error 2

DiscrepancyTime elapsed in state 8014.
Ready = TRUE
S_GuardMonitoring = FALSE
Error = TRUE

 Chapter 15. Safety Function Blocks

15-76

8) Status codes

DiagCode State Name State Description and Output Setting

0000 Idle

The function block is not active (initial state).
Ready = FALSE
S_GuardMonitoring = FALSE
Error = FALSE

8000 Normal

Safety guard closed and Safe state acknowledged.
Ready = TRUE
S_GuardMonitoring = TRUE
Error = FALSE

8001 Init

Function block has been activated.
Ready = TRUE
S_GuardMonitoring = FALSE
Error = FALSE

8002 Open Guard Request

Complete switching sequence required.
Ready = TRUE
S_GuardMonitoring = FALSE
Error = FALSE

8003 Wait for Reset

Waiting for rising trigger at Reset.
Ready = TRUE
S_GuardMonitoring = FALSE
Error = FALSE

8012 Guard Opened

Guard completely opened.
Ready = TRUE
S_GuardMonitoring = FALSE
Error = FALSE

8004 Wait for GuardSwitch2

S_GuardSwitch1 has been switched to TRUE - waiting for
S_GuardSwitch2; discrepancy timer started.
Ready = TRUE
S_GuardMonitoring = FALSE
Error = FALSE

8014 Wait for GuardSwitch1

S_GuardSwitch2 has been switched to TRUE - waiting for
S_GuardSwitch1; discrepancy timer started.
Ready = TRUE
S_GuardMonitoring = FALSE
Error = FALSE

8005 Guard Closed

Guard closed. Waiting for Reset, if S_AutoReset = FALSE.
Ready = TRUE
S_GuardMonitoring = FALSE
Error = FALSE

Chapter 15. Safety Function Blocks

15-77

 15.2.14 SF_SAFETYREQUEST

1) Overview
This function block provides the interface to a generic actuator, e.g. a safety drive or safety valve, to place the actuator in a safe
state.

SF_SafetyRequest

Activate

S_OpMode

S_Acknowledge

BOOL

SAFEBOOL

SAFEBOOL

BOOLTIME

SAFEBOOL

SAFEBOOL

BOOL

MonitoringTime

Ready

S_SafetyActive

S_SafetyRequest

Error

ResetBOOL WORDDiagCode

2) Input / Output Variables

Type Name Data Type Initial Value Description

Input

Activate BOOL 0 Activation of the FB

S_OpMode SAFEBOOL 0
Requested mode of a generic safe actuator.
FALSE: Safe mode is requested.
TRUE: Operation mode is requested.

S_Acknowledge SAFEBOOL 0

Confirmation of the generic actuator, if
actuator is in the Safe state.
FALSE: Operation mode (non-safe).
TRUE: Safe mode.

MonitoringTime TIME T#0s

Monitoring of the response time between the
safety function request (S_OpMode set to
FALSE) and the actuator acknowledgment
(S_Acknowledge switches to TRUE).

Reset BOOL 0 Reset

Output

Ready BOOL 0
If TRUE, indicates that the FB is activated and
the output results are valid.

S_SafetyActive SAFEBOOL 0
Confirmation of the Safe state.
FALSE: Non-safe state.
TRUE: Safe state.

S_SafetyRequest SAFEBOOL 0
Request to place the actuator in a safe state.
FALSE: Safe state is requested.
TRUE: Non-safe state.

Error BOOL 0 Error flag

DiagCode WORD 16#0000

Diagnostic register.
All states of the FB are represented by this
register. This information is encoded in
hexadecimal format in order to represent
more than 16 codes.

 Chapter 15. Safety Function Blocks

15-78

3) Functional Description
This FB provides the interface between the safety-related system and a generic actuator. This means that the safety-related
functions of the actuator are available within the application program. However, there are only two binary signals to control the
Safe state of the generic actuator, i.e., one for requesting and one for receiving the confirmation.
The safety function will be provided by the actuator itself. Therefore the FB only initiates the request, monitors it, and sets the
output when the actuator acknowledges the Safe state. This will be indicated with the "S_SafetyActive" output.
This FB does not define any generic actuator-specific parameters. They should have been specified in the generic actuator
itself. It switches the generic actuator from the operation mode to a safe state.

4) Typical Timing Diagrams

Chapter 15. Safety Function Blocks

15-79

5) Error Detection
The FB detects whether the actuator does not enter the Safe state within the monitoring time.
The FB detects whether the acknowledge signal is lost while the request is still active.
The FB detects a static Reset signal.

External FB errors:
There are no external errors, since there is no error bits/information provided by the generic actuator.

6) Error Behavior
In the event of an error, the S_SafetyActive output is set to FALSE.
An error must be acknowledged by a rising trigger at the Reset input. To continue the function block after this reset, the
S_OpMode request must be set to TRUE.

7) Error Codes

DiagCode State Name State Description and Output Setting

C002 Acknowledge Lost

Acknowledgment lost while in the Safe state.
Ready = TRUE
S_SafetyActive = FALSE
S_SafetyRequest = FALSE
Error = TRUE

C003 MonitoringTime Elapsed

S_OpMode request could not be completed within the monitoring
time.
Ready = TRUE
S_SafetyActive = FALSE
S_SafetyRequest = FALSE
Error = TRUE

C004 Reset Error 2

Static Reset detected in state C002 (Acknowledge Lost).
Ready = TRUE
S_SafetyActive = FALSE
S_SafetyRequest = FALSE
Error = TRUE

C005 Reset Error 3

Static Reset detected in state C003 (MonitoringTime Elapsed).
Ready = TRUE
S_SafetyActive = FALSE
S_SafetyRequest = FALSE
Error = TRUE

 Chapter 15. Safety Function Blocks

15-80

8) Status codes

DiagCode State Name State Description and Output Setting

0000 Idle

The function block is not active (initial state).
Ready = FALSE
S_SafetyActive = FALSE
S_SafetyRequest = FALSE
Error = FALSE

8000 Safe Mode

Actuator is in a safe mode.
Ready = TRUE
S_SafetyActive = TRUE
S_SafetyRequest = FALSE
Error = FALSE

8001 Init

State after Activate is set to TRUE or after a rising trigger at
Reset.
Ready = TRUE
S_SafetyActive = FALSE
S_SafetyRequest = FALSE
Error = FALSE

8002 Operation Mode

Operation mode without Acknowledge of safe mode
Ready = TRUE
S_SafetyActive = FALSE
S_SafetyRequest = TRUE
Error = FALSE

8012
Wait for Confirmation
OpMode

Operation mode with Acknowledge of safe mode
Ready = TRUE
S_SafetyActive = FALSE
S_SafetyRequest = TRUE
Error = FALSE

8003 Wait for Confirmation

Waiting for confirmation from the drive (system interface).
Ready = TRUE
S_SafetyActive = FALSE
S_SafetyRequest = FALSE
Error = FALSE

8005 Wait for OpMode

Error was cleared. However S_OpMode must be set to TRUE
before the FB can be initialized.
Ready = TRUE
S_SafetyActive = FALSE
S_SafetyRequest = FALSE
Error = FALSE

Chapter 15. Safety Function Blocks

15-81

 15.2.15 SF_TESTABLESAFETYSENSOR

1) Overview
This function block detects, for example, the loss of the sensing unit detection capability, the response time exceeding that
specified, and static ON signal in single-channel sensor systems. It can be used for external testable safety sensors (ESPE:
Electro-sensitive protective equipment, such as a light beam).

SAFEBOOL

SF_TestableSafetySensor

Activate

S_OSSD_In

StartTest

BOOL

SAFEBOOL

SAFEBOOL

BOOLTIME

BOOL

SAFEBOOL

BOOL

TestTime

Ready

S_OSSD_Out

S_TestOut

TestPossible

NoExternalTest

S_StartReset

S_AutoReset

BOOL

SAFEBOOL

ResetBOOL

BOOLTestExecuted

BOOL

WORD

Error

DiagCode

2) Input / Output Variables

Type Name Data Type Initial Value Description

Input

Activate BOOL 0 Activation of the FB

S_OSSD_In SAFEBOOL 0

Status of sensor output, e.g., light curtain.
FALSE: Safety sensor in test state or demand
for safety-related response.
TRUE: Sensor in the state for normal operating
conditions.

StartTest BOOL 0

Input to start sensor test. Sets "S_TestOut" and
starts the internal time monitoring function in
the FB.
FALSE: No test requested.
TRUE: Test requested.

TestTime Time T#10ms
Constant. Range: 0 … 150ms.
Test time of safety sensor.

NoExternalTest BOOL 0

Indicates if external manual sensor test is
supported.
FALSE: The external manual sensor test is
supported. Only after a complete manual
sensor switching sequence, a automatic test is
possible again after a faulty automatic sensor
test.
TRUE: The external manual sensor test is not
supported. An automatic test is possible again
without a manual sensor switching sequence
after faulty automatic sensor test.

 Chapter 15. Safety Function Blocks

15-82

Type Name Data Type Initial Value Description

S_AutoReset SAFEBOOL 0

FALSE (= initial value): Manual reset when
emergency stop button is released.
TRUE: Automatic reset when emergency stop
button is released.
This function shall only be activated if it is
ensured that no hazard can occur at the start
of the PES. Therefore the use of the Automatic
Circuit Reset feature of the function blocks
requires implementation of other system or
application measures to ensure that
unexpected (or unintended) startup does not
occur.

Reset BOOL 0 Reset

Output

Ready BOOL 0
If TRUE, indicates that the FB is activated and
the output results are valid.

S_OSSD_Out SAFEBOOL 0

Safety related output indicating the status of
the ESPE.
FALSE: The sensor has a safety-related action
request or test error.
TRUE: The sensor has no safety-related action
request AND no test error.

S_TestOut SAFEBOOL 1

Coupled with the test input of the sensor.
Although specified as SAFEBOOL, in practice
this signal will often be connected to a BOOL
output.
FALSE: Test request issued.
TRUE: No test request.

TestPossible BOOL 0

Feedback signal to the process.
FALSE: An automatic sensor test is not
possible.
TRUE: An automatic sensor test is possible.

TestExecuted BOOL 0

A positive signal edge indicates the successful
execution of the automatic sensor test.
FALSE:
- An automatic sensor test was not executed
yet.
- An automatic sensor test is active.
- An automatic sensor test was faulty.
TRUE: A sensor test was executed
successfully.

Error BOOL 0 Error flag

DiagCode WORD 16#0000

Diagnostic register. All states of the FB are
represented by this register. This information is
encoded in hexadecimal format in order to
represent more than 16 codes.

Chapter 15. Safety Function Blocks

15-83

3) Functional Description
Type 2 ESPE shall have a means of periodic testing to detect a hazardous fault (e.g., loss of sensing unit detection capability,
response time exceeding that specified). The test signal shall simulate the actuation of the sensing device and the duration of
the periodic test shall not exceed 150 ms. The test shall verify that each light beam operates in the manner specified by the
supplier. If the periodic test is intended to be initiated by an external safety-related control system (e.g., a machine), the ESPE
shall be provided with suitable input facilities (e.g., terminals).The ESPE must be selected in respect of the product standards
EN IEC 61496-1, -2 and -3 and the required categories according EN 954-1. It must be monitored by separate functionality, that
the test is initiated within appropriate intervals. The S_StartReset and S_AutoReset inputs shall only be activated if it is ensured
that no hazardous situation can occur when the PES is started.

Test mode:
1. StartTest = TRUE: S_TestOut = FALSE. Start monitoring time
2. S_TestOut signal stops transmitter (Monitoring of TestTime started first time)
3. S_OSSD_In changes from TRUE to FALSE (Monitoring of TestTime started second time)
4. S_TestOut changes from FALSE to TRUE
5. Start transmitter
6. Sensor S_OSSD_In changes from FALSE to TRUE
7. Stop monitoring time
8. S_OSSD_Out is set to TRUE during testing

Optional startup inhibits:
• Startup inhibit after function block activation.
• Startup inhibit after interruption of the protective device.

 Chapter 15. Safety Function Blocks

15-84

4) Typical Timing Diagrams

5) Error Detection
The following conditions force a transition to the Error state:
• Test time overrun without delayed sensor feedback.
• Test without sensor signal feedback.
• Invalid static reset signal in the process.
• Plausibility check of the monitoring time setting.

6) Error Behavior
In the event of an error, the S_OSSD_Out output is set to FALSE and remains in this safe state.
Once the error has been removed and the sensor is on (S_OSSD_In = TRUE) – a reset removes the error state and sets the
S_OSSD_Out output to TRUE.
If S_AutoReset = FALSE, a rising trigger is required at Reset.
After transition of S_OSSD_In to TRUE, the optional startup inhibit can be reset by a rising edge at the Reset input.
After block activation, the optional startup inhibit can be reset by a rising edge at the Reset input.

Chapter 15. Safety Function Blocks

15-85

7) Error Codes

DiagCode State Name State Description and Output Setting

C000 Parameter Error

Invalid value at the TestTime parameter.
Values between 0 ms and 150 ms are possible.
Ready = TRUE
S_OSSD_Out = FALSE
S_TestOut = TRUE
TestPossible = FALSE
TestExecuted = FALSE
Error = TRUE

C001 Reset Error 1

Static Reset condition detected after FB activation.
Ready = TRUE
S_OSSD_Out = FALSE
S_TestOut = TRUE
TestPossible = FALSE
TestExecuted = FALSE
Error = FALSE

C002 Reset Error 2

Static Reset condition detected in state 8003.
Ready = TRUE
S_OSSD_Out = FALSE
S_TestOut = TRUE
TestPossible = FALSE
TestExecuted = FALSE
Error = TRUE

C003 Reset Error 3

Static Reset condition detected in state C010.
Ready = TRUE
S_OSSD_Out = FALSE
S_TestOut = TRUE
TestPossible = FALSE
TestExecuted = FALSE
Error = TRUE

C004 Reset Error 4

Static Reset condition detected in state C020.
Ready = TRUE
S_OSSD_Out = FALSE
S_TestOut = TRUE
TestPossible = FALSE
TestExecuted = FALSE
Error = TRUE

C005 Reset Error 5

Static Reset condition detected in state 8006.
Ready = TRUE
S_OSSD_Out = FALSE
S_TestOut = TRUE
TestPossible = FALSE
TestExecuted = FALSE
Error = TRUE

 Chapter 15. Safety Function Blocks

15-86

DiagCode State Name State Description and Output Setting

C006 Reset Error 6

Static Reset condition detected in state C000.
Ready = TRUE
S_OSSD_Out = FALSE
S_TestOut = TRUE
TestPossible = FALSE
TestExecuted = FALSE
Error = TRUE

C007 Reset Error 7

Static Reset condition detected in state 8015.
Ready = TRUE
S_OSSD_Out = FALSE
S_TestOut = TRUE
TestPossible = FALSE
TestExecuted = TRUE
Error = TRUE

C010 Test Error 1

Test time elapsed in state 8020.
Ready = TRUE
S_OSSD_Out = FALSE
S_TestOut = TRUE
TestPossible = FALSE
TestExecuted = FALSE
Error = TRUE

C020 Test Error 2

Test time elapsed in state 8030.
Ready = TRUE
S_OSSD_Out = FALSE
S_TestOut = TRUE
TestPossible = FALSE
TestExecuted = FALSE
Error = TRUE

Chapter 15. Safety Function Blocks

15-87

8) Status codes

DiagCode State Name State Description and Output Setting

0000 Idle

The function block is not active (initial state).
Ready = FALSE
S_OSSD_Out = FALSE
S_TestOut = TRUE
TestPossible = FALSE
TestExecuted = FALSE
Error = FALSE

8001 Init

An activation has been detected by the FB.
Ready = TRUE
S_OSSD_Out = FALSE
S_TestOut = TRUE
TestPossible = FALSE
TestExecuted = FALSE
Error = FALSE

8002 ESPE Interrupted 1

The FB has detected a safety demand.
The switch has not been automatically tested yet.
Ready = TRUE
S_OSSD_Out = FALSE
S_TestOut = TRUE
TestPossible = FALSE
TestExecuted = FALSE
Error = FALSE

8003 Wait for Reset 1

Wait for rising trigger of Reset after state 8002.
Ready = TRUE
S_OSSD_Out = FALSE
S_TestOut = TRUE
TestPossible = FALSE
TestExecuted = FALSE
Error = FALSE

8004 External Function Test

The automatic sensor test was faulty.
An external manual sensor test is necessary.
The support for the necessary external manual sensor test has
been activated at the FB (NoExternalTest = FALSE).
A negative signal edge at the sensor is required.
Ready = TRUE
S_OSSD_Out = FALSE
S_TestOut = TRUE
TestPossible = FALSE
TestExecuted = FALSE
Error = FALSE

 Chapter 15. Safety Function Blocks

15-88

DiagCode State Name State Description and Output Setting

8005
ESPE Interrupted
External Test

The automatic sensor test was faulty.
An external manual sensor test is necessary.
The support for the necessary external manual sensor test has
been activated at the FB (NoExternalTest = FALSE).
A TRUE signal at the sensor is required.
Ready = TRUE
S_OSSD_Out = FALSE
S_TestOut = TRUE
TestPossible = FALSE
TestExecuted = FALSE
Error = FALSE

8006 End External Test

The automatic sensor test was faulty.
An external manual sensor test is necessary.
The support for the necessary external manual sensor test has
been activated
at the FB (NoExternalTest = FALSE).
The external manual test is complete.
The FB detected a complete sensor switching cycle (external
controlled).
Ready = TRUE
S_OSSD_Out = FALSE
S_TestOut = TRUE
TestPossible = FALSE
TestExecuted = FALSE
Error = FALSE

8010 ESPE Free No Test

The FB has not detected a safety demand.
The sensor has not been tested automatically.
Ready = TRUE
S_OSSD_Out = TRUE
S_TestOut = TRUE
TestPossible = TRUE
TestExecuted = FALSE
Error = FALSE

8020 Test Request

The automatic sensor test is active. Test Timer is started first
time.
The transmitter signal of the sensor is switched off by the FB.
The signal of the receiver must follow the signal of the
transmitter.
Ready = TRUE
S_OSSD_Out = TRUE
S_TestOut = FALSE
TestPossible = FALSE
TestExecuted = FALSE
Error = FALSE

Chapter 15. Safety Function Blocks

15-89

DiagCode State Name State Description and Output Setting

8030 Test Active

The automatic sensor test is active. Test Timer is started second
time.
The transmitter signal of the sensor is switched on by the FB.
The signal of the receiver must follow the signal of the
transmitter.
Ready = TRUE
S_OSSD_Out = TRUE
S_TestOut = TRUE
TestPossible = FALSE
TestExecuted = FALSE
Error = FALSE

8000 ESPE Free Test ok

The FB has not detected a safety demand.
The sensor was automatically tested.
Ready = TRUE
S_OSSD_Out = TRUE
S_TestOut = TRUE
TestPossible = TRUE
TestExecuted = TRUE
Error = FALSE

8012 ESPE Interrupted 2

The FB has detected a safety demand.
The switch was automatically tested.
Ready = TRUE
S_OSSD_Out = FALSE
S_TestOut = TRUE
TestPossible = FALSE
TestExecuted = TRUE
Error = FALSE

8013 Wait for Reset 2

Wait for rising trigger of Reset after state 8012.
Ready = TRUE
S_OSSD_Out = FALSE
S_TestOut = TRUE
TestPossible = FALSE
TestExecuted = TRUE
Error = FALSE

 Chapter 15. Safety Function Blocks

15-90

 15.2.16 SF_TWOHANDCTRLII

1) Overview
This function block provides the two-hand control functionality.

SF_TwoHandControlTypeII

Activate

S_Button1

S_Button2

BOOL

SAFEBOOL

BOOL

WORD
SAFEBOOL

SAFEBOOL

BOOL Ready

S_TwoHandOut

Error

DiagCode

2) Input / Output Variables

Type Name Data Type Initial Value Description

Input

Activate BOOL 0 Activation of the FB

S_Button1 SAFEBOOL 0
FALSE: Button 1 released.
TRUE: Button 1 actuated.

S_Button2 SAFEBOOL 0
FALSE: Button 2 released.
TRUE: Button 2 actuated.

Output

Ready BOOL 0
If TRUE, indicates that the FB is activated
and the output results are valid.

S_TwoHandOut SAFEBOOL 0

Safety related output signal.
FALSE: No correct two hand operation.
TRUE: S_Button1 and S_Button2 inputs are
TRUE and no error occurred. Correct two
hand operation.

Error BOOL 0 Error flag

DiagCode WORD 16#0000

Diagnostic register.
All states of the FB are represented by this
register. This information is encoded in
hexadecimal format in order to represent
more than 16 codes.

Chapter 15. Safety Function Blocks

15-91

3) Functional Description
This function block provides the two-hand control functionality according to EN 574, Section 4 Type II. If S_Button1 and
S_Button2 are set to TRUE in correct sequence, then the S_TwoHandOut output will also be set to TRUE. The FB also controls
the release of both buttons before setting the output S_TwoHandOut again to TRUE.

4) Typical Timing Diagrams

5) Error Detection
After activation of the FB, any button set to TRUE is detected as an invalid input setting leading to an error.

6) Error Behavior
In the event of an error, the S_TwoHandOut output is set to FALSE and remains in this safe state.
The Error state is exited when both buttons are released (set to FALSE).

7) Error Codes

DiagCode State Name State Description and Output Setting

C001 Error B1

S_Button1 was TRUE on FB activation.
Ready = TRUE
Error = TRUE
S_TwoHandOut = FALSE

C002 Error B2

S_Button2 was TRUE on FB activation.
Ready = TRUE
Error = TRUE
S_TwoHandOut = FALSE

C003 Error B1&B2

The signals at S_Button1 and S_Button2 were TRUE on FB
activation.
Ready = TRUE
Error = TRUE
S_TwoHandOut = FALSE

 Chapter 15. Safety Function Blocks

15-92

8) Status codes

DiagCode State Name State Description and Output Setting

0000 Idle

The function block is not active (initial state).
Ready = FALSE
Error = FALSE
S_TwoHandOut = FALSE

8000 Buttons Actuated

Both buttons actuated correctly. The safety related output is
enabled.
Ready = TRUE
Error = FALSE
S_TwoHandOut = TRUE

8001 Init

Function block is active, but in the Init state.
Ready = TRUE
Error = FALSE
S_TwoHandOut = FALSE

8004 Buttons Released

No button is actuated.
Ready = TRUE
Error = FALSE
S_TwoHandOut = FALSE

8005 Button 1 Actuated

Only Button 1 is actuated.
Ready = TRUE
Error = FALSE
S_TwoHandOut = FALSE

8006 Button 2 Actuated

Only Button 2 is actuated.
Ready = TRUE
Error = FALSE
S_TwoHandOut = FALSE

8007 Button 2 Released

The safety related output was enabled and is disabled again.
FALSE at both S_Button1 and S_Button2 was not achieved
after disabling the safety related output.
In this state, S_Button1 is TRUE and S_Button2 is FALSE after
disabling the safety related output.
Ready = TRUE
Error = FALSE
S_TwoHandOut = FALSE

8008 Button 1 Released

The safety related output was enabled and is disabled again.
FALSE at both S_Button1 and S_Button2 was not achieved
after disabling the safety related output.
In this state, S_Button1 is FALSE and S_Button2 is TRUE after
disabling the safety related output.
Ready = TRUE
Error = FALSE
S_TwoHandOut = FALSE

Chapter 15. Safety Function Blocks

15-93

DiagCode State Name State Description and Output Setting

8009 Locked Off

The safety related output was enabled and is disabled again.
FALSE at both S_Button1 and S_Button2 was not achieved
after disabling the safety related output.
In this state, S_Button1 is TRUE and S_Button2 is TRUE after
disabling the safety related output.
Ready = TRUE
Error = FALSE
S_TwoHandOut = FALSE

8019 Locked On

Incorrect actuation of the buttons. Waiting for release of both
buttons.
Ready = TRUE
Error = FALSE
S_TwoHandOut = FALSE

 Chapter 15. Safety Function Blocks

15-94

 15.2.17 SF_TWOHANDCTRLIII

1) Overview
This function block provides the two-hand control functionality.

SF_TwoHandControlTypeIII

Activate

S_Button1

S_Button2

BOOL

SAFEBOOL

BOOL

WORD
SAFEBOOL

SAFEBOOL

BOOL Ready

S_TwoHandOut

Error

DiagCode

2) Input / Output Variables

Type Name Data Type Initial Value Description

Input

Activate BOOL 0 Activation of the FB

S_Button1 SAFEBOOL 0
Input of button 1
FALSE: Button 1 released.
TRUE: Button 1 actuated.

S_Button2 SAFEBOOL 0
Input of button 2
FALSE: Button 2 released.
TRUE: Button 2 actuated.

Output

Ready BOOL 0
If TRUE, indicates that the FB is activated
and the output results are valid.

S_TwoHandOut SAFEBOOL 0

Safety related output signal.
FALSE: No correct two hand operation.
TRUE: S_Button1 and S_Button2 inputs
changed from
FALSE to TRUE within 500 ms and no error
occurred.
The two hand operation has been
performed correctly.

Error BOOL 0 Error flag

DiagCode WORD 16#0000

Diagnostic register.
All states of the FB are represented by this
register. This information is encoded in
hexadecimal format in order to represent
more than 16 codes.

Chapter 15. Safety Function Blocks

15-95

3) Functional Description
This function block provides the two-hand control functionality according to EN 574, Section 4 Type III. If S_Button1 and
S_Button2 are set to TRUE within 500 ms and in correct sequence, then the S_TwoHandOut output is also set to TRUE. The
FB also controls the release of both buttons before setting the output S_TwoHandOut again to TRUE.

4) Typical Timing Diagrams

5) Error Detection
After activation of the FB, any button set to TRUE is detected as an invalid input setting leading to an error. The FB detects when
the divergence of the input signals exceeds 500 ms.

6) Error Behavior
In the event of an error, the S_TwoHandOut output is set to FALSE and remains in this safe state.
The Error state is exited when both buttons are released (set to FALSE).

 Chapter 15. Safety Function Blocks

15-96

7) Error Codes

DiagCode State Name State Description and Output Setting

C001 Error 1 B1

S_Button1 was TRUE on FB activation.
Ready = TRUE
Error = TRUE
S_TwoHandOut = FALSE

C002 Error 1 B2

S_Button2 was TRUE on FB activation.
Ready = TRUE
Error = TRUE
S_TwoHandOut = FALSE

C003 Error 1 B1&B2

The signals at S_Button1 and S_Button2 were TRUE on FB
activation.
Ready = TRUE
Error = TRUE
S_TwoHandOut = FALSE

C004 Error 2 B1

S_Button1 was FALSE and S_Button 2 was TRUE after 500 ms in
state 8005.
Ready = TRUE
Error = TRUE
S_TwoHandOut = FALSE

C005 Error 2 B2

S_Button1 was TRUE and S_Button 2 was FALSE after 500 ms in
state 8005.
Ready = TRUE
Error = TRUE
S_TwoHandOut = FALSE

C006 Error 2 B1&B2

S_Button1 was TRUE and S_Button 2 was TRUE after 500 ms in
state 8005 or 8006. This state is only possible when the states of
the inputs (S_Button1 and S_Button2) change from divergent to
convergent (both TRUE) simultaneously when the timer elapses
(500 ms) at the same cycle.
Ready = TRUE
Error = TRUE
S_TwoHandOut = FALSE

Chapter 15. Safety Function Blocks

15-97

8) Status codes

DiagCode State Name State Description and Output Setting

0000 Idle

The function block is not active (initial state).
Ready = FALSE
Error = FALSE
S_TwoHandOut = FALSE

8000 Buttons Actuated

Both buttons actuated correctly. The safety related output is
enabled.
Ready = TRUE
Error = FALSE
S_TwoHandOut = TRUE

8001 Init

Function block is active, but in the Init state.
Ready = TRUE
Error = FALSE
S_TwoHandOut = FALSE

8004 Buttons Released

No Button is actuated.
Ready = TRUE
Error = FALSE
S_TwoHandOut = FALSE

8005 Button 1 Actuated

Only Button 1 is actuated. Start monitoring timer.
Ready = TRUE
Error = FALSE
S_TwoHandOut = FALSE

8006 Button 2 Actuated

Only Button 2 is actuated. Start monitoring timer.
Ready = TRUE
Error = FALSE
S_TwoHandOut = FALSE

8007 Button 2 Released

The safety related output was enabled and is disabled again.
FALSE at both S_Button1 and S_Button2 was not achieved
after disabling the safety related output.
In this state, S_Button1 is TRUE and S_Button2 is FALSE after
disabling the safety related output.
Ready = TRUE
Error = FALSE
S_TwoHandOut = FALSE

8008 Button 1 Released

The safety related output was enabled and is disabled again.
FALSE at both S_Button1 and S_Button2 was not achieved
after disabling the safety related output.
In this state, S_Button1 is FALSE and S_Button2 is TRUE after
disabling the safety related output.
Ready = TRUE
Error = FALSE
S_TwoHandOut = FALSE

 Chapter 15. Safety Function Blocks

15-98

DiagCode State Name State Description and Output Setting

8009 Locked Off

The safety related output was enabled and is disabled again.
FALSE at both S_Button1 and S_Button2 was not achieved
after disabling the safety related output.
In this state, S_Button1 is TRUE and S_Button2 is TRUE after
disabling the safety related output.
Ready = TRUE
Error = FALSE
S_TwoHandOut = FALSE

8019 Locked On

Incorrect actuation of the buttons. Waiting for release of both
buttons.
Ready = TRUE
Error = FALSE
S_TwoHandOut = FALSE

Chapter 16. Motion Function Blocks

16-1

Chapter 16 Motion Function Blocks

This chapter describes the basic function block library mentioned in the previous chapter and other application function block

library.

16.1 Common Elements of Motion Function Blocks

 16.1.1 The State of axis
Each axis in the motion control module is changed to the relevant state depending on the situation and command. The
changing structure of each situation is shown in the figure below.

*1 ErrorStop: in case axis error occurs regardless of the current state of axis

*2 Disabled: in case MC_Power.Enable input is Off when axis error does not occur

*3 ErrorStop  Disabled: in case MC_Reset command has issued when MC_Power.Status output is Off

*4 ErrorStop  Standstill: in case MC_Reset command has issued when MC_Power.Status output is on and

MC_Power.Enable input is On

*5 Disabled  Standstill: in case of turning On MC_Power.Enable input when MC_Power.Status output is On
*6 Stopping  Standstill: in case of turning Off MC_Stop.Execute input when MC_Stop.Done output is On

 Chapter 16. Motion Function Blocks

16-2

The state of axis Description

Disabled

Disabled state indicates the state in which no command is given to a single axis, and no
error occurs. In case there is no motion control module at the time of first operation, each
axis begins in the disabled state. Afterwards, axis status is changed to standstill state in
case servo-on status emerges when Enable input of servo On/Off (MC_Power) motion
function block is On. The axis becomes disabled state when Enable input of serve On/Off
(MC_Power) motion function block is Off in case of not being in ErrorStop state. In case
there is motion function block which is currently being performed, the command is
interrupted.(The CommandAborted output of the motion block function is On)

ErrorStop

No matter which state the current axis is in, it is changed to ErrorStop state when axis error
occurs, and the axis decelerates to stop. In the state where error occurs, ErrorStop state is
maintained even though servo On/Off (MC_Power) motion function block is executed. The
motion axis which is in ErrorStop state maintains stationary state, and any command
except for error reset is not executed.

StandStill
When the power of axis is activated, there is no error in the axis and any command is not
made, the axis state indicates StandStill state.

Homing Homing state indicates the axis is in homing operation.

Stopping

In case emergency stop (MC_Stop) function block is executed, the axis state is changed
to stopping state. When the axis is in stopping state, other motion commands cannot be
given to the axis until the Stop is completed (until Done output is activated). If Done output
is On, and Execute input is On, the state is switched to Standstill status.

Continuous Motion
It indicates state where operation continues until the current axis becomes operation stop
status.

Discrete Motion It indicates reduced operating status with target position.

Synchronized Motion Synchronized motion indicates axis is in synchronized operation.

Chapter 16. Motion Function Blocks

16-3

16.1.2 The State of Group
Each group in motion control module is changed to the relevant state depending on the situation and command.
The changing structure of each state is shown in the figure below.

*1 GroupMoving: in case of performing the motion function block of general group operation

*2 GroupStopping, GroupErrorStop: The relevant motion function block is not performed when different motion function

block is performed in GroupStopping or GroupErrorStop state, and when MC_GroupReset function block is performed

in GroupErrorStop state, the state of the relevant group is changed to GroupStandby.

*3 GroupStopping -> GroupStandby: when MC_GroupStop.DONE output is On and MC_SroupStop.EXECUTE input

is Off

*4 GroupStandby -> GroupDisabled: in case there is no axis belonging to the group when performing the axis remove

command (MC_RemoveAxisFromGroup, MC_UnGroupAllAxes)

*5 GroupStandby: in case more than one axis belongs to the group when performing the axis add or remove command

in group (MC_AddAxisToGroup, MC_RemoveAxisFromGroup)
*6 GroupDisabled: When performing MC_GroupDisable or MC_UnGroupAllDisable function block, the relevant group is
changed to GroupDisabled state regardless of its current state.

 Chapter 16. Motion Function Blocks

16-4

16.1.3 Basic I/O Variable
Edge operation motion function block
Relationships of the basic I/O parameter in the Edge operation motion function block are as below.

Variable Description

Execute
This is an input to run the relevant function block in Edge operation function block. Function

block is executed in the rising Edge. (Figure a state)

Busy

This is an output to indicate the relevant motion function block is currently running (= not

completed), and this indicates the output of motion function block can be changed.

Busy output is On in the rising Edge of Execute input (Figure a state), and it is Off when

Done output is On (Figure b state), CommandAborted output is On (Figure d state), or

Error output is On (Figure f state).

Active

This indicates the relevant motion function block is actually controlling axis.

When running many motion function block to one axis (in case only one motion function

block is controlling and other notion function blocks are Buffered), Active output is On in

only one motion function block which is controlling, and in motion function blocks which are

Buffered, Busy output is On.

Done

This is an output to indicate operation of the relevant motion function block has been

successfully completed.

If Done output is On, Busy and Active output is Off. (Figure d state)

Done output is Off when Execute input is Off (Figure e state), if Execute output was Off

when Done output became On, it remains On only during 1 scan (Figure h state).

Error

This is an output to indicate an error occurs while running motion function block.

Error output is Off when Execute input is Off (Figure f state). If Execute output was Off

when Error output became On, it remains On only during 1 scan (Figure h state).

ErrorID
This outputs error code regarding the relevant error when an error occurs while running

motion function block. ErrorID output and elimination time are same with Error output.

CommandAborted This indicates the relevant motion function block is interrupted by the other motion function

Chapter 16. Motion Function Blocks

16-5

block. CommandAborted output is Off when Execute input is Off (Figure g state). If Execute

output was Off when Done output became On, it remains On only during one scan.

※ When Execute input is On in Edge operation(Execute input) motion function block, depending on the state of

axis, one output in Busy, Done, Error, and CommandAborted output is On. Busy, Done, Error, and
CommandAborted output are available to be On one at a time, and if one output in four is On, other three
outputs become Off.

 ■ Motion function block for level motion

Variable Description

Enable

This is an input to run function block for level operation motion.

This runs motion function block in the rising Edge (Figure a state), and stops it in the falling

Edge(Figure b state).

Busy

This is an output to indicate the relevant motion function block is currently running ((= not completed),

and it indicates the output of motion function block can be changed. Busy output is On in the rising

Edge of Enable input (Figure b state), and it remains on while motion function is in operation.

Valid

This is an output to indicate the relevant motion function block is successfully performed and output &

motion are valid.

Valid output is Off when Enable input is Off (Figure b state).

Error

This is an output to indicate an error occurs while running motion function block.

If an error which cannot be automatically restored occurs while motion function block is in operation,

Error output is On, Busy & Valid output is Off (Figure d state), and motion function block stops

operating.

Error output is Off when Enable input is Off (Figure e state).

If an error which can be automatically restored occurs while function block is in operation, Error output

is On and Valid input is Off (Figure f state).

When the error in the relevant motion function block is restored, Error output is Off, and operation is

resumed (Figure g state).

※ Valid and Error outputs are not On at the same time.

 ■ Axis input Note 1)

 Each motion function block can be specified by Axis input to the axis which is subject to the relevant command.
Motion control module can control 1-32 actual axes and 33~36 virtual axes, and 41-41 encoders can be used as
main axis depending on motion function block. Therefore, values of 1~32, 33~36, and 1001~1002 can be input in

 Chapter 16. Motion Function Blocks

16-6

Axis input depending on motion function block. When it is out of the range which is available to set in each motion
function block, "error 0x0006”occurs.

Note 1) The setting range of Axis input variable is explained based on XMC-E32A

16.1.4 BufferMode Input
This is an input which can specify whether to wait until the existing command is completed or to cancel the existing motion
function block and execute the command in case the axis is already running other motion function block when running
motion function block in a certain axis. The number between 0-5 can be specified, and if it is out of the range, "error
0x101A” occurs in the axis command and "error 0x201A” occurs in the axis group command. The values which are
available to be set in BufferMode are as below.

Number Buffer Mode Explanation

0 mcAborting Execute the command immediately. The existing command in operation is interrupted.

1 mcBuffered Execute the command after the existing command in operation is completed.

2 mcBlendingLow
Do combined operation to combine the speeds of the existing command and

command issuing to the low speed by comparing.

3 mcBlendingPrevious Do combined operation to combine the speeds of the existing command.

4 mcBlendingNext Do combined operation to combine the speeds of the command issuing.

5 mcBlendingHigh
Do combined operation to combine the speeds of the existing command and

command giving to the high speed by comparing.

Note
In axis control, the maximum number that can be queued to the buffer is 100. An error (error code: 0x1022) occurs when
executing a command in buffer mode more than this.

16.1.5 Changes in Parameters during Execution of Motion Function Block

The parameter of the relevant command can be changed at the time motion function block is running, and the detailed
operations are as below.
- When executing Edge operation motion function block in the Off state of ContinuousUpdate input (turn On the

Execute input), the relevant motion function block is operated by application of the parameter at the time when
Execute input was On (rising Edge). In this case, the change of the parameter input value in the middle of execution of
motion function block does not affect operation.

- When wanting to change the parameter while the relevant motion function block is in operation, change the parameter
and turn On Execute input again.

- When executing Edge operation motion function block in the On state of ContinuousUpdate input (turn On the
Execute input), the parameter of the time when Execute input was On (rising Edge) is applied at first.

- When changing the parameter while ContinuousUpdate input is On, the relevant motion function block operates
reflecting the every change in parameter.
But, if you change the parameter at the completion or after the stop of the operation of the relevant motion function
block (Busy output is Off), the change is not reflected any more. (Parameter changing operation using
ContinuousUpdate does not rerun the motion function block which is completed or interrupted, In other words,
ContinuousUpdate operation is applied only to the motion function block which is currently running.)

- As for level operation motion function block, it is operated by the application of the parameter at the time when Enable
input was On (rising Edge), and continuous change of parameter is available while Enable input is On.

Chapter 16. Motion Function Blocks

16-7

16.1.6 Group Operation Route Change Settings

When the axis group of the current motion control module is executing a command, other command can be issued to the

relevant axis group. At this point, the path, which the next command will achieve, can specify how the existing command

will be connected to the existing path. The parameter of connection track is specified in TransitionParameter input.

Number TRANSITION Mode Explanation

0 TMNone Do not generate a connection track.

3 TMCornerDistance
Generate a connection track which specifies the corner distance of a
connection track and draws circular arcs at the specified corner
distance.

Note

In axis control, the maximum number that can be queued to the buffer is 100. An error (error code: 0x1022) occurs when
executing a command in buffer mode more than this.

■ TransitionMode “TMNone”

Connection track is not generated. TransitionMode input is available only to “TMNone” in case BufferMode input of motion

function block is “Aborting” or “Buffered”.

The Figure below shows the case when running BufferMode of motion function block in the setting of ‘Aborting’. The

Figure in the left shows that motion function block ② is executed in the setting of ‘Aborting’ while motion function block ①

is running. Motion function block ① is forced to be terminated at 'end point ① / starting point ②' without reaching 'end

point ①'. The Figure in the right shows that deceleration pause is performed at the moment of the execution of ‘Aborting’

function block, and the next motion function block is executed.

<In case BufferMode is specified as “Aborting”>

The Figure below shows that the case when running BufferMode of motion function block in the setting of ‘Buffered’. The

Figure in the left shows that motion function block ② is executed in the setting of 'Buffered’ while motion function block ①

is running. Motion function block ② is executed after motion function block ① has reached target position. The Figure in

 Chapter 16. Motion Function Blocks

16-8

the right shows that when ‘Buffered’ function block is executed, the next motion function block is executed after it reaches

original target position.

<In case BufferMode is specified as “Buffered”>

■ TransitionMode “TMCornerDistance”

The radius of a connection track is specified and the connection track which draws a circle having specified radius is
output. This mode is operated only when BufferMode is “BlendingXXXX”, and it is operated in “TMNone” when
BufferMode is “Aborting” or “Buffered”.
When drawing a connection track, the maximum speed of the path complies with the specified speed in BufferMode, and
the length of radius complies with the value specified in TransitionParameter.
The Figure below shows the generation of a connection track which draws radius circle in two linear interpolation

commands. The Figure in the left shows that motion function block ② is executed in the setting of “TMcornerDistance”

while motion function block ① is running. The original target position of motion function block ① was end point ① /

starting point ②, but straight-line motion is stopped and circular motion is started at the point ahead as far as radius 'd'

(end point ①). Circular operation starts at end point ① and finishes at starting point ②, and executes motion function

block ②.

The Figure in the right shows that the speed does not stop in the middle of two function blocks and continues.

<In case BufferMode is specified as “BlendingLow” and TransitionMode is specified as “TMCornerDistance”>

Chapter 16. Motion Function Blocks

16-9

16.1.7 Motion Function Block Errors

Errors occurring in ErrorID variable of motion function block are as follows.
STAT Content Detailed Description

0x0000 Normal
In case motion function block is normally executed, “O” is displayed on
ErrorID.

0x0005
The current motion module does not
support the motion function block.

The motion function block is not executed in the version of current
module. Check the version in which the motion function block can be
executed.

0x0006
Axis number of motion function block
(Axisinput) exceeded allowable range.

Set axis and encoder number as product range.

0x0007
Axis group number of motion function
block (AxisGroup input) exceeded
allowable range.

Set axis group number to a value between 1 and 16.

0x0012
Internal execution error of motion function
block occurred during the execution of the
motion function block.

Check the version of XG5000 and XMC.-E32A

0x0013
Motion response error occurred during the
execution of motion function block.

Check the version of XG5000 and XMC.-E32A

0x0020
:

0x0FFF

It indicates a common error of the motion control module.
For more details, refer to ‘error information and measures in APPENDIX 1’.

0x1000
:

0x1FFF

It indicates error that occurs in relation to axis control of motion control module.
For more details, refer to ‘error information and measures in APPENDIX 1’.

0x2000
:

0x2FFF

It indicates error that occurs in relation to axis control of motion control module.
For more details, refer to ‘error information and measures in APPENDIX ‘.

 Chapter 16. Motion Function Blocks

16-10

16.2 Motion Function Blocks

MC_Power Availability

Servo On/OFF XMC

Motion Function Block

Input-Output

UINT Axis Specify the axis to be commanded (1~32: real/virtual axis, 33~36: virtual axis)

Input

BOOL Enable Servo motor of the relevant axis is servo On while input is activated.

Output

BOOL Status Indicate the power permission status of the relevant axis.

BOOL Valid Indicate the validity of motion function block output. (same with Status output here)

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is to give servo On/Off command to the relevant axis.

(2) When Enable input is On, Servo On command is given to the relevant axis, and when it is Off, servo Off command is

given.

(3) If servo On command is executed when the axis is in 'Disable' state, the axis state is 'StandStill', and failure in servo

On brings 'ErrorStop' state.

Chapter 16. Motion Function Blocks

16-11

MC

MC_Home Availability

Perform the search home XMC

Motion Function Block

Input-Output

UINT Axis Specify the axis to be commanded (1~32: real/virtual axis, 33~36: virtual axis)

Input

BOOL Execute Start the homing operation in rising Edge.

LREAL Position Specify the absolute position of axis when reference signal is detected.

UINT BufferMode
Specify the sequential operation setting of motion function block.

(Refer to 16.1.4.BufferMode)

Output

BOOL Done Indicate the completion state of motion function block.

BOOL Busy Indicate that execution of motion function block is not completed.

BOOL Active Indicate that the current motion function block is controlling the relevant axis.

BOOL CommandAborted Indicate that the current motion function block is interrupted by other command.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is to give a homing command to the relevant axis.

(2) Homing method is operated as specified in the operation parameter of the relevant axis in advance.

(3) As for Position input, absolute position of axis is specified when Reference Signal is detected or homing is completed.

(4) While this motion function block is running, the axis is 'Homing' state, and when the command is completed, it is

switched to 'Standstill'.

 Chapter 16. Motion Function Blocks

16-12

MC_Stop

MC_Stop Availability

Stop immediately XMC

Motion Function Block

Input-Output

UINT Axis Specify the axis to be commanded (1~32: real/virtual axis, 33~36: virtual axis)

Input

BOOL Execute Give immediate stop command to the relevant axis in the rising Edge.

LREAL Deceleration Specify deceleration in time of stop. [u/s2]

LREAL Jerk Specify the change rate of acceleration/deceleration. [u/s3]

Output

BOOL Done Indicate that the speed of the relevant axis reaches 0.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is to give an emergency stop command to the relevant axis.

 (2) When executing immediate stop (MC_Stop) motion function block, the existing motion function block being executed

in the relevant axis is stopped, and the axis state changed to 'Stopping'. When the relevant axis is in 'Stopping’ state,

other motion function block cannot be executed in the relevant axis until the stopping is completed (until the Done

output is activated).

(3) CommandAborted output indicates that the current motion function block is interrupted while it is running. Other motion

function block cannot interrupt immediate stop (MC_Stop) motion function block while immediate stop (MC_Stop)

motion function block is running, therefore, CommandAborted output is On in general when the power of servo is

blocked or servo Off command is executed.

(4) If Execute input is On or the speed of axis is not 0, the axis is in 'Stopping' state, and when Done output is On and

Execute input is Off, it is switched to 'Standstill' state.

Chapter 16. Motion Function Blocks

16-13

MCt

MC_Halt Availability

Halt XMC

Motion Function Block

Input-Output

UINT Axis Specify the axis to be commanded (1~32: real/virtual axis, 33~36: virtual axis)

Input

BOOL Execute Give stop command to the relevant axis in the rising Edge.

LREAL Deceleration Specify deceleration in time of stop. [u/s2]

LREAL Jerk Specify the change rate of acceleration/deceleration. [u/s3]

UINT BufferMode
Specify the sequential operation setting of motion function block.

(Refer to 16.1.4.BufferMode)

Output

BOOL Done Indicate that the speed of the relevant axis reaches 0.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that the current motion function block is controlling the relevant axis.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is to give a stop command to the relevant axis.

(2) The axis is 'DiscreteMotion' state while this motion function block is running, and when the speed of the relevant axis is

0, ‘Done’ output is On and changed to 'Standstill' state.

 Chapter 16. Motion Function Blocks

16-14

MC

MC_MoveAbsolute Availability

Absolute positioning operation XMC

Motion Function Block

MC_MoveAbsolute

AxisAxis
Execute Done

UINTUINT
BOOL BOOL

BOOL ContinuousUpdate
LREAL Position

Busy BOOL

CommandAborted BOOL
Error BOOL

ErrorID WORD

LREAL Velocity
Active BOOL

LREAL Acceleration
LREAL Deceleration
LREAL Jerk

UINT Direction
UINT BufferMode

Input-Output

UINT Axis Specify the axis to be commanded (1~32: real/virtual axis, 33~36: virtual axis)

Input

BOOL Execute
Give an absolute position operation command to the relevant axis in the rising

Edge.

BOOL ContinuousUpdate

Specify the update setting of input value.

(Refer to 16.1.5.Changes in Parameters during Execution of Motion Function

Block)

LREAL Position Specify the target position.

LREAL Velocity Specify the maximum speed. [u/s]

LREAL Acceleration Specify the acceleration. [u/s2]

LREAL Deceleration Specify the deceleration. [u/s2]

LREAL Jerk Specify the change rate of acceleration/deceleration. [u/s3]

UINT Direction

Specify the operation direction.

(0~4: 0-Not specified, 1-Forward direction, 2-Shortest distance, 3-Reverse

direction, 4-Current direction)

UINT BufferMode
Specify the sequential operation setting of motion function block.

(Refer to 16.1.4.BufferMode)

Output

BOOL Done Indicate whether to reach the specified distance.

BOOL Busy Indicate that the execution of motion function block is not completed.

Chapter 16. Motion Function Blocks

16-15

BOOL Active Indicate that the current motion function block is controlling the relevant axis.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is to give the relevant absolute position operation commands.
(2) Operation direction of the axis in Infinite length repetition operation is set in Direction input, and if Infinite length

repetition operation is set to Prohibited, Direction input is ignored. When Direction input is the shortest distance(=2),
the relevant axis doing Infinite length repetition operation automatically selects the direction which allows the shortest
distance. The available range is 0-4 (0-Not specified, 1-Forward direction, 2-Shortest distance, 3-Reverse direction,
4-Current direction), and "error 0x1017” occurs in case of excess of the range.

(3) On condition that there is no motion function block is on standby after the current motion function block, If the speed
is 0 after reaching the target point, operation is completed and Done output is On.

(4) The axis is in 'DiscreteMotion' state while this motion function block is running, and it is switched to 'Standstill' state
when operation is completed.

 Chapter 16. Motion Function Blocks

16-16

MC_MoveRelative

MC_MoveRelative Availability

Relative positioning operation XMC

Motion Function Block

MC_MoveRelative

AxisAxis
Execute Done BOOL

UINT
BOOL

UINT
BOOL ContinuousUpdate

LREAL Distance
Busy BOOL

CommandAborted BOOL
Error BOOL

ErrorID WORD

LREAL Velocity
Active BOOL

LREAL Acceleration
LREAL Deceleration
LREAL Jerk

UINT BufferMode

Input-Output

UINT Axis Specify the axis to be commanded (1~32: real/virtual axis, 33~36: virtual axis)

Input

BOOL Execute
Give an absolute position operation command to the relevant axis in the rising

Edge.

BOOL ContinuousUpdate
Specify the update setting of input value. (Refer to 16.1.5.Changes in

Parameters during Execution of Motion Function Block)

LREAL Distance Specify the target distance.

LREAL Velocity Specify the maximum speed. [u/s]

LREAL Acceleration Specify the acceleration. [u/s2]

LREAL Deceleration Specify the deceleration. [u/s2]

LREAL Jerk Specify the change rate of acceleration/deceleration. [u/s3]

UINT BufferMode
Specify the sequential operation setting of motion function block.

(Refer to 16.1.4.BufferMode)

Output

BOOL Done Indicate whether to reach the specified distance.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that the current motion function block is controlling the relevant axis.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

Chapter 16. Motion Function Blocks

16-17

(1) This motion function block is to give relative position operation command to the relevant axis.

(2) Relative position motion (MC_MoveRelative) is the motion function block which moves as far as the target distance

specified in Distance input from the current position.

(3) Moving direction is decided depending on the sign of the target distance specified in Distance input, and positive (+ or

No sign) moving direction leads to the forward direction, and negative (-) moving direction leads to the reverse direction.

(4) If there is no motion function block is on standby after the current motion function block and the speed is 0 after moving

to the target distance, operation is completed and Done output is On.

(5) The axis is in "DiscreteMotion" state when this motion function block is running, and it is switched to "StandStill" state

when operation is completed.

 Chapter 16. Motion Function Blocks

16-18

MC_MoveAdditive

MC_MoveAdditive Availability

Additive positioning operation XMC

Motion Function Block

MC_MoveAdditive

AxisAxis
Execute Done

UINTUINT
BOOL BOOL

BOOL ContinousUpdate
LREAL Distance

Busy BOOL

CommandAborted BOOL
Error BOOL

ErrorID WORD

LREAL Velocity
Active BOOL

LREAL Acceleration
LREAL Deceleration
LREAL Jerk

UINT BufferMode

Input-Output

UINT Axis Specify the axis to be commanded (1~32: real/virtual axis, 33~36: virtual axis)

Input

BOOL Execute
Give an absolute position operation command to the relevant axis in the rising

Edge.

BOOL ContinuousUpdate
Specify the update setting of input value. (Refer to 16.1.5.Changes in

Parameters during Execution of Motion Function Block)

LREAL Distance Specify the target distance.

LREAL Velocity Specify the maximum speed. [u/s]

LREAL Acceleration Specify the acceleration. [u/s2]

LREAL Deceleration Specify the deceleration. [u/s2]

LREAL Jerk Specify the change rate of acceleration/deceleration. [u/s3]

UINT BufferMode
Specify the sequential operation setting of motion function block.

(Refer to 16.1.4.BufferMode)

Output

BOOL Done Indicate whether to reach the specified distance.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that the current motion function block is controlling the relevant axis.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

Chapter 16. Motion Function Blocks

16-19

(1) This motion function block is to give the relevant additive position operation commands.
(2) Additive position motion (MC_MoveAdditive) is the motion function block which additionally moves as far as the

position specified in Distance input from the final target position of the currently running motion function block or the
latest motion function block executed in 'DiscreteMotion' state. If the current axis is executing motion function block
‘ContinuousMotion’ state, it executes operation based on the position where additive position motion
(MC_MoveAdditve) is executing.

(3) Moving direction is decided depending on the sign of the specified target distance in Distance input, and positive (+
or No sign) moving direction leads to forward direction, and negative (-) moving direction leads to reverse direction.

(4) When reaching the target position without motion function block on standby after the current motion function block,
'Done' output is On.

(5) The axis is in 'DiscreteMotion' state while this motion function block is running, and it is switched to 'Standstill' state
when operation is completed.

 Chapter 16. Motion Function Blocks

16-20

MC_MoveVelocity

MC_MoveVelocity Availability

Specified velocity operation XMC

Motion Function Block

MC_MoveVelocity

AxisAxis
Execute InVelocity

UINTUINT
BOOL BOOL

BOOL ContinuousUpdate
LREAL Velocity

Busy BOOL

CommandAborted BOOL
Error BOOL

ErrorID WORD

LREAL Acceleration
Active BOOL

LREAL Deceleration
LREAL Jerk

UINT Direction
UINT BufferMode

Input-Output

UINT Axis Specify the axis to be commanded (1~32: real/virtual axis, 33~36: virtual axis)

Input

BOOL Execute
Give an absolute position operation command to the relevant axis in the rising

Edge.

BOOL ContinuousUpdate

Specify the update setting of input value.

(Refer to 16.1.5.Changes in Parameters during Execution of Motion Function

Block)

LREAL Velocity Specify the maximum speed. [u/s]

LREAL Acceleration Specify the acceleration. [u/s2]

LREAL Deceleration Specify the deceleration. [u/s2]

LREAL Jerk Specify the change rate of acceleration/deceleration. [u/s3]

UINT Direction
Specify the operation speed. (1 ~ 3 : 1-Forward direction, 2-Reverse direction,

3-Current direction)

UINT BufferMode
Specify the sequential operation setting of motion function block.

(Refer to 16.1.4.BufferMode)

Output

BOOL InVelocity Indicate whether to reach the specified speed.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that the current motion function block is controlling the relevant axis.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

Chapter 16. Motion Function Blocks

16-21

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is to give specified velocity operation command to the relevant axis.
(2) Giving a stop command or execution of other motion function block allow to interrupt specified velocity motion.
(3) Specify the operation speed in Velocity input. Positive sign (+ or No sign) of the operation speed value leads to

forward direction, and negative (-) sign leads to reverse direction.
(4) Specify the operation direction in Direction input. But, the operation direction is affected by the sign of the specified

speed value by Velocity input. For example, if you specify the negative number for the Velocity value and reverse
direction for Direction input, the relevant axis lastly does forward direction operation.

(5) Output InVelocity is On when the relevant axis reaches the specified speed, and it is Off when the specified speed
operation is interrupted.

(6) The axis is in 'ContinuousMotion' state when this motion function block is running.

 Chapter 16. Motion Function Blocks

16-22

MC_MoveContinuousAbsolute

MC_MoveContinuousAbsolute Availability

Absolute position operation ending with specified velocity operation XMC

Motion Function Block

Input-Output

UINT Axis Specify the axis to be commanded (1~32: real/virtual axis, 33~36: virtual axis)

Input

BOOL Execute
Give an absolute position operation command to the relevant axis in the rising

Edge.

BOOL ContinuousUpdate

Specify the update setting of input value.

(Refer to 16.1.5.Changes in Parameters during Execution of Motion Function

Block)

LREAL EndVelocity Specify the operation speed after reaching the target position. [u/s]

LREAL Velocity Specify the maximum speed to reach the target position. [u/s]

LREAL Acceleration Specify the acceleration. [u/s2]

LREAL Deceleration Specify the deceleration. [u/s2]

LREAL Jerk Specify the change rate of acceleration/deceleration. [u/s3]

UINT Direction

Specify the operation direction.

(0~4: 0-Not specified, 1-Forward direction, 2-Shortest distance, 3-Reverse

direction, 4-Current direction)

UINT BufferMode
Specify the sequential operation setting of motion function block.

(Refer to 16.1.4.BufferMode)

Output

Chapter 16. Motion Function Blocks

16-23

BOOL InEndVelocity Indicate the operation at the specified speed after reaching the target position.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that the current motion function block is controlling the relevant axis.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is to give Specified velocity operation after relative position operation command to the

relevant axis.
(2) When executing MC_MoveContinuousAbsolute, the relevant axis moves to the position specified in Position and

operates at the specified speed in EndVelocity if there is no motion function block is on standby.
(3) Giving a stop command or execution of other motion function block allow to interrupt speed operation.
(4) Set the operation direction of the axis in infinite length repetition operation in Direction input, and if infinite length

repetition operation is set to Prohibited, Direction input is ignored. When Direction input is the shortest distance (=2),
the relevant axis selects the direction which allows the shortest distance and operates if it does infinite length
repetition operation. The range can be set to 0~4(0-No specified, 1-Forward direction, 2-Shortest distance, 3-
Reverse direction, 4-Current direction), if the value outside the range is set and motion function block is executed,
Error is On and “0x1017” occurs in ErrorID.

(5) Output InEndVelocity is on when the relevant axis starts speed operation after reaching the specified position, and
when the specified operation is interrupted, it is Off.

(6) The axis is in 'ContinuousMotion' state while this command is executing.

 Chapter 16. Motion Function Blocks

16-24

MC_MoveContinuousRelative

MC_MoveContinuousRelative Availability

Relative position operation ending with specified velocity operation XMC

Motion Function Block

MC_MoveContinousRelative

AxisAxis
Execute InEndVelocity

UINTUINT
BOOL BOOL

BOOL ContinousUpdate
LREAL Distance

Busy BOOL

CommandAborted BOOL
Error BOOL

ErrorID WORD

LREAL EndVelocity
Active BOOL

LREAL Velocity
LREAL Acceleration
LREAL Deceleration
LREAL Jerk

UINT BufferMode

Input-Output

UINT Axis Specify the axis to be commanded (1~32: real/virtual axis, 33~36: virtual axis)

Input

BOOL Execute
Give an absolute position motion command to the relevant axis in the rising

Edge.

BOOL ContinuousUpdate

Specify the update setting of input value.

(Refer to 16.1.5.Changes in Parameters during Execution of Motion Function

Block)

LREAL Distance Specify the target distance.

LREAL EndVelocity Specify the operation speed after reaching the target position. [u/s]

LREAL Velocity Specify the maximum speed to reach the target position. [u/s]

LREAL Acceleration Specify the acceleration. [u/s2]

LREAL Deceleration Specify the deceleration. [u/s2]

LREAL Jerk Specify the change rate of acceleration/deceleration. [u/s3]

UINT BufferMode
Specify the sequential operation setting of motion function block.

(Refer to 16.1.4.BufferMode)

Output

BOOL InEndVelocity Indicate the operation at the specified speed after reaching the target position.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that the current motion function block is controlling the relevant axis.

Chapter 16. Motion Function Blocks

16-25

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block gives MC_MoveContinuousRelative command to the relevant axis.
(2) When executing MC_MoveContinuousRelative, the relevant axis operates at the speed specified in EndVelocity

after moving the distance specified in Distance if there is no motion function block is on standby.
(3) Giving a stop command or operation of other motion function block allow to interrupt specified velocity motion.
(4) Output InEndVelocity is On when the relevant axis starts speed operation and reaches the specified speed after

moving the specified distance, and when specified velocity motion is interrupted, it is Off.
(5) The axis is in 'ContinuousMotion' state while this motion function block is running.

 Chapter 16. Motion Function Blocks

16-26

MC_TorqueControl

MC_TorqueControl Availability

Torque control XMC

Motion Function Block

Input-Output

UINT Axis Specify the axis to be commanded (1~32: real axis)

Input

BOOL Execute
Give an absolute position operation command to the relevant axis in the rising

Edge.

BOOL ContinuousUpdate

Specify the update setting of input value.

(Refer to 16.1.5.Changes in Parameters during Execution of Motion Function

Block)

LREAL Torque Specify the target torque. [u]

LREAL TorqueRamp Specify the ascending slope of torque. [u/s]

LREAL Velocity Unused

LREAL Acceleration Unused

LREAL Deceleration Unused

LREAL Jerk Unused

UINT Direction
Specify the operation direction.

(1~2 : 1-Forward direction, 2-Reverse direction)

UINT BufferMode
Specify the sequential operation setting of motion function block.

(Refer to 16.1.4.BufferMode)

Output

Chapter 16. Motion Function Blocks

16-27

BOOL InTorque
Indicate that the input torque value and currently operating torque value are

same.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that the current motion function block is controlling the relevant axis.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is to give torque control command to the relevant axis.
(2) When executing torque control (MC_Torque), the relevant axis performs the control to keep the torque value

specified in Torque input.
(3) Giving a stop command or operation of other motion function block allow to interrupt specified velocity motion.
(4) Specify the gradient to reach the target torque value in TorqueRamp input.
(5) Specify the maximum speed in torque control operation in Speed input, and the value in negative number is not

allowed. Rotation direction is decided depending on the size of load in torque and the relative axis.
(6) Specify the operation direction in Direction input. When setting the value outside the range and executing motion

function block, Error is On and “0x1017” occurs in ErrorID.
(7) Output InTorque is On when the relevant axis reaches the specified torque, and when torque control operation is

interrupted, it is Off.
(8) The axis is in 'ContinuousMotion' state when this motion function block is running.

 Chapter 16. Motion Function Blocks

16-28

MC_SetPosition

MC_SetPosition Availability

Setting the current position XMC

Motion Function Block

MC_SetPosition

AxisAxis
Execute Done

UINTUINT
BOOL BOOL

LREAL Position
BOOL Relative

Busy BOOL

Error BOOL
ErrorID WORD

UINT ExcutionMode
CommandAborted BOOL

Input-Output

UINT Axis Specify the axis to be commanded (1~32: real/virtual axis, 33~36: virtual axis)

Input

BOOL Execute Specify the current position of the relevant axis in the rising Edge.

LREAL Postion Specify the position.

BOOL Relative 0: Position value=Absolute position, 1: Position value=Relative position

UINT ExecutionMode
0: Immediately applied the position value,

1: Applied at the same point with ‘Buffered’ of Buffermode

Output

BOOL Enabled Indicate that override rate is successfully applied.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.
(1) This motion function block is to set the current position of the relevant axis.
(2) Specify the position in Position input. When executing motion function block, if Relative input is Off, the position

of the relevant axis is replaced by the value of Position input, and if Relative input is On, the value of Position input
is added to the current position of the relevant axis.

(3) ExcutionMode input specifies the setting point. 0 means to be set immediately after motion function block, and 1
means to be set at the same point with ‘Buffered’ in sequential operation setting. The value unable to be set
causes "error0x101B”.

0 (mcImmediately): Change the parameter value immediately after executing function block (rising Edge in Execute

input). If the relevant axis is in running, operation can be affected.

1 (mcQueued): Changed at the same point with ‘Buffered’ in Buffermode. (Error! Reference Source Not Found.

Refer to input)

Chapter 16. Motion Function Blocks

16-29

MC_SetOverride

MC_SetOverride Availability

Velocity/Acceleration override XMC

Motion Function Block

Input-Output

UINT Axis Specify the axis to be commanded (1~32: real/virtual axis, 33~36: virtual axis)

Input

BOOL Enable Execute override operation in the relevant axis while input is activated.

LREAL VelFactor Specify the override rate of speed.

LREAL AccFactor Specify the override rate of acceleration/deceleration.

LREAL JerkFactor Specify the override rate of the change rate of acceleration.

Output

BOOL Enabled Indicate that override rate is successfully applied.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is to override the speed of the relevant axis, acceleration, and the change rate of
acceleration.

(2) Override rate which is applied to the relevant axis can be specified and changed while Enable input is On. If Enable
input is Off, override rate right before the Off is maintained.

(3) Speed override rate is specified in VelFactor input. If the specified value is 0.0, the relevant axis stops but it is not
changed to 'StandStill' state.

(4) Specify acceleration/deceleration and override rate of jerk (change rate of acceleration) in AccFactor and
JerkFactor input respectively.

(5) Negative number cannot be input in each Facotr, and if it is input, "error 0x10C1” occurs.
(6) Default of each override rate is 1.0, and it means 100% of the command speed of function block currently running.
(7) Override operation does not affect the serve axis of the relevant axis.

 Chapter 16. Motion Function Blocks

16-30

MC_ReadParameter

MC_ReadParameter Availability

Read Parameter XMC

Motion Function Block

Input-Output

UINT Axis Specify the axis to be commanded (1~32: real/virtual axis, 33~36: virtual axis)

Input

BOOL Enable Execute override operation in the relevant axis while input is activated.

INT ParameterNumber Specify the number of parameter to read. (0 ~ 25)

Output

BOOL Vaild Indicate whether the output of the current motion function block is valid.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

LREAL Value Output the value of parameter.

(1) This command is a motion function block which outputs parameter of the relevant axis.
(2) The value of the relevant parameter is continuously output in Value while Enable input is On.
(3) Specify the number of parameter to read in ParameterNumber input.
(4) The numbers of parameter are as below.

Chapter 16. Motion Function Blocks

16-31

No. Parameter Item Description

0

Basic

Parameter

Unit 0:pulse,1:mm,2:inch,3:degree

1 Purses per rotation 1 ~ 4,294,967,295 [pulse]

2 Travel per rotation 0.000000001 ~ 4,294,967,295 [Unit]

3 Speed command unit 0:Unit/Time, 1:rpm

4 Speed limit

LREAL Positive number [Unit/s, rpm]

(Change according to Unit, Pulses per rotation,

Travel per rotation, Speed command unit)

5 Emergency stop deceleration 0 or LREAL Positive number [Unit/s2]

6 Encoder select 0:Incremental Encoder,1:Absolute Encoder

7 Gear ratio(Motor) 1 ~ 65,535

8 Gear ratio(Machine) 1 ~ 65,535

9 Operating mode of the reverse rotation 0:Deceleration stop, 1:Immediate stop

10

Extented

Parameter

S/W upper limit LREAL [Unit]

11 S/W lower limit LREAL [Unit]

12 Infinite running repeat position LREAL Positive number [Unit]

13 Infinite running repeat 0:Disable, 1:Enable

14 Command Inposition range 0 or LREAL Positive number [Unit]

15 Tracking error over-range value 0 or LREAL Positive number [Unit]

16 Current position compensation amount 0 or LREAL Positive number [Unit]

17 Current speed filter time constant 0 ~ 100

18 Error reset monitoring time 1 ~ 1000 [ms]

19 S/W limit during speed control 0:Don’t detect, 1:Detect

20 Tracking error level 0:Warning, 1:Alarm

21 JOG high Speed
LREAL Positive number [Unit]

(Jog low speed ~speed limit) [Unit/s]

22 JOG low Speed
LREAL Positive number [Unit]

(< Jog high speed) [Unit/s]

23 JOG acceleration 0 or LREAL Positive number [Unit/ s2]

24 JOG deceleration 0 or LREAL Positive number [Unit/ s2]

25 JOG jerk 0 or LREAL Positive number [Unit/ s2]

26 Override mode 0: Specified by ratio, 1: Specified by unit

 Chapter 16. Motion Function Blocks

16-32

No. Parameter Item Description

100

Encoder

Parameter

Encorder1 unit 0: pulse, 1: mm, 2: inch, 3:degree

101 Encorder1 pulse per rotation 1 ~ 4294967295

102 Encorder1 travel per rotation 0.000000001 ~ 4294967295

103 Encorder1 pulse input

0:CW/CCW 1 multiplier, 1:PULSE/DIR 1 multiplier

2:PULSE/DIR 2 multiplier, 3:PHASE A/B 1 multiplier

4:PHASE A/B 2 multiplier, 5: PHASE A/B 4multiplier

104 Encorder1 max. value (Enc1 min. value+1) ~ 2147483647

105 Encorder1 min. value -2147483648~(Enc1 max. vlaue-1)

106 Encoder1 Input filter value

0: not used, 1: 500kPPS

2: 200kPPS, 3: 100kPPS

4: 10kPPS, 5: 1kPPS

6: 0.1kPPS

200 Encorder2 unit 0: pulse, 1: mm, 2: inch, 3:degree

201 Encorder2 pulse per rotation 1 ~ 4294967295

202 Encorder2 travel per rotation 0.000000001 ~ 4294967295

203 Encorder2 pulse input

0:CW/CCW 1 multiplier, 1:PULSE/DIR 1 multiplier

2:PULSE/DIR 2 multiplier, 3:PHASE A/B 1 multiplier

4:PHASE A/B 2 multiplier, 5: PHASE A/B 4multiplier

204 Encorder1 max. value (Enc2 min. value+1) ~ 2147483647

205 Encorder1 min. value -2147483648~(Enc2 max. value-1)

206 Encoder 2 Input filter value

0: not used, 1: 500kPPS

2: 200kPPS, 3: 100kPPS

4: 10kPPS, 5: 1kPPS

6: 0.1kPPS

Chapter 16. Motion Function Blocks

16-33

MC_WriteParameter

MC_WriteParameter Availability

Write Parameter XMC

Motion Function Block

Input-Output

UINT Axis Specify the axis to be commanded (1~32: real/virtual axis, 33~36: virtual axis)

Input

BOOL Execute Rising Edge corresponding parameters of input is written. .

INT ParameterNumber Specify the number of parameter to write. (0 ~ 25)

LREAL Value Specify the value of parameter to write.

UINT ExecutionMode Specify the time when parameter is written.

Output

BOOL Vaild Indicate whether parameter is successfully written.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is to write the value specified in parameter of the relevant axis.
(2) Parameter is written in the rising Edge of Execute input.
(3) Specify the number of parameter to write in ParameterNumber input. The value unable to be set causes "error

0x10F0”.
(4) Specify the value to write in parameter for Value input.
(5) In ExecutionMode, correct the time when parameter is written and the values below can be set. The value unable

to be set causes "error 0x101B".

0 (mcImmediately): Change the parameter value immediately after executing function block (rising Edge in Execute

input). If the relevant axis is in running, operation can be affected.

1 (mcQueued): Changed at the same point with ‘Buffered’ in Buffermode. (Error! Reference Source Not Found.

Refer to input)

 Chapter 16. Motion Function Blocks

16-34

(6) The numbers of parameter are as below.

No. Parameter Item Description

0

Basic

Parameter

Unit 0:pulse,1:mm,2:inch,3:degree

1 Purses per rotation 1 ~ 4,294,967,295 [pulse]

2 Travel per rotation 0.000000001 ~ 4,294,967,295 [Unit]

3 Speed command unit 0:Unit/Time, 1:rpm

4 Speed limit

LREAL Positive number [Unit/s, rpm]

(Change according to Unit, Pulses per rotation,

Travel per rotation, Speed command unit)

5 Emergency stop deceleration 0 or LREAL Positive number [Unit/s2]

6 Encoder select 0:Incremental Encoder,1:Absolute Encoder

7 Gear ratio(Motor) 1 ~ 65,535

8 Gear ratio(Machine) 1 ~ 65,535

9 Operating mode of the reverse rotation 0:Deceleration stop, 1:Immediate stop

10

Extented

Parameter

S/W upper limit LREAL [Unit]

11 S/W lower limit LREAL [Unit]

12 Infinite running repeat position LREAL Positive number [Unit]

13 Infinite running repeat 0:Disable, 1:Enable

14 Command Inposition range 0 or LREAL Positive number [Unit]

15 Tracking error over-range value 0 or LREAL Positive number [Unit]

16 Current position compensation amount 0 or LREAL Positive number [Unit]

17 Current speed filter time constant 0 ~ 100

18 Error reset monitoring time 1 ~ 1000 [ms]

19 S/W limit during speed control 0:Don’t detect, 1:Detect

20 Tracking error level 0:Warning, 1:Alarm

21 JOG high Speed
LREAL Positive number [Unit]

(Jog low speed ~speed limit) [Unit/s]

22 JOG low Speed
LREAL Positive number [Unit]

(< Jog high speed) [Unit/s]

23 JOG acceleration 0 or LREAL Positive number [Unit/ s2]

24 JOG deceleration 0 or LREAL Positive number [Unit/ s2]

25 JOG jerk 0 or LREAL Positive number [Unit/ s2]

26 Override mode 0: Specified by ratio, 1: Specified by unit

Chapter 16. Motion Function Blocks

16-35

No. Parameter Item Description

100

Encoder

Parameter

Encorder1 unit 0: pulse, 1: mm, 2: inch, 3:degree

101 Encorder1 pulse per rotation 1 ~ 4294967295

102 Encorder1 travel per rotation 0.000000001 ~ 4294967295

103 Encorder1 pulse input

0:CW/CCW 1 multiplier, 1:PULSE/DIR 1 multiplier

2:PULSE/DIR 2 multiplier, 3:PHASE A/B 1 multiplier

4:PHASE A/B 2 multiplier, 5: PHASE A/B 4multiplier

104 Encorder1 max. value (Enc1 min. value+1) ~ 2147483647

105 Encorder1 min. value -2147483648~(Enc1 max. vlaue-1)

106 Encoder1 Input filter value

0: not used, 1: 500kPPS

2: 200kPPS, 3: 100kPPS

4: 10kPPS, 5: 1kPPS

6: 0.1kPPS

200 Encorder2 unit 0: pulse, 1: mm, 2: inch, 3:degree

201 Encorder2 pulse per rotation 1 ~ 4294967295

202 Encorder2 travel per rotation 0.000000001 ~ 4294967295

203 Encorder2 pulse input

0:CW/CCW 1 multiplier, 1:PULSE/DIR 1 multiplier

2:PULSE/DIR 2 multiplier, 3:PHASE A/B 1 multiplier

4:PHASE A/B 2 multiplier, 5: PHASE A/B 4multiplier

204 Encorder1 max. value (Enc2 min. value+1) ~ 2147483647

205 Encorder1 min. value -2147483648~(Enc2 max. value-1)

206 Encoder 2 Input filter value

0: not used, 1: 500kPPS

2: 200kPPS, 3: 100kPPS

4: 10kPPS, 5: 1kPPS

6: 0.1kPPS

 Chapter 16. Motion Function Blocks

16-36

MC_Reset

MC_Reset Availability

Reset axis error XMC

Motion Function Block

Input-Output

UINT Axis Specify the axis to be commanded (1~32: real/virtual axis, 33~36: virtual axis)

Input

BOOL Execute Reset the axis error in the rising Edge of input.

BOOL ErrorType The types of error to be reset (0: Axis error, 1: Common error)

Output

BOOL Done Indicate whether the axis error is successfully reset.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is to reset the error of the relevant axis. When setting ErrorType to '0' and executing motion

function block in case the relevant axis is in ' ErrorStop' state, every axis error is reset and the axis state is switched to

'StandStill' or 'Disabled' state.

(2) If ErrorType is set to ‘1’ and motion function block is executed, common error occurred in the relevant module is reset.

(3) Motion function block is executed in the rising Edge of Execute input.

Chapter 16. Motion Function Blocks

16-37

MC_TouchProbe

MC_TouchProbe Availability

Touch probe XMC

Motion Function Block

Input-Output

UINT Axis Specify the axis to be commanded (1~32: real/virtual axis)

UINT TriggerInput Specify the signal to be used as a trigger. (0: TouchProbe 1, 1: TouchProbe 2)

Input

BOOL Execute TouchProbe function starts at the rising Edge of input.

BOOL WindowOnly Activate the window mode.

LREAL FirstPosition Specify the starting position of allowable area in the window mode.

LREAL LastPosition Specify the end position of allowable area in the window mode.

Output

BOOL Done Indicate that the trigger signal is successfully recorded.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL CommandAborted Indicate that the current motion function block is interrupted by other command.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

REAL RecordedPosition Output the axis position where the trigger occurs.
(1) This motion function block is to execute 'TouchProbe' function which records the axis position at the time when the

trigger event occurs.
(2) TouchProbe function starts at the rising Edge of Execute input.
(3) Specify the signal to be used as a trigger in TriggerInput. The value unable to be set causes "error 0x10E1”.
(4) When activating the window mode, allowable area where accepts the trigger signal of axis can be set. Operation

timing of each signal when the window mode is activated is as below.

 Chapter 16. Motion Function Blocks

16-38

< In case TouchProbe function is the window mode, Operation timing >

Chapter 16. Motion Function Blocks

16-39

MC_AbortTrigger

MC_AbortTrigger Availability

Abort trigger events XMC

Motion Function Block

Input-Output

UINT Axis Specify the axis to be commanded (1~32: real/virtual axis)

UINT TriggerInput Specify the trigger signal to be disengaged. (0: TouchProbe 1, 1: TouchProbe 2)

Input

BOOL Execute The trigger on standby in the relevant axis in the rising Edge is disengaged.

Output

BOOL Done Indicate the state of motion function block completion.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is to disengage the trigger which is on standby in the relevant axis.
(2) Specify the trigger signal to be disengaged in TriggerInput. The value unable to be set causes "error 0x10E1”.

 Chapter 16. Motion Function Blocks

16-40

MC_MoveSuperImposed

MC_MoveSuperImposed Availability

SuperImposed Operation XMC

Motion Function Block

Input-Output

UINT Axis Specify the axis to be commanded (1~32: real/virtual axis, 33~36: virtual axis)

Input

BOOL Execute Give a SuperImposed operation command to the relevant axis in the rising Edge.

BOOL ContinuousUpdate Specify the update setting of input value.

(Refer to 6.1.5.Changes in Parameters during Execution of Motion Function Block)

LREAL Distance Specify the target distance. [u]

LREAL VelocityDiff Specify the added velocity. [u/s]

LREAL Acceleration Specify the added acceleration. [u/s2]

LREAL Deceleration Specify the added deceleration. [u/s2]

LREAL Jerk Specify the added change rate of acceleration/deceleration. [u/s3]

Output

BOOL Done Indicate whether to reach the specified distance.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that the current motion function block is controlling the relevant axis.

BOOL CommandAborted Indicate that the current motion function block is interrupted by other command

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

LREAL CoveredDistance Indicate the distance moved with SuperImposed operation after SuperImposed
command.

(1) This motion function block is a command issuing aSuperImposed operation order to the relevant axis.
(2) SuperImposed is a command ordering to move from the current position at the time of the command to the target

Chapter 16. Motion Function Blocks

16-41

distance set by Distance input.
(3) The direction of the movement is determined by the positivity/negativity of the set distance. Positive distance (+ or

no sign) means forward movement, and negative distance (-) means reverse movement.
(4) After moving the target distance, when the velocity reaches 0, the command is completed and Doneoutput is on.

 Chapter 16. Motion Function Blocks

16-42

MC_HaltSuperImposed

MC_HaltSuperImposed Availability

SuperImposed Operation Halt XMC

모션 펑션 블록 형태

입력-출력

UINT Axis Specify the axis to be commanded (1~32: real/virtual axis, 33~36: virtual axis

입력

BOOL Execute Give a SuperImposed operation halt command to the relevant axis in the rising

Edge.

LREAL Deceleration Specify deceleration in time of stop. [u/s2]

LREAL Jerk Specify the change rate of acceleration/deceleration. [u/s3]

출력

BOOL Done Indicate that the speed of the relevant axis reaches 0.

BOOL Busy Indicate that the execution of function block is not completed.

BOOL Active Indicate that the current motion function block is controlling the relevant axis.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Output the number of error occurred while motion function block is running.

WORD ErrorID Indicate the distance moved with SuperImposed operation after SuperImposed
command.

(1) This motion function block is a command issuing an order to halt SuperImposed operation to the relevant axis.
(2) Halt command for SuperImposed operation is a command ordering to decelerate and halt at a given acceleration

and jerk at the time of performing the command.
(3) After moving the target distance, when the velocity reaches 0, the command is completed and Done output is on.

Chapter 16. Motion Function Blocks

16-43

MC_CamIn

MC_CamIn Availability

Camming run XMC

Motion Function Block

Input-Output

UINT Master
Set the main axis. (1~32: Actual axes, 33~36: Virtual axes, 1001~1002:

Encoders)

UINT Slave Set the the serve axis. (1~32: Actual axes, 33~36: Virtual axes)

Input

BOOL Execute Give cam operation command to the relevant axis in the rising Edge.

BOOL ContinuousUpdate

Specify the update setting of input value.

(Refer to 16.1.5.Changes in Parameters during Execution of Motion Function

Block)

LREAL MasterOffset Set the offset value of the main axis.

LREAL SlaveOffset Set the offset value of the the serve axis cam table.

LREAL MasterScaling Specify the magnification of the main axis.

LREAL SlaveScaling Specify the magnification of the serve axis cam table.

LREAL MasterStartDistance Specify the position of the main axis where cam operation of the slave.

LREAL MasterSyncPosition Specify the starting point at cam table when cam operation starts.

UINT StartMode

Set the cam operation mode.

0 : Cam table is applied as an absolute value (mcAbsolute)

1: Cam table is applied as a relative value based on the command starting point

(mcRelative)

 Chapter 16. Motion Function Blocks

16-44

UINT MasterValueSource

Select the source of the main axis for cam operation.

0 : Synchronized in the target value of the main axis.

1 : Synchronized in the current value of the serve axis.

UINT CamTableID Specify the cam table to operate.

UINT BufferMode
Specify the sequential operation setting of motion function block.

(Refer to 16.1.4.BufferMode)

Output

BOOL InSync
Indicate that cam operation is normally being fulfilled.

(Indicate that the serve axis is following the cam table.)

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that the current motion function block is controlling the relevant axis.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is to operate the serve axis cam depending on the main axis.
(2) Cam operation command can be given to the serve axis even if the main axis is in stop state.
(3) You must give cam operation abort (MC_CamOut) command to the serve axis or operate other motion function

block to stop cam operation.
(4) The axis is in 'Synchronized Motion' while this motion function block is running.
(5) Set the offset of cam table to be applied in MasterOffset and SlaveOffset. MasterOffset sets the offset with the

starting point of the main axis, and SlaveOffset sets the offset with the starting point of the serve axis. Refer to the
Figure below.

(6) Set the magnification of cam data to be applied in MasterScaling and SlaveScaling. Set the magnification of the
main axis data in MasterScaling, and set the magnification of the the serve axis data. Refer to the Figure below.

Chapter 16. Motion Function Blocks

16-45

(7) MasterSyncPosition input specifies the position of the main axis within the table where the synchronization of actual cam

operation is completed, and MasterStartDistane input specifies the relative position of the main axis where the
synchronization starts.

In case MasterScaling is 1.0

In case MasterScaling is 2.0

MasterSyncPosition position is based on the position within the cam table, and actual synchronization position is decided by

considering MasterOffset and MasterScale parameters.

The serve axis starts moving to the synchronization position from the distance of the input value away based on the position

where MasterSyncPosition is actually applied. If it is before starting moving, the serve axiss waits at the relevant position in

stop state, and if the serve axis is already in the section to move to the synchronization position at the beginning of the

command, take back the position of the synchronization starting point by the length of a table until it escapes the

MasterStartDistance range.

 Chapter 16. Motion Function Blocks

16-46

Actual synchronization position can vary depending on MasterScaling and SlaveScaling because MasterSyncPosition is a

value based on the inside of cam table, but MasterOffset and MasterStartDistance value remain unaffected.
(8) Once cam operation starts normally, InSync output is On, and EndOfProfile output is 1 scan On every time one cam table

operation is completed.

(9) Cam operation mode is set in StartMode. Setting range is 0 or 1, and the input value outside the setting range

causes an error.
(10) MasterValueSource selects the source of the main axis to be synchronized. If it is set to 0, the serve axis performs

cam operation based on the command position of the main axis which is calculated in motion control module, and
if it is set to 1, the serve axis performs cam operation based on the current position which is received by
communication in servo drive of main axis.

(11) CamTableID sets the number of cam table to be applied to cam operation. Setting range is 1~32 , and the input
value outside the setting range causes error "0x1115” in motion function block.

(12) The relevant axis is in "SynchronizedMotion" state while this motion function block is running.

Chapter 16. Motion Function Blocks

16-47

MC_CamOut

MC_CamOut Availability

Camming stop XMC

Motion Function Block

Input-Output

UINT Slave Set the the serve axis. (1~32: Actual axes, 33~36: Virtual axes)

Input

BOOL Execute Give cam operation stop command to the relevant axis in the rising Edge.

Output

BOOL Done Indicate the state of motion function block completion.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.
(1) This motion function block immediately disengages cam operation running in the serve axis.
(2) If motion function block of which BufferMode is Aborting in the serve axis where cam operation is running, cam

operation is automatically disengaged and the relevant motion function block is executed. To execute cam
operation abort (MC_CamOut) motion function block, the relevant axis do operation which keeps the speed at the
time when cam operation is disengaged. If you want to completely stop the serve axis, use stop (MC_Halt) or
immediate stop (MC_Stop) motion function block.

 Chapter 16. Motion Function Blocks

16-48

MC_GearIn

MC_GearIn Availability

Electrical gearing run XMC

Motion Function Block

Input-Output

UINT Master
Set the main axis. (1~32: Actual axes, 33~36: Virtual axes, 1001~1002:

Encoders)

UINT Slave Set the the serve axis. (1~32: Actual axes, 33~36: Virtual axes)

Input

BOOL Execute Give gear operation command to the relevant axis in the rising Edge.

BOOL ContinuousUpdate

Specify the update setting of input value.

(Refer to 16.1.5.Changes in Parameters during Execution of Motion Function

Block)

INT RatioNumerator Specify the numerator of gear ratio. (-32768 ~ 32767)

UINT RatioDenominator Specify the denominator of gear ratio. (0 ~ 65535)

UINT MasterValueSource

Select data of the main axis to be synchronized.

0: Synchronize in the command position of the main axis.

1: Synchronize in the current position of the main axis.

LREAL Acceleration Specify the acceleration at the beginning of gear operation synchronization. [u/s2]

LREAL Deceleration Specify the deceleration at the beginning of gear operation synchronization. [u/s2]

LREAL Jerk Specify the change rate of acceleration/deceleration. [u/s3]

UINT BufferMode
Specify the sequential operation setting of motion function block.

(Refer to 16.1.4.BufferMode)

Chapter 16. Motion Function Blocks

16-49

Output

BOOL InGear Indicate that gear operation is running by applying gear ration.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that the current motion function block is controlling the relevant axis.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is an operation to synchronize the speed of the main axis and the serve axis depending

on gear ratio which is set.
(2) Giving gear operation abort (MC_GearOut) commands to the relevant axis or execution of other motion function

block allow to disengage gear operation.
(3) RatioNumerator and RatioDenominator set the numerator and denominator to be applied to the serve axis

respectively. If the numerator is set to negative number, the rotation direction of the serve axis is the opposite of
the main axis.

(4) MasterValueSource select the data of the main axis which is a standard of synchronization. If it is set to 0,
synchronization operation is based on the command position of the main axis of motion control module, and if it is
set to 1, synchronization operation is based on the current position. Other values set besides these two make
Error of motion function block On and cause “0x1114” in ErrorID.

(5) When this motion function block is executed, the serve axis is synchronized with the main axis through
acceleration/deceleration at the speed in synch with the relevant gear ratio.

(6) The serve axis is in 'SynchronizedMotion' while this motion function block is running.

 Chapter 16. Motion Function Blocks

16-50

MC_GearOut

MC_GearOut Availability

Electrical gearing disengage XMC

Motion Function Block

Input-Output

UINT Slave Set the the serve axis. (1~32: Actual axes, 33~36: Virtual axes)

Input

UINT BufferMode
Specify the sequential operation setting of motion function block.

(Refer to 16.1.4.BufferMode)

Output

BOOL Done Indicate the state of motion function block completion.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.
(1) This motion function block immediately disengages gear operation running in the spindle.
(2) If motion function block of which BufferMode is Aborting in the spindle where cam operation is running, gear

operation is automatically disengaged and the relevant motion function block is executed. If gear operation abort
(MC_GearOut) motion function block is only to be executed, the relevant axis performs operation to maintain the
speed at the time when gear operation is disengaged. To completely stop the spindle, use stop (MC_Halt) or
immediate stop (MC_Stop) motion function block.

Chapter 16. Motion Function Blocks

16-51

MC_GearInPos

MC_GearInPos Availability

Electrical gearing by specifying the position XMC

Motion Function Block

Input-Output

UINT Master
Set the main axis. (1~32: Actual axes, 33~36: Virtual axes, 1001~1002:

Encoders)

UINT Slave Set the the serve axis. (1~32: Actual axes, 33~36: Virtual axes)

Input

BOOL Execute Give a gear operation command to the relevant axis in the rising Edge.

INT RatioNumerator Specify the numerator of gear ratio. (-32768~32767)

UINT RatioDenominator Specify the denominator of gear ratio. (0~65535)

UINT MasterValueSource

Select the standard of the main axis value to be synchronized.

0(mcSetValue): Synchronize in the target position of the main axis.

1(mcActualValue): Synchronize in the current position of the main axis.

LREAL MasterSyncPosition Specify the position of the main axis where gear operation starts.

LREAL SlaveSyncPosition Specify the position of the spindle where gear operation starts.

LREAL MasterStartDistance Specify the distance of the main axis where synchronization starts.

LREAL Velocity
Specify the maximum speed of the spindle at the beginning of synchronization.

[u/s]

 Chapter 16. Motion Function Blocks

16-52

LREAL Acceleration
Specify the maximum acceleration of the spindle at the beginning of

synchronization. [u/s2]

LREAL Deceleration
Specify the maximum deceleration of the spindle at the beginning of

synchronization. [u/s2]

LREAL Jerk Specify the change rate of acceleration/deceleration. [u/s3]

UINT BufferMode
Specify the sequential operation setting of motion function block.

(Refer to 16.1.4.BufferMode)

Output

BOOL InSync
Indicate that gear operation is normally being fulfilled as the specified gear ratio is

applied.

BOOL StartSync Indicate synchronization is starting.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that the current motion function block is controlling the relevant axis.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is an operation to synchronize the speed of the main axis and the spindle in the set
position depending on gear ratio which is set in the specific position.

(2) Giving gear operation abort (MC_GearOut) commands to the spindle or operation of other motion function block
allow to stop gear operation.

(3) RatioNumerator and RatioDenominator set the numerator and denominator of gear ratio to be applied to the
spindle respectively. If the numerator is set to negative number, the rotation direction of the spindle goes into
reverse of the main axis.

(4) MasterValueSource selects the source of the main axis to be synchronized. If it is set to 0 (mcSetValue),
synchronization is performed by putting the target position of the main axis in the current motion control period as a
source, and if it is set to 1(mcActualValue), synchronization is performed by putting the current position of the main
axis got feedback from the current motion control period as a source. Other values set besides these two cause
"error 0x10D1”.

(5) Input the positions of the main axis and the spindle where gear operation is completed synchronization in
MasterSyncPosition input and SlaveSyncPosition input respectively. Input the distance where the spindle starts
synchronization in MasterStartDistance input, and the spindle starts synchronization at the position away the
distance set in MasterStartDistance input from the position set in MasterSyncPosition input.

(6) Once synchronization starts, StartSync output is On. When synchronization is completed and gear operation starts,
StartSync output is Off and InSync output is On.

(7) The spindle is in 'SynchronizedMotion' while this motion function block is running.

Chapter 16. Motion Function Blocks

16-53

 Chapter 16. Motion Function Blocks

16-54

MC_Phasing

MC_Phasing Availability

Phase Compensation XMC

Motion Function Block

Input-Output

UINT Master
Set the main axis. (1~32: real/virtual axis, 33~36: virtual axis, 1001~1002:

encoder)

UINT Slave Set theserve axis. (1~32: real/virtual axis, 33~36: virtual axis)

Input

BOOL Execute Give a phase compensation command to the relevant axis in the rising Edge

LREAL PhaseShift Specify the main axis compensation amount.

LREAL Velocity Specify the phase compensation velocity. [u/s]

LREAL Acceleration Specify the acceleration. [u/s2]

LREAL Deceleration Specify the deceleration. [u/s2]

LREAL Jerk Specify the change rate of acceleration/deceleration. [u/s3]

Output

BOOL Done Indicate whether to reach the specified phase compensation distance.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that the current motion function block is controlling the relevant axis.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

LREAL CoveredPhaseShift Continuously output the compensation amount reflected while the phase

Chapter 16. Motion Function Blocks

16-55

compensation is running

(1) This motion function block performs phase correction of axis during synchronous control operation. Phase
correction is performed on the main-axis position referred to by sub-axis in synchronous control operation, to
perform synchronous control operation of the sub-axis to the corrected main-axis position.

(2) Once phase correction command is executed, the current position of the main-axis is phase-corrected using the
phase shift setting at PhaseShift- Velocity / Acceleration /Deceleration / Jerk.

(3) Phase correction does not change the actual command position or current position of the main-axis. Phase
correction is performed on the main-axis position referred to by sub-axis in synchronous control operation. In
other words, the main-axis does not know that phase correction is executed by the sub-axis.

(4) Phase correction of the same amount can be performed again from the current position by re-executing the
function block (Execute input is on) before the command is completed. In other words, phase shift is a relative
value from the execution point.

(5) After executing phase correction command, when the phase shift is reached, Done output is on.

 Chapter 16. Motion Function Blocks

16-56

MC_AddAxisToGroup

MC_AddAxisToGroup Availability

Adds one axis to a group in a structure AxesGroup XMC

Motion Function Block

Input-Output

UINT AxesGroup Set the group where the relevant axis is added. (1 ~ 16 : Group 1 ~ Group 16)

UINT Axis
Set the axis to be added to the relevant group. (1~32: Actual axes, 33~36: Virtual

axes)

Input

BOOL Execute Give group axis addition command to the relevant axis in the rising Edge.

UINT IdentInGroup Set the ID of the relevant axis to be used in the relevant group. (1 ~ 4)

Output

BOOL Done Indicate the state of motion function block completion.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block adds Axis specified axis to the axis group specified in AxesGroup input.

(2) ID in the axis group specified to IdentInGroup must have unique value for each axis. (ID of each axis must be

different.) Maximum 4 axes can be included in each axis group, axis ID can be specified in the range of 1-4. If the

specified axis number is outside the range, “error 0x0006” occurs, and if numbers in the axis group overlap, “error

0x2051” occurs.

Chapter 16. Motion Function Blocks

16-57

MC_RemoveAxisFromGroup

MC_RemoveAxisFromGroup Availability

Removes one axis to a group in a structure AxesGroup XMC

Motion Function Block

Input-Output

UINT AxesGroup Set the group where the relevant axis is removed. (1 ~ 16 : Group1 ~ Group 16)

Input

BOOL Execute Give group axis exclusion command to the relevant group in the rising Edge.

UINT IdentInGroup
Set the axis number in the relevant group to be removed from the relevant

group.

Output

BOOL Done Indicate the state of motion function block completion.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block removes the axis which is specified to IdentInGroup in the axis group specified in

AxesGroup input.

(2) If the execution of group axis exclusion is tried when the axis group is not in GroupDisabled, GroupStandBy, and

GroupErrorStop state, "error 0x2003 or 0x2004 or 0x2005" occurs and the axis is not removed. In other words, the

axis cannot be removed when the axis group does not completely stop.

 Chapter 16. Motion Function Blocks

16-58

MC_UngroupAllAxes

MC_UngroupAllAxes Availability

Removes all axes from the group AxesGroup XMC

Motion Function Block

Input-Output

UINT AxesGroup Set the group where every axis is to be removed. (1 ~ 16 : Group 1 ~ Group 16)

Input

BOOL Execute Give MC_UngroupAllAxes command to the relevant group in the rising Edge.

UINT IdentInGroup
Set the axis number in the relevant group to be removed from the relevant

group.

Output

BOOL Done Indicate the state of motion function block completion.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block removes every axis which belongs to the axis group specified in AxesGroup input.

(2) If this motion function block is executed when the axis group is not in GroupDisabled, GroupStandBy, and

GroupErrorStop state, "error 0x2003 or 0x2004 or 0x2005" occurs and the axis is not removed. In other words, the

axis cannot be removed when the axis group does not completely stop.

(3) When the axis which belongs to the group is successfully removed, the relevant group is switched to GroupDisabled

state.

Chapter 16. Motion Function Blocks

16-59

MC_GroupEnable

MC_GroupEnable Availability

Changes the state for a group from GroupDisabled to GroupEnable XMC

Motion Function Block

Input-Output

UINT AxesGroup Set the group to be activated. (1 ~ 16 : Group 1 ~ Group 16)

Input

BOOL Execute Give group activation command to the relevant group in the rising Edge.

Output

BOOL Done Indicate the state of motion function block completion.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is to activate the axis group specified in AxesGroup input.

(2) When giving this command to the axis group in GroupDisable state, the relevant axis group is switched to

GroupStandby state.

(3) This motion function block does not affect the power state of each axis in the relevant group.

 Chapter 16. Motion Function Blocks

16-60

MC_GroupDisable

MC_GroupDisable Availability

Changes the state for a group to GroupDisabled XMC

Motion Function Block

Input-Output

UINT AxesGroup Set the group to be deactivated. (1 ~ 16 : Group 1 ~ Group 16)

Input

BOOL Execute Give group disablement command to the relevant group in the rising Edge.

Output

BOOL Done Indicate the state of motion function block completion.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is to deactivate the axis group specified in AxesGroup input.

(2) The axis group which executes this motion function block is switched to GroupDisabled.

(3) This motion function block does not affect the power state of each axis in the relevant group.

Chapter 16. Motion Function Blocks

16-61

MC_GroupHome

MC_GroupHome Availability

The AxesGroup to perform the search home sequence XMC

Motion Function Block

Input-Output

UINT AxesGroup Set the group returning to home. (1 ~ 16 : Group 1 ~ Group 16)

Input

BOOL Execute Give group homing command to the relevant group in the rising Edge.

LREAL[] Position Specify the absolute position of each axis when reference signal is detected.

UINT BufferMode
Specify the sequential operation setting of motion function block.

(Refer to 16.1.4.BufferMode)

Output

BOOL Done Indicate the state of motion function block completion.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that the current motion function block is controlling the relevant axis.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is to give homing command to the axis group specified in AxesGroup input.

(2) Homing method is operated as specified in servo parameter of the relevant axis in advance.

(3) In Position input, specify the absolute position to the array to be set when homing is completed or Reference Signal

is detected. Values in the array and the axis in the group correspond in the order of [1, 2, 3, 4]. (1~4 are the axis ID in

the axis group)

(4) The axis group is in 'GroupHoming' state while this motion function block is running, and it is switched to

'GroupStandby' state when motion function block is completed.

 Chapter 16. Motion Function Blocks

16-62

MC_GroupSetPostion

MC_GroupSetPosition Availability

Sets the Position of all axes in a group without moving XMC

Motion Function Block

Input-Output

UINT AxesGroup Select the group to set the current position. (1 ~ 16 : Group 1 ~ Group 16)

Input

BOOL Execute
Give group current position setting command to the relevant group in the rising

Edge.

LREAL[] Position Specify the position.

BOOL Relative 0: Position value=Absolute position, 1: Position value=Relative position

UINT ExecuteMode
0: Immediately applied the position value,

1: Applied at the same point with ‘Buffered’ of Buffermode

Output

BOOL Done Indicate the state of motion function block completion.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that the current motion function block is controlling the relevant axis.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block sets the current position of the relevant axis group.

(2) Specify the position of each axis in the group to the array. When executing this motion function block, if Relative

input is Off, the position of the relevant axis is replaced by the Position input value, and if Relative input is On, the

Position input value is added to the current position of the relevant axis. Values in the array and the axis in the group

correspond in the order of [1, 2, 3, 4]. (1~4 are the axis ID in the axis group)

(3) ExcutionMode input specifies the setting point. If it is 0, it is set immediately after the execution of a command, If it

is 1, it is set at the same point with ‘Buffered’ of sequential operation setting. The value unable to be set causes

Chapter 16. Motion Function Blocks

16-63

"error 0x201B”.

0 (mcImmediately): Change the value of parameter immediately after the execution of motion function block (rising

Edge in Execute input). If the relevant axis is running, the operation can be affected.

1 (mcQueued): Changed at the same point of ‘Buffered’ of Buffermode (Refer to 16.1.4 BufferMode).

 Chapter 16. Motion Function Blocks

16-64

MC_GroupStop

MC_GroupStop Availability

Stop a Group immediately XMC

Motion Function Block

Input-Output

UINT AxesGroup Set the group to stop immediately. (1 ~ 16 : Group 1 ~ Group 16)

Input

BOOL Execute Give group immediate stop command to the relevant group in the rising Edge.

LREAL Deceleration Specify the deceleration in time of stop. [u/s2]

LREAL Jerk Specify the change rate of acceleration/deceleration. [u/s3]

Output

BOOL Done Indicate the state of motion function block completion.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that the current motion function block is controlling the relevant axis.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is to give an emergency stop command to the relevant axis group.

(2) The relevant axis group moves on the route which it was following until it completely stops.

(3) When executing group immediate stop (MC_GroupStop) motion function block, motion function block which the

relevant axis group is performing is interrupted, and the axis is changed to 'GroupStopping'. When the relevant axis

group is in ‘GroupStopping’ state, other motion function block cannot be given to the relevant axis until the stop is

completed (until Done output is On).

(4) CommandAborted output indicates that the current motion function block is interrupted while it was executed.

Because other motion function block cannot interrupt group immediate stop (MC_GroupStop) command while

Chapter 16. Motion Function Blocks

16-65

group immediate stop (MC_GroupStop) command is being executed, CommandAborted output is On when the

power of servo is cut, servo Off command is executed, or servo connection is disconnected.

(5) If Execute input is On or the speed of the axis is not 0, the axis is in ' GroupStopping' state, and if Done output is On

and Execute input is Off, the axis is switched to ' GroupStandBy' state.

 Chapter 16. Motion Function Blocks

16-66

MC_GroupHalt

MC_GroupHalt Availability

Stop a Group XMC

Motion Function Block

Input-Output

UINT AxesGroup Set the group to stop. (1 ~ 16 : Group 1 ~ Group 16)

Input

BOOL Execute Give group stop command to the relevant group in the rising Edge.

LREAL Deceleration Specify the deceleration in the time of stop. [u/s2]

LREAL Jerk Specify the change rate of acceleration/deceleration. [u/s3]

UINT BufferMode
Specify the sequential operation setting of motion function block.

(Refer to 16.1.4.BufferMode)

Output

BOOL Done Indicate the state of motion function block completion.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that the current motion function block is controlling the relevant axis.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is to give a stop command to the relevant axis.

(2) The relevant axis group moves on the route which it was following until it completely stops.

(3) The axis is in 'GroupMoving' state while this motion function block is running, and if the axis group completely stops,

'Done' output is On and the group state is changed to 'GroupStandBy' state.

Chapter 16. Motion Function Blocks

16-67

MC_GroupReset

MC_GroupReset Availability

Reset a group error XMC

Motion Function Block

MC_GroupReset

DoneExecute
AxesGroup AxesGroup

BOOLBOOL
UINT UINT

Busy BOOL

ErrorID WORD
Error BOOL

Input-Output

UINT AxesGroup Set the group to do error reset. (1 ~ 16 : Group 1 ~ Group 16)

Input

BOOL Execute Give group error reset command to the relevant group in the rising Edge.

Output

BOOL Done Indicate the state of motion function block completion.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is to reset the error of the relevant axis group. When the relevant axis is in

'GroupErrorStop', the execution of motion function block resets the error occurred in the current relevant axis and

switches the axis group to 'GroupStandBy' state.

(2) When executing this motion function block, every error occurred in each axis in the group is reset. (This has the

same effect with when executing the axis error reset (MC_Reset) command in each axis.)

 Chapter 16. Motion Function Blocks

16-68

MC_MoveLinearAbsolute

MC_MoveLinearAbsolute Availability

Absolute positioning linear interpolation operation XMC

Motion Function Block

MC_MoveLinearAbsolute

DoneExecute
AxesGroup AxesGroup

BOOLBOOL
UINT UINT

LREAL[] Position
LREAL Velocity

Busy BOOL

CommandAborted BOOL
Error BOOL

ErrorID WORD

LREAL Acceleration
Active BOOL

LREAL Deceleration
LREAL Jerk

UINT BufferMode
UINT TransitionMode

LREAL TransitionParameter

Input-Output

UINT AxesGroup
Set the group to perform absolute position linear interpolation operation. (1 ~ 16:

Group 1 ~ Group 16)

Input

BOOL Execute
Give absolute position linear interpolation operation command to the relevant group

in the rising Edge.

LREAL[] Position Specify the target position of each axis.

LREAL Velocity Specify the maximum speed of the route. [u/s]

LREAL Acceleration Specify the maximum acceleration. [u/s2]

LREAL Deceleration Specify the maximum deceleration. [u/s2]

LREAL Jerk Specify the change rate of acceleration/deceleration. [u/s3]

UINT BufferMode
Specify the sequential operation setting of motion function block.

(Refer to 16.1.4.BufferMode)

UINT TransitionMode
Specify the route change mode of group operation.

(Refer to 10.1.6.TransitionMode)

LREAL TransitionParameter
Specify the parameter of the route change setting of group operation..

(Refer to 10.1.6.TransitionMode)

Output

BOOL Done Indicate whether to reach the specified position.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that the current motion function block is controlling the relevant axis.

Chapter 16. Motion Function Blocks

16-69

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is to give an absolute position linear interpolation command to the axis group specified in

AxesGroup input.

(2) When this motion function block is executed, interpolation control is performed in a linear path from the current

position to the target position of each axis, and the moving direction is decided by the starting point and the target

point of each axis.

 Beginning position < Target position: Forward direction operation

 Beginning position > Target position: Reverse direction operation

(3) In Position input, specify the target position of each axis in the group as matrix. The values in the array and the axis

in the group correspond in the order of [1, 2, 3, 4]. (1~4 are axis ID in the axis group)

(4) Specify the speed, acceleration, deceleration, and the change rate of acceleration/deceleration of interpolation route

in Velocity, Acceleration, Deceleration, and Jerk inputs respectively.

(5) Velocity is to set the interpolation speed of the axis group, and it indicates the integrated speed of each axis.
Operation speeds of each configuration axis are calculated as follows.

Velocity thein specified speedTarget (F) speed ionInterpolat 

2
4

2
3

2
2

2
1 SSSS(S) amountmovement ionInterpolat 

(S)amountmovement ionInterpolat

)(Samountmovement 1 axis ionConfigurat
(F) speed ionInterpolat)(V speed 1 axis ionConfigurat 1

1 

(S)amountmovement ionInterpolat

)(Samount movement 2 axis ionConfigurat
(F)speed ionInterpolat)(V speed 2 axis ionConfigurat 2

2 

(S)amountmovement ionInterpolat

)(Samountmovement 3 axis ionConfigurat
(F)speed ionInterpolat)(V speed 3 axis ionConfigurat 3

3 

(S)amountmovement ionInterpolat

)(Samountmovement 4 axis ionConfigurat
(F)speed ionInterpolat)(V speed 4 axis ionConfigurat 4

4 

(6) Refer to linear interpolation control part in motion control module’s manual for more details.

 Chapter 16. Motion Function Blocks

16-70

MC_MoveLinearRelative

MC_MoveLinearRelative Availability

Relative positioning linear interpolation operation XMC

Motion Function Block

MC_MoveLinearRelative

DoneExecute
AxesGroup AxesGroup

BOOLBOOL
UINT UINT

LREAL[] Distance
LREAL Velocity

Busy BOOL

CommandAborted BOOL
Error BOOL

ErrorID WORD

LREAL Acceleration
Active BOOL

LREAL Deceleration
LREAL Jerk

UINT BufferMode
UINT TransitionMode

LREAL TransitionParameter

Input-Output

UINT AxesGroup
Set the group to do relative position linear interpolation operation. (1 ~ 16: Group 1

~ Group 16)

Input

BOOL Execute
Give relative position linear interpolation operation command to the relevant group

in the rising Edge.

LREAL[] Distance Set the target distance of each axis.

LREAL Velocity Specify the maximum speed of the route. [u/s]

LREAL Acceleration Specify the maximum acceleration. [u/s2]

LREAL Deceleration Specify the maximum deceleration. [u/s2]

LREAL Jerk Specify the change rate of acceleration/deceleration. [u/s3]

UINT BufferMode
Specify the sequential operation setting of motion function block.

(Refer to 16.1.4.BufferMode)

UINT TransitionMode
Specify the route change mode of group operation.

(Refer to 10.1.6.TransitionMode)

LREAL TransitionParameter
Specify the parameter of the route change setting of group operation..

(Refer to 10.1.6.TransitionMode)

Output

BOOL Done Indicate whether to reach the specified position.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that the current motion function block is controlling the relevant axis.

Chapter 16. Motion Function Blocks

16-71

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is to give a relative position linear interpolation command to the axis group specified in

AxesGroup input.

(2) When this motion function block is executed, interpolation control performed in a linear path from the current position

to the target position of each axis, and the moving direction is decided by the sign of the target distance of each axis.

 Target distance > 0: Forward direction operation

 Target distance < 0: Reverse direction operation

(3) In Distance input, specify the target distance of each axis in the group as array. The specified array and the axis in

the group correspond in the order of specified axis ID [ID1 target distance, ID2 target distance, …].

(4) Set the speed, acceleration, deceleration, and the change rate of acceleration/deceleration of interpolation route in

Velocity, Acceleration, Deceleration, and Jerk inputs respectively.

(5) Velocity is to set the interpolation speed of the axis group, and it indicates the integrated speed of each axis.
Operation speeds of each configuration axis are calculated as follows.

Velocity thein specified speedTarget (F) speed ionInterpolat 

2
4

2
3

2
2

2
1 SSSS(S) amountmovement ionInterpolat 

(S)amountmovement ionInterpolat

)(Samountmovement 1 axis ionConfigurat
(F) speed ionInterpolat)(V speed 1 axis ionConfigurat 1

1 

(S)amountmovement ionInterpolat

)(Samount movement 2 axis ionConfigurat
(F)speed ionInterpolat)(V speed 2 axis ionConfigurat 2

2 

(S)amountmovement ionInterpolat

)(Samountmovement 3 axis ionConfigurat
(F)speed ionInterpolat)(V speed 3 axis ionConfigurat 3

3 

(S)amountmovement ionInterpolat

)(Samountmovement 4 axis ionConfigurat
(F)speed ionInterpolat)(V speed 4 axis ionConfigurat 4

4 

(6) Refer to linear interpolation control part in motion control module’s manual for more details.

 Chapter 16. Motion Function Blocks

16-72

MC_MoveCircularAbsolute

MC_MoveCircularAbsolute Availability

Absolute positioning circular interpolation operation XMC

Motion Function Block

MC_MoveCircularAbsolute
DoneExecute

AxesGroup AxesGroup
BOOLBOOL

UINT UINT
UINT CircMode

LREAL[] AuxPoint
Busy BOOL

CommandAborted BOOL
Error BOOL

ErrorID WORD

LREAL[] EndPoint
Active BOOL

UINT PathChoice
LREAL Velocity
LREAL Acceleration
LREAL Deceleration
LREAL Jerk

UINT BufferMode
UINT TransitionMode

LREAL TransitionParameter

Input-Output

UINT AxesGroup
Set the group to do absolute position circular interpolation operation. (1 ~ 16: Group

1 ~ Group 16)

Input

BOOL Execute
Give absolute position circular interpolation operation command to the relevant

group in the rising Edge.

UINT CirMode Circular interpolation method setting [0: Midpoint, 1: Central point, 2: Radius]

LREAL[] AuxPoint
Specify the position of auxiliary point depending on the circular interpolation

method in an absolute coordinate.

LREAL[] EndPoint Specify the end point of circular arc in an absolute coordinate.

BOOL PathChoice
Circular route selection

0: Clockwise, 1: Counterclockwise

LREAL Velocity Specify the maximum speed of the route. [u/s]

LREAL Acceleration Specify the maximum acceleration. [u/s2]

LREAL Deceleration Specify the maximum deceleration. [u/s2]

LREAL Jerk Specify the change rate of acceleration/deceleration. [u/s3]

UINT BufferMode
Specify the sequential operation setting of motion function block.

(Refer to 16.1.4.BufferMode)

UINT TransitionMode Unused

Chapter 16. Motion Function Blocks

16-73

LREAL TransitionParameter Unused

Output

BOOL Done Indicate whether to reach the specified position.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that the current motion function block is controlling the relevant axis.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is to give an absolute position circular interpolation command to the axis group specified in
AxesGroup input.

(2) When this motion function block starts, each axis performs circular path interpolation control which refers to the set
auxiliary point, and the movement direction is decided by PathChoice input. When setting PathChoice input to 0,
circular interpolation operation is done clockwise, and when setting it to 1, circular interpolation operation is done
counterclockwise.

(3) Specify the absolute position of the auxiliary point to refer when doing circular interpolation of each axis in AuxPoint and
EndPoint inputs as array. The entered array and the axis in the group correspond in the order of the specified axis ID [ID1,
ID2, ID3, ∙∙∙]. (The 3 LEAL type sized array should be entered in Position input as there are 3 axes which comprise the
group to give a circular interpolation operation command.)

(4) Specify the speed, acceleration, deceleration, and the change rate of acceleration of interpolation route in Velocity,
Acceleration, Deceleration, and Jerk inputs respectively.

(5) Set the circular interpolation method in CircMode input. The circular interpolation methods which are different from
the value specified in CircMode are as below.
 Circular interpolation of midpoint specifying method (BORDER, CircMode = 0)

In this method, operation starts at the starting point and it does circular interpolation through the specified
position of the central point to the target position. The Figure below shows that the coordinate of the axis
group at the beginning of a command corresponds to the starting point, the coordinate entered in AuxPoint
corresponds to the central point, and the coordinate entered in EndPoint corresponds to the target position in
an absolute value.

 Circular interpolation of central point specifying method

In this method, operation starts at the current position, and it does circular interpolation to the target position
along the circular path, which has a radius of the distance to the specified central position. The Figure below
shows that the coordinate of the axis group at the beginning of a command corresponds to the current

 Chapter 16. Motion Function Blocks

16-74

position, the coordinate entered in AuxPoint corresponds to the central point, and the coordinate entered in
EndPoint corresponds to the target point as an absolute value.

 Circular interpolation using the radius specifying method
In this method, operation starts at the current position, and it does circular interpolation to the target position
along the circular path which has a radius of the value specified in the radius. The Figure below shows that
the coordinate of the axis group at the beginning of a command corresponds to the current position, the value
entered in X-axis of AuxPoint corresponds to the radius, and the coordinate entered in EndPoint corresponds
to the target point in an absolute value.

(6) Refer to linear interpolation control part in motion control module’s manual for more details.

Chapter 16. Motion Function Blocks

16-75

MC_MoveCircularRelative

MC_MoveCircularRelative Availability

Relative positioning circular interpolation operation XMC

Motion Function Block

Input-Output

UINT AxesGroup
Set the group to do absolute position circular interpolation operation. (1 ~ 16: Group

1 ~ Group 16)

Input

BOOL Execute
Give relative position circular interpolation operation command to the relevant

group in the rising Edge.

UINT CirMode Circular interpolation method setting [0: Midpoint, 1: Central point, 2: Radius]

LREAL[] AuxPoint
Specify the position of auxiliary point depending on the circular interpolation

method as the relative coordinate based on the starting point.

LREAL[] EndPoint
Specify the end point of circular arc as the relative coordinate based on the starting

point.

BOOL PathChoice
Circular route selection

0: Clockwise, 1: Counterclockwise

LREAL Velocity Specify the maximum speed of the route. [u/s]

LREAL Acceleration Specify the maximum acceleration. [u/s2]

LREAL Deceleration Specify the maximum deceleration. [u/s2]

LREAL Jerk Specify the change rate of acceleration/deceleration. [u/s3]

UINT BufferMode Specify the sequential operation setting of motion function block.

 Chapter 16. Motion Function Blocks

16-76

(Refer to 16.1.4.BufferMode)

UINT TransitionMode Unused

LREAL TransitionParameter Unused

Output

BOOL Done Indicate whether to reach the specified position.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that the current motion function block is controlling the relevant axis.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.
(1) This motion function block is to give a relative position circular interpolation command to the axis group specified in

AxesGroup input.
(2) When this motion function block starts, each axis performs circular path interpolation control which refers to the set

auxiliary point, and the movement direction is decided by PathChoice input. When setting PathChoice input to 0,
circular interpolation operation is done clockwise, and when setting it to 1, circular interpolation operation is done
counterclockwise.

(3) Specify the relative position of the auxiliary point to refer when doing circular interpolation of each axis in AuxPoint and
EndPoint inputs as array. The entered array and the axis in the group correspond in the order of the specified axis ID [ID1,
ID2, ID3, ∙∙∙]. (The 3 LEAL type sized array should be entered in Position input as there are 3 axes which comprise the
group to give a circular interpolation operation command.)

(4) Specify the speed, acceleration, deceleration, and the change rate of acceleration of interpolation route in Velocity,
Acceleration, Deceleration, and Jerk inputs respectively.

(5) Set the circular interpolation method in CircMode input. The circular interpolation methods which are different from
the value specified in CircMode are as below.
● Circular interpolation of midpoint specifying method (BORDER, CircMode = 0)

In this method, operation starts at the current position and it does circular interpolation through the specified
position of the central point to the target position.
The Figure below shows that the coordinate of the axis group at the beginning of a command
corresponds to the current position, the coordinate entered in AuxPoint corresponds to the central point,
and the coordinate entered in EndPoint corresponds to the target position in a relative value.

● Circular interpolation of central point specifying method

In this method, operation starts at the current position, and it does circular interpolation to the target position
along the circular path, which has a radius of the distance to the specified central position. The Figure below

Chapter 16. Motion Function Blocks

16-77

shows that the coordinate of the axis group at the beginning of a command corresponds to the current
position, the coordinate entered in AuxPoint corresponds to the central point, and the coordinate entered in
EndPoint corresponds to the target point as a relative value.

● Circular interpolation using the radius specifying method

In this method, operation starts at the current position, and it does circular interpolation to the target position
along the circular path which has a radius of the value specified in the radius. The Figure below shows that
the coordinate of the axis group at the beginning of a command corresponds to the current position, the value
entered in X-axis of AuxPoint corresponds to the radius, and the coordinate entered in EndPoint corresponds
to the target point in a relative value.

(6) Refer to linear interpolation control part in motion control module’s manual for more details.

 Chapter 16. Motion Function Blocks

16-78

LS_Connect

LS_Connect Availability

Connect servo drives XMC

Motion Function Block

Input

BOOL Execute
Give communication connection command to the relevant module in the rising

Edge.

Output

BOOL Done Indicate whether to complete communication connection.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is to give a command to connect communication with servo drive or external input/output

apparatus to the module.

 (2) When slave devicees are normally connected, Done is On and Busy is Off.

 (3) If an error occurs during the communication connection, Error is On and error number is output in ErrorID according

to the cause.

Chapter 16. Motion Function Blocks

16-79

LS_Disconnect

LS_Disconnect Availability

Disconnect servo drives XMC

Motion Function Block

Input

BOOL Execute
Give communication disconnection command to the relevant module in the rising

Edge.

Output

BOOL Done Indicate whether to complete communication disconnection.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block gives a command which orders the module to disconnect the communication with servo

drive or external input/output apparatuses.

 (2) If communication slave is disconnected, Done is On and Busy is off.

 (3) If an error occurs during the execution of communication disconnection, Error is On and error number is output in

ErrorID according to the error situation.

 Chapter 16. Motion Function Blocks

16-80

LS_ReadSDO

LS_ReadSDO Availability

Read SDO XMC

Motion Function Block

LS_ReadSDO

SlaveSlave
Execute Done

UINTUINT
BOOL BOOL

UINT Index Busy BOOL
Error BOOL

ErrorID WORD
UINT SubIndex
UINT Length

DINTValue

Input-Output

UINT Slave Set the slave to be given a command. (1~64: Slave)

Input

BOOL Execute Give SDO reading command to the relevant slave in the rising Edge.

UINT Index Set the Index of slaver Object to be read. (0x0000~0x9FFF)

UINT SubIndex Set the SubIndex of slave Object to be read. (0 ~ 255)

UINT Length Set the distance of slave Object to be read by Byte. (1 ~ 4)

Output

BOOL Done Indicate that SDO is successfully read.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

LREAL Value Output the value of SDO.

(1) This motion function block is to read the SDO (CoE Object) value of servo drive in the relevant axis, and reads

the SDO value of the position specified in Index and SubIndex of the axis specified by Axis input as much as

the size of Length and indicates it on Value output.

(2) Value output is eliminated to 0 when motion function block is running, and it is output as the read value when

the running is completed (Done output is On).

(3) Index input can be set as below. If the value is set outside the range, "error 0x1F12” occurs.

Variable Description

Chapter 16. Motion Function Blocks

16-81

16#0000 ~ 16#0FFF Data Type Description

16#1000 ~ 16#1FFF Communication objects

16#2000 ~ 16#5FFF Manufacturer Specific Profile Area

16#6000 ~ 16#9FFF Standardized Device Profile Area

(4) The value between 0~255 can be entered in SubIndex, and if the value is set outside the range, "error

0x1F12” occurs.

(5) The value between 1~4 can be set in Length, which means 1~4 Byte. If the value is set outside the range,

“error 0x1F12” occurs.

 Chapter 16. Motion Function Blocks

16-82

LS_WriteSDO

LS_WriteSDO Availability

Write SDO XMC

Motion Function Block

LS_WriteSDO

SlaveSlave
Execute Done

UINTUINT
BOOL BOOL

UINT Index Busy BOOL
Error BOOL

ErrorID WORD
UINT SubIndex
UINT Length
DINT Value

Input-Output

UINT Slave Set the Slave to be given a command. (1~64: Slave)

Input

BOOL Execute Give SDO writing command to the relevant slave in the rising Edge.

UINT Index Set the Index of slave Object to be written. (0x0000~0x9FFF)

UINT SubIndex Set the SubIndex of slave Object to be written. (0 ~ 255)

UINT Length Set the distance of slave Object to be written by Byte. (1 ~ 4)

DINT Value Set the value to be written in SDO.

Output

BOOL Done Indicate that SDO is successfully read.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is to write the SDO (CoE Object) value of the relevant slave, and it writes the value

entered in Value as the size of the Length in SDO of the position specified as Index and SubIndex of the slave

specified in slave input.

(2) Index input can be set as below. When it is set to the value besides the set value, “error 0x1F12” occurs.

Chapter 16. Motion Function Blocks

16-83

Value Description

16#0000 ~ 16#0FFF Data Type Description

16#1000 ~ 16#1FFF Communication objects

16#2000 ~ 16#5FFF Manufacturer Specific Profile Area

16#6000 ~ 16#9FFF Standardized Device Profile Area

(3) The value between the range of 0~255 can be entered in SubIndex, and if the value outside the range is set,

“error 0x1F12” occurs.

(4) The value between the range of 1~4 can be entered in Length, which means 1~4 Byte. If the value outside the

range is set, "error 0x1F12” occurs.

 Chapter 16. Motion Function Blocks

16-84

LS_SaveSDO

LS_SaveSDO Availability

Save SDO XMC

Motion Function Block

LS_SaveSDO

SlaveSlave
Execute Done

UINTUINT
BOOL BOOL

Busy BOOL
Error BOOL

ErrorID WORD

Input-Output

UINT Slave Set the slave to be given a command. (1~64: slave 1~slave 64)

Input

BOOL Execute Give SDO saving command to the relevant slave in the rising Edge.

Output

BOOL Done Indicate that SDO is successfully save.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is a command to save SDO of the designated slave to the memory of the slave.

Chapter 16. Motion Function Blocks

16-85

LS_EncoderPreset

LS_EncoderPreset Availability

Encoder preset XMC

Motion Function Block

Input

BOOL Execute Specify the position of the relevant encoder in the rising Edge.

UINT Encoder Set the encoder to set the position. (1~2: Encoder 1~Encoder 2)

LREAL Position Specify the position to set. [u]

BOOL Relative
0: Absolute coordinate position

1: Relative coordinate position

Output

BOOL Done Indicate the state of motion function block completion.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

 Chapter 16. Motion Function Blocks

16-86

LS_Jog

LS_Jog Availability

JOG operation XMC

Motion Function Block

Input-Output

UINT Axis Set the axis to be given a command. (1~32: Actual axes)

Input

BOOL Enable Give jog command to the relevant axis while input is On.

BOOL Direction Set the rotation direction in jog (0: Forward direction, 1: Reverse direction)

BOOL Low/High
Set the jog speed in jog.

(0: Jog low speed operation, 1: Jog high speed operation)

Output

BOOL Enabled Indicate that the relevant axis is in jog.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is to make the relevant axis perform jog operation.
(2) Jog is a manual operation function for test and is used to confirm the position address for system operation, wiring

condition check, and teaching. Jog can be used by dividing the speed into high speed and low speed.
(3) When Enable input is On (in jog), if the value set in Low/High is changed, speed change occurs without stop in jog,

and if the value set in JOG_DIR is changed, Jog is continued by changing the direction after the deceleration
pause.

Chapter 16. Motion Function Blocks

16-87

LS_ReadCamData

LS_ReadCamData Availability

Read Cam Data XMC

Motion Function Block

LS_ReadCamData

AxisAxis
Enable Done

UINTUINT
BOOL BOOL

UINT CamTable ID Busy BOOL
Error BOOL

ErrorID WORD
Array [] of LREAL MasterPoint
Array [] of LREAL SlavePoint

StartSlope
EndSlope

CamPointNum

CamCurveSel LREAL
LREAL
UINT

Array [] of BYTE

입력-출력

UINT Axis Specify the axis to be commanded (1~32: real/virtual axis, 33~36: virtual axis)

입력

BOOL Enable Read the relevant cam data while input is On.

UINT CamTableID Specify the cam table to read. (1~32)

LREAL MasterPoint MasterPoint values of the cam table are displayed on the areas of which

front address is the set device.

LREAL SlavePoint SlavePoint values of the cam table are displayed on the areas of which front

address is the set device.

BYTE[] CamCurveSel Cam Curve form of the cam table are displayed on the areas of which front

address is the set device. (0: Linear, 1: Cubic)

출력

BOOL Vaild Indicate the validity of motion function block output.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

LREAL StartSlope Output the StartSlope value of the relevant cam table.

LREAL EndSlope Output the EndtSlope value of the relevant cam table.

UINT CamPointNum Output the cam data point number of the relevant cam table.

 Chapter 16. Motion Function Blocks

16-88

(1) This function block displays the data of the cam table.
(2) While Enable input is activated, the data values of the cam table are displayed in succession.
(3) The first address of the variables to store "Main-axis Position" and "Sub-axis Position" read from the camp profile is

set at the MasterPoint and the SlavePoint.

Chapter 16. Motion Function Blocks

16-89

LS_WriteCamData

LS_WriteCamData Availability

Write Cam Data XMC

Motion Function Block

LS_WriteCamData

AxisAxis
Execute Done

UINTUINT
BOOL BOOL

UINT CamTable ID Busy BOOL
Error BOOL

ErrorID WORD
LREAL StartSlope
LREAL EndSlope

UINT CamPointNum

ExecutionModeUINT
Array[] of BYTE CamCurveSel

Array[] of LREAL MasterPoint
Array[] of LREAL SlavePoint

Input-Output

UINT Axis Specify the axis to be commanded (1~32: real/virtual axis, 33~36: virtual axis)

Input

BOOL Execute Give the cam data writing command in the rising Edge of the input.

UINT CamTableID Specify the ID of the cam table to write. (1~32)

LREAL StartSlope Specify the StartSlope value of the cam table to write.

LREAL EndSlope Specify the StartSlope value of the cam table to write.

UINT CamPointNum Specify the cam data point number of the cam table to write.

LREAL MasterPoint Of the cam data to write, set the leading address of the device where Master Point
value is stored.

LREAL SlavePoint Of the cam data to write, set the leading address of the device where Slave Point
value is stored.

BYTE[] CamCurveSel Specify the cam curve type (0: Linear, 1: Cubic)

UINT ExecutionMode Set the timing to write the cam data.
0 - Immediately applied, 1: Applied at the same point with ‘Buffered’ of Buffermode

Output

BOOL Done This represents successful cam data writing.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is a command to write the data value of the cam table. Of the cam table data set by
CamTableID input, use the value of the device set at MasterPoint and Slave Point at the value set at StartSlope

 Chapter 16. Motion Function Blocks

16-90

and EndSlope and the set number at CamPointNum as the MasterPoint and SlavePoint values.
(2) CamTableID input can be set to between 1 and 32. Setting a value outside the above range will cause "Error

16#000B"
(3) ExecutionMode input sets the setting timing. When the input is 0, setting is performed upon executing the command.

When the input is 1, setting is performed at the same time as "Buffered" at the sequential operation. Setting an
incorrect value will cause "Error 16#000B".

0(mcImmediately) : Itchanges the (Upward Edge of Execute input) parameter value upon executing the

function block. If the axis is in operation, the motion may be affected.

1(mcQueued) : It is changed at the same point of time as in "Buffered" of Buffermode.

Chapter 16. Motion Function Blocks

16-91

LS_ReadEsc

LS_ReadEsc Availability

Read ESC XMC

Motion Function Block

Input

BOOL Execute Give the ESC reading command to the slave controller in the rising Edge.

UINT Adp Set the slave controller address according to the EcatCmd.

UINT Ado Set the slave controller ESC address.

UINT Length Set the data length to read. (1 ~ 4 Byte)

UINT EcatCmd Set the EtherCAT command. (1: APRD, 4: FPRD, 7: BRD)

Output

BOOL Done This represents successful ESC reading to complete normally.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

UDINT Value Output the ESC reading value of the slave controller

UINT Wkc(Working Counter) After the execution of the command, Working Counter value is displayed.

(1) This motion function block is a function block to read the data of the address in Ado set from the ESC (EtherCAT

Slave Controller) of the designated slave device.
(2) Value and Wkc(Working Counter) is displayed as 0 when the motion function block is executed. When the

execution is completed (Done output is on), the read data value is displayed at Value, and the Working Counter
value is displayed at Wkc.

(3) Adp(Address position) is designating the address of the EtherCAT slave device. The following values can be set
depending on the EcatCmd setting. If EcatCmd setting is 7(BRD), Adp input value is ignored. If a value outside the
range is set for Adp input, “Error 0x0F60” occurs.

 Chapter 16. Motion Function Blocks

16-92

EcatCmd Adp range

1 (APRD)

0x0000: The first slave connected
0xFFFF: The second slave connected
0xFFFE: The third slave connected

:
0xFFC1: 64th slave connected

4 (FPRD) 1 ~ 64: slave 1~slave 64

7 (BRD) -
(4) Length can be set to between 1 and 4, which means 1-4 bytes. Setting a value outside the above range will cause

"Error 0x0F61. "
(5) At EcatCmd, set the type of command to use when reading ESC (EtherCAT Slave Controller). One of the following

commands can be used: Setting a value outside the above range at EcatCmd will cause "Error 0x0F62.”
1) 1 - APRD (Auto Increment Physical Read)

This command is used when reading the slave device data following the order of physical connection before
normal communication connection by the master. A slave device receiving Adp with 0 value will read data of the
size designated by Length. Adp of each slave device increases when EtherCAT frame is received. . For
example, if EcatCmd is 1, and Adp is set to 0xFFFF, when executing ESC read function block, read motion is
not performed because the Adp at the time of receiving EtherCAT frame from the first slave device is not 1, only
increasing Adp by 1. When the second slve device receives EtherCAT frame, read motion is performed
because the Adp value of the first slave value increased by 1 to 0. The Adp setting values depending on the
slave device connection order are as follows.

Slave controller Setting value

The first slave connected 0

The second slave connected 0xFFFF

: :

64th slave connected 0xFFC1
2) 4 - FPRD (Configured Address Physical Read)

This order is used to read the data by designating the station address of the slave device after normal

communication connection by the master. If the Station Address of the slave device set by EtherCAT master

matches the transmitted Adp, the slave device reads data of the size designated by Length in the Ado area.

Chapter 16. Motion Function Blocks

16-93

3) 7 – BRD (Broadcast Read)
All connected slave devices read data of the size set by Length in the Ado area, and saves the result after
Bitwise-OR (OR operation of each bit). The designated address value at Adp is ignored, and Wkc increase by
1due to all slaves that performed normal read operation

(6) Wkc stands for Working Counter. If data is successfully read at the designated slave device, it increases by 1. If
EcatCmd is 7(BRD), it increases by 1 due to all slaves that performed normal read operation.

(7) After the execution of ESC read command, if normal data read operation is executed from the designated slave
device, Doneoutput is on.

 Chapter 16. Motion Function Blocks

16-94

LS_WriteEsc

LS_WriteEsc Availability

Write ESC XMC

Motion Function Block

Input

BOOL Execute Give the ESC writing command to the slave controller in the rising Edge.

UINT Adp Set the slave controller address according to the EcatCmd.

UINT Ado Set the slave controller ESC address.

UINT Length Set the data length to write. (1 ~ 4 Byte)

UINT EcatCmd Set the EtherCAT command. (2: APWR, 5: FPWR, 8: BWR)

UDINT Value Output the ESC writing value of the slave controller

Output

BOOL Done This represents successful ESC writing to complete normally.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

UINT Wkc After the execution of the command, Working Counter value is displayed.

(1) This motion function block writes data using the address set by Ado to ESC (EtherCAT Slave Controller) of the

slave device set by Adp.
(2) Wkc value is displayed as 0 when the motion function block is executed, and the Working Counter value is

displayed when execution is completed (Done output is on). Wkc increases by 1 through each slave device
designated by EcatCmd and Adp.

(3) Adp input designates the EtherCAT slave device address. The following values can be set depending on EcatCmd
setting. If EcatCmd setting is 8(BWR), Adp input value is ignored. If a value outside the range is set for Adp input,
“Error 0x0F70” occurs.

Chapter 16. Motion Function Blocks

16-95

EcatCmd Adp range

2 (APWR)

0x0000: The first slave connected
0xFFFF: The second slave connected
0xFFFE: The third slave connected

:
0xFFC1: 64th slave connected

5 (FPWR)
1~64: slave 1~slave 64

8 (BWR) -

(4) Length can be set to between 1 and 4, which means 1-4 bytes. Setting a value outside the above range will cause
"Error 0x0F71".

(5) At EcatCmd, set the type of command to use when reading ESC (EtherCAT Slave Controller). The following write
commands can be used. Setting a value outside the range at EcatCmd will cause "Error 0x0F72”.
1) 2 - APW (Auto Increment Physical Write)

This command is used when reading the slave device data following the order of physical connection before
normal communication connection by the master. A slave device receiving Adp with 0 value will read data of
the size designated by Length. Adp of each slave device increases when EtherCAT frame is received. . For
example, if EcatCmd is 2, and Adp is set to 0xFFFF, when executing ESC read function block, reading is not
performed because the Adp at the time of receiving EtherCAT frame from the first slave device is not 0, only
increasing Adp by 1. When the second slave device receives EtherCAT frame, writing is performed because
the Adp value of the first slave value increased by 1 to 0. The Adp values depending on the slave device
connection order are as follows.

Slave controller Setting value

The first slave connected 0

The second slave connected 0xFFFF

: :

64th slave connected 0xFFC1
2) 5 - FPWR (Configured Address Physical Write)

This order is used to write the data by designating the station address of the slave device after normal

communication connection by the master. If the Station Address of the slave device set by EtherCAT master

matches the transmitted Adp, the slave device writes data of the size designated by Length in the Ado area.

 Chapter 16. Motion Function Blocks

16-96

3) 8 –BWR, Broadcast Write

All connected slave devices write data of the size set by Length in the Ado area, and saves the result after

Bitwise-OR (OR operation of each bit). The designated address value at Adp is ignored, and Wkc increase by 1

due to all slaves that performed normal write operation.
(6) Wkc stands for Working Counter. If data is successfully written at the designated slave device, it increases by 1. If

EcatCmd is 8(BWR), it increases by 1 due to all slaves that performed normal write operation.

After the execution of ESC write command, if normal data write operation is executed in the designated slave device,

Doneoutput is on.

Chapter 16. Motion Function Blocks

16-97

LS_CamSkip

LS_CamSkip Availability

Skip Cam XMC

Motion Function Block

Input - Output

UINT Slave Set the serve axis. (1~32: real/virtual axis, 33~36: virtual axis)

Input

BOOL Execute Give cam skip command on the axis in the rising Edge.

UINT SkipCount Set the number of cam cycles to skip.

Output

BOOL Done Indicate the completion state of cam skip operation.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that the current axis is controlling the cam skip.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

LREAL CoveredSkipcount Output the number of cam cycle skipped.

(1) This motion function block commands Cap Skip command which skip cam operation cycles as designated for the

cam currently in operation.
(2) SkipCount determines the number of cam cycles to skip. If 0 is entered, SkipCount Error (Error 0x111E) is displayed.
(3) When Cam Skip command is issued on a sub-axis during cam operation, the skip motion starts when the current

cam cycle is completed. During cam skip, the sub-axis is in stand-by at the end of the cam table.
(4) CoveredSkipCount displays the number of cam cycles skipped. The count increases with each skpped cycle, and

becomes 0 when Done output is off after the function block motion is completed
(5) Done output is on when the set number of cycles are skipped after executing Cam Skip command.

 Chapter 16. Motion Function Blocks

16-98

LS_VarCamIn

LS_VarCamIn Availability

Variable Cam Operation XMC

Motion Function Block

LS_VarCamIn

VarOffset
Slave Slave UINTUINT

UDINT
BOOL Execute

LREAL ContinousUpdate

InSync BOOL

Busy BOOL
Active BOOLLREAL MasterOffset

SlaveOffsetLREAL
LREAL MasterScaling
LREAL SlaveScaling
LREAL MasterStartDistance

MasterSyncPositionLREAL
UINT StartMode
UINT MasterValueSource
UINT CamTableID
UINT BufferMode

CommandAborted BOOL
Error BOOL

ErrorID WORD
EndOfProfile BOOL

VarOffset UINT

Input - Output

UDINT VarOffset
Set the offset value of the M device where the variable to be used as the main

axis is located.

UINT Slave Set the serve axis. (1~32: real/virtual axis, 33~36: virtual axis)

Input

BOOL Execute Give cam operation command on the axis in the rising Edge.

BOOL ContinuousUpdate

Specify the update setting of input value.

(Refer to 6.1.5.Changes in Parameters during Execution of Motion Function

Block)

LREAL MasterOffset Set the offset value of the main axis.

LREAL SlaveOffset Set the offset value of the serve axis cam table.

LREAL MasterScaling Specify the magnification of the main axis.

LREAL SlaveScaling Specify the magnification of the serve axis cam table.

LREAL MasterStartDistance Specify the position of the main axis where cam operation of the slave.

LREAL MasterSyncPosition Specify the starting point at cam table when cam operation starts.

UINT StartMode

Set the cam operation mode.

0 : Cam table is applied as an absolute value (mcAbsolute)

1: Cam table is applied as a relative value based on the command starting point

(mcRelative)

Chapter 16. Motion Function Blocks

16-99

UINT MasterValueSource

Select the source of the main axis for cam operation.

0 : Synchronized in the target value of the main axis.

1 : Synchronized in the current value of the serve axis.

UINT CamTableID Specify the cam table to operate.

UINT BufferMode
Specify the sequential operation setting of motion function block.

(Refer to 6.1.4.BufferMode)

Output

BOOL InSync
Indicate that cam operation is normally being fulfilled.

(Indicate that the serve axis is following the cam table.)

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that the current motion function block is controlling the relevant axis.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is the function block that operates the sub-axis CAM along the main axis by setting the

variable value designated by offset as the main axis.
(2) The variable value specified as the main axis should be the LREL type. Example) When specifying the variable to

be allocated to the memory by %ML100 as the main axis value, %ML100 should be LREAL type, and the offset
value specifying a variable is UDINT type and you should input 100 to the VarOffset.

(3) Remaining settings and functions are the same as the MC_CamIn function block.

 Chapter 16. Motion Function Blocks

16-100

LS _VarGearIn

LS_VarGearIn Availability

Variable Gear Operation XMC

Motion Function Block

LS_VarGearIn

VarOffsetVarOffset
Slave

InGear BOOL

UINT
UDINT

UINT

BOOL Execute

BOOL ContinousUpdate Busy BOOL

CommandAborted BOOL
Error BOOL

ErrorID WORD

INT RatioNumerator Active BOOL
UINT RatioDenominator
UINT MasterValueSource

LREAL Acceleration
LREAL Deceleration
LREAL Jerk

UINT BufferMode

Slave
UINT

Input - Output

UDINT VarOffset
Set the offset value of the M device where the variable to be used as the main

axis is located.

UINT Slave Set the serve axis. (1~32: real/virtual axis, 33~36: virtual axis)

Input

BOOL Execute Give gear operation command to the relevant axis in the rising Edge.

BOOL ContinuousUpdate

Specify the update setting of input value.

(Refer to 6.1.5.Changes in Parameters during Execution of Motion Function

Block)

LREAL RatioNumerator Specify the numerator of gear ratio. (-32768 ~ 32767)

LREAL RatioDenominator Specify the denominator of gear ratio. (0 ~ 65535)

LREAL MasterValueSource

Select data of the main axis to be synchronized.

0: Synchronize in the command position of the main axis.

1: Synchronize in the current position of the main axis.

LREAL Acceleration
Specify the acceleration at the beginning of gear operation synchronization.

[u/s2]

LREAL Deceleration
Specify the deceleration at the beginning of gear operation synchronization.

[u/s2]

LREAL Jerk Specify the change rate of acceleration/deceleration. [u/s3]

UINT BufferMode
Specify the sequential operation setting of motion function block.

(Refer to 6.1.4.BufferMode)

Chapter 16. Motion Function Blocks

16-101

Output

BOOL InGear Indicate that gear operation is running by applying gear ration.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that the current motion function block is controlling the relevant axis.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is the function block that drives the main axis and the sub axis in gear operation (speed

synchronization) by setting the variable value designated by offset as the main axis.
(2) The variable value specified as the main axis should be the LREL type. Example) When specifying the variable to

be allocated to the memory by %ML100 as the main axis value, %ML100 should be LREAL type, and the offset
value specifying a variable is UDINT type and you should input 100 to the VarOffset.

(3) Remaining settings and functions are the same as the MC_GearIn function block.

 Chapter 16. Motion Function Blocks

16-102

LS_VarGearInPos

LS_VarGearInPos Availability

Variable Positioning Gear Operation XMC

Motion Function Block

LS_VarGearInPos

VarOffsetVarOffset
Slave

InGear BOOL

UINT
UDINT

UINT

BOOL Execute

Busy BOOL

CommandAborted BOOL
Error BOOL

ErrorID WORD

INT RatioNumerator
Active BOOLUINT RatioDenominator

LREAL Acceleration
LREAL Deceleration
LREAL Jerk

UINT BufferMode

Slave
UINT

LREAL MasterSyncPosition
LREAL SlaveSyncPosition

UINT SyncMode
LREAL MasterStartDistance

UINT MasterValueSource

Input - Output

UDINT Master Set the main axis. (1~32: real/virtual axis, 33~36: virtual axis)

UINT Slave Set the serve axis. (1~32: real/virtual axis, 33~36: virtual axis)

Input

BOOL Execute Give gear operation command to the relevant axis in the rising Edge.

INT RatioNumerator Specify the numerator of gear ratio. (-32768~32767)

UINT RatioDenominator Specify the denominator of gear ratio. (0~65535)

UINT MasterValueSource

Select the standard of the main axis value to be synchronized.

0(mcSetValue): Synchronize in the target position of the main axis.

1(mcActualValue): Synchronize in the current position of the main axis.

LREAL MasterSyncPosition Specify the position of the main axis where gear operation starts.

LREAL SlaveSyncPosition Specify the position of the spindle where gear operation starts.

UINT SyncMode Unused

LREAL MasterStartDistance Specify the distance of the main axis where synchronization starts.

LREAL Velocity
Specify the maximum speed of the spindle at the beginning of synchronization.

[u/s]

LREAL Acceleration Specify the maximum acceleration of the spindle at the beginning of

Chapter 16. Motion Function Blocks

16-103

synchronization. [u/s2]

LREAL Deceleration
Specify the maximum deceleration of the spindle at the beginning of

synchronization. [u/s2]

LREAL Jerk Specify the change rate of acceleration/deceleration. [u/s3]

UINT BufferMode
Specify the sequential operation setting of motion function block.

(Refer to 6.1.4.BufferMode)

Output

BOOL InSync
Indicate that gear operation is normally being fulfilled as the specified gear ratio is

applied.

BOOL StartSync Indicate synchronization is starting.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that the current motion function block is controlling the relevant axis.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is the function block that synchronizes the main axis and the servo axis according to the

gear ratio set at the specific position by setting the variable value designated by the offset as the main axis
(2) The variable value specified as the main axis should be the LREL type. Example) When specifying the variable to

be allocated to the memory by %ML100 as the main axis value, %ML100 should be LREAL type, and the offset
value specifying a variable is UDINT type and you should input 100 to the VarOffset.

(3) Remaining settings and functions are the same as the MC_GearInPos function block.

 Chapter 16. Motion Function Blocks

16-104

LS_ReadCamTableSlavePos

LS_ReadCamTableSlavePos Availability

Read the slave position of the CAM table XMC

Motion Function Block

LS_ReadCamTableSlavePos

AxisAxisUINT UINT
BOOL Execute

UINT CamTableID

Done BOOL

Busy BOOL

Error BOOL
ErrorID WORD

SlaveVel LREAL
LREAL MasterPos SlavePos LREAL

SlaveAccel LREAL

Input - Output

UINT Axis Specify the axis to be commanded (1~32: real/virtual axis, 33~36: virtual axis)

Input

BOOL Execute Give ReadCamTableSlavePos operation command to the relevant axis in the

rising Edge.

UINT CAM tableID Specify the number of the CAM table to read (1~32)

LREAL MasterPos Specify the position of the main axis on the CAM table.

Output

BOOL Done Indicate the completion state of ReadCamTabelSlavePos operation.

BOOL Busy Indicate that the execution of motion function block is not completed.

LREAL SlavePos It outputs the position of the slave.

LREAL SlaveVel It outputs the speed of the slave. [u/s]

LREAL SlaveAccel It outputs the acceleration of the slave. [u/s2]

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block outputs the position of the serve axis according to the position of the main axis in the

specified CAM table.
(2) Set the position value of the main axis to be read in the CAM table as the MasterPos value. Offset / gear ratio /

phase correction operation, etc. applied to the command axis are not reflected in the SlavePos output.
(3) When reading the slave position on the CAM table is completed, the ‘Done Output’ will be turned on.

Chapter 16. Motion Function Blocks

16-105

LS_InverterWriteVel

LS_InverterWriteVel Availability

Write inverter velocity XMC

Motion Function Block

LS_InverterWriteVel

AxisAxis
Execute Done

UINTUINT
BOOL BOOL

Error BOOL
ErrorID WORD

TargetVelINT

Input - Output

UINT Axis Specify the axis to be commanded (1~32: real axis)

Input

BOOL Execute Give InverterWriteVel operation command to the relevant axis in the rising Edge.

INT TargetVel The inverter speed to be set (-30000 ~ 30000, unit: rpm)

Output

BOOL Done Indicate the completion state of InverterWriteVel operation.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is the function block that sets the speed of the inverter to operate when controlling the

inverter by the axis
(2) If you set the speed in TargetVel and execute the function block, the inverter connected to the axis will operate at

the corresponding speed.
(3) The speed value set in TargetVel is in units of rpm, and can be set to the value from -30000 to 30000.

 Chapter 16. Motion Function Blocks

16-106

LS_InverterReadVel

LS_InverterReadVel Availability

Read inverter velocity XMC

Motion Function Block

LS_InverterReadVel

AxisAxis
Enable Enabled

UINTUINT
BOOL BOOL

ActualVel INT

Error BOOL
ErrorID WORD

Input - Output

UINT Axis Specify the axis to be commanded (1~32: real axis)

Input

BOOL Enable While the condition is ON, the speed of the inverter connected to the axis is read.

Output

BOOL Enabled It indicates whether reading the inverter speed is being executed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

INT ActualVel Speed value of the read inverter

(1) This motion function block is the function block that reads the speed of the connected inverter when controlling the
inverter by the axis.

(2) When the function block is executed, the current speed of the inverter connected to the axis is read and displayed
in ActualVel.

(3) The speed value set in ActualVel is in units of rpm, and can be displayed as the value from -30000 to 30000.

Chapter 16. Motion Function Blocks

16-107

LS_InverterControl

LS_InverterControl Availability

Write inverter control word XMC

Motion Function Block

LS_InverterControl

AxisAxis
Execute Done

UINTUINT
BOOL BOOL

Error BOOL
ErrorID WORD

SwitchOnBOOL
VoltageEnBOOL
QuickStopBOOL
EnableOPBOOL
EnableRampBOOL
UnlockRampBOOL
ReferenceRampBOOL
FaultResetBOOL
HaltBOOL

Input - Output

UINT Axis Specify the axis to be commanded (1~32: real axis)

Input

BOOL Execute Set the inverter control word in the rising Edge.

BOOL SwitchOn Switch On

BOOL VoltageEn Voltage Enable

BOOL QuickStop Quick Stop

BOOL EnableOP Enable operation

BOOL EnableRamp Enable ramp

BOOL UnlockRamp Unlock ramp

BOOL ReferenceRamp Reference ramp

BOOL FaultReset Fault Reset

BOOL Halt Halt

Output

BOOL Done It indicates whether or not the inverter control word setting is done normally.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is the function block that sets the controlword of the connected inverter when controlling
the inverter by the axis.

(2) In order to operate the inverter, the controlword must be set to enable operation.

 Chapter 16. Motion Function Blocks

16-108

(3) Please refer to the following.

Command bit used in Enable Operation

Inverter status according to the bit setting of the control word

Change the inverter status according to the bit setting of the control word

Chapter 16. Motion Function Blocks

16-109

 Chapter 16. Motion Function Blocks

16-110

LS_InverterStatus1

LS_InverterStatus1 Availability

Read inverter Status1 XMC

Motion Function Block

LS_InverterStatus1

AxisAxis
Enable Enabled

UINTUINT
BOOL BOOL

Error BOOL
ErrorID WORD

RdySwitchOn BOOL
SwitchedOn BOOL

OpEn BOOL
VoltageEn BOOL

SwOnDisable BOOL

Input - Output

UINT Axis Specify the axis to be commanded (1~32: real axis)

Input

BOOL Enable Read the “Status 1” of the inverter while the input is enabled.

Output

BOOL Enabled It indicates the state of reading the “Status 1” of the inverter.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

BOOL RdySwitchOn Ready to Switch On

BOOL SwitchedOn Switched On

BOOL OpEn Operation Enabled

BOOL VoltageEn Voltage Enabled

BOOL SwOnDisable Switch On Disable

(1) This motion function block is the function block that reads and displays the "Status 1" of the connected inverter

when controlling the inverter by the axis.
(2) RdySwitchOn, SwitchedOn, OpEn, VoltageEn, SwOnDisable are respectively the lower bit values of the Status

Word among the inverter PDO Data.

RdySwitchOn Bit 0

SwitchedOn Bit 1

OpEn Bit 2

VoltageEn Bit 4

Chapter 16. Motion Function Blocks

16-111

SwOnDisable Bit 6

 Chapter 16. Motion Function Blocks

16-112

LS_InverterStatus2

LS_InverterStatus2 Availability

Read inverter Status2 XMC

Motion Function Block

LS_InverterStatus2

AxisAxis
Enable Enabled

UINTUINT
BOOL BOOL

Error BOOL
ErrorID WORD

Fault BOOL
QuickStop BOOL

Warning BOOL
Remote BOOL

TargetReach BOOL
LimitActive BOOL

Input - Output

UINT Axis Specify the axis to be commanded (1~32: real axis)

Input

BOOL Enable Read the “Status 2” of the inverter while the input is enabled.

Output

BOOL Enabled It indicates the state of reading the “Status 2” of the inverter.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

BOOL Fault Fault(trip)

BOOL QuickStop Quick stop

BOOL Warning Warning

BOOL Remote Remote

BOOL TargetReach Target Reached

BOOL LimitActive Internal Limit active

(1) This motion function block is the function block that reads and displays the "Status 2" of the connected inverter

when controlling the inverter by the axis.
(2) Fault, QuickStop, Warning, Remote, TagetReach, LimiActive are respectively the lower bit values of the Status

Word among the inverter PDO Data.

Fault Bit 3

QuickStop Bit 5

Warning Bit 7

Chapter 16. Motion Function Blocks

16-113

Remote Bit 6

TargetReach Bit 10

LimitActive Bit11

 Chapter 16. Motion Function Blocks

16-114

LS_SyncMoveVelocity

LS_SyncMoveVelocity Availability

CSV(Cyclic Synchronous Velocity mode) control operation XMC

Motion Function Block

LS_SyncMoveVelocity

AxisAxis
Execute InVelocity

UINTUINT
BOOL BOOL

Busy BOOL
Active BOOL

VelocityLREAL
CmdPosModeBOOL
BufferModeUINT CommandAborted BOOL

Error BOOL
ErrorID WORD

Input - Output

UINT Axis Specify the axis to be commanded (1~32: real axis)

Input

BOOL Execute In the rising Edge, it performs speed control operation through the CSV mode.

BOOL CmdPosMode 0: Apply the current position to the command position.

UINT BufferMode
Specify the sequential operation setting of motion function block.

(Refer to 6.1.4.BufferMode)

Output

BOOL Done Indicate whether to reach the specified distance.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that the current motion function block is controlling the relevant axis.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is the function block that allows speed control using the CSV (Cyclic Synchronous

Velocity) mode of CiA402 profile on the set axis.
(2) In order to stop the specified speed operation, you can make a stop command or execute another motion function

block.
(3) Velocity input specifies the speed to operate. When the sign of the operation speed value is positive (+ or no sign),

it moves in the forward direction and when it is negative (-), it moves in the reverse direction.
(4) CmdPosMode is used to set the update methods of the current position at the time of command. Only the initial

value of 0 is available and the current position of the command is updated using the feedback current position.
(5) The output InVelocity is turned on when the axis reaches the specified speed, and it is turned off when the

specified speed operation is stopped.
(6) When this Motion Function Block is running, the axis status is 'Continuous Motion'.

Chapter 16. Motion Function Blocks

16-115

LS_ReadCamTableMasterPos

LS_ReadCamTableMasterPos Availability

Read CAM table master position XMC

Motion Function Block

LS_ReadCamTableMasterPos

AxisAxisUINT UINT
BOOL Execute

UINT CamTableID

Done BOOL

Busy BOOL

Error BOOL
ErrorID WORD

LREAL MasterStartPos MasterPos LREAL
LREAL MasterEndPos
LREAL SlavePos
LREAL Scale

Input-Output

UINT Axis Set the command axis. (1~32: real axis/virtual axis, 33~36: virtual axis)

Input

BOOL Execute
Give cam table master position reading command to the relevant axis in the rising
Edge.

UINT CamTableID Set the number of cam table to read (1~32)

LREAL MasterStartPos Start position to read position of cam main axis

LREAL MasterEndPos End position to read position of cam main axis

LREAL SlavePos Position of cam serve axis

LREAL Scale Accuracy of main axis position reading

Output

BOOL Done Indicate that the cam table main axis reading is successfully completed.

BOOL Busy Indicated that the execution of motion function is not completed.

LREAL MasterPos Output the position of the slave

BOOL Error Indicate whether an error occurs or not

WORD ErrorID Output the number of error occurred while motion function block is running

(1) This motion function block outputs the position of the main axis corresponding to the position of the serve axis set
in SlavePos, among the values between MasterStartPos and MasterEndPos in the specified cam table.

 Chapter 16. Motion Function Blocks

16-116

Slave

Master
MasterPosMasterStartPos MasterEndPos

SlavePos

Scale

(2) Set the position of serve axis to read in the cam table as SlavePos value. Offset/Gear ratio/Phase correction

operation applied to the command axis is not reflected in the MasterPos output.
(3) When the cam table master position reading operation is completed, the Done output turns on.
(4) The ‘Scale’, which is the accuracy value of the cam table master position reading, can’t input 0. If the ‘Scale’ is 0,

an error (error number: 0x0B) occurs. If the ‘Scale’ value is large, an error may occur between the magnified
MasterPos value and the actual spindle position. Also, if the ‘Scale’ value is small, the execution time of the function
block may become long.

(5) If the position of the main axis corresponding to the position of the serve axis set in SlavePos does not exist among
the values between MasterStartPos and MasterEndPos, Error is On and "0x1124" occurs in ErrorID.

(6) The value of MasterEndPos must be greater than the value of MasterStartPos. If the MasterEndPos value is less
than or equal to MasterStartPos, Error is On and "0x0B" occurs in ErrorID.

Category
Product

Module O/S XG5000

XMC-E32A V1.10 V4.23

Chapter 16. Motion Function Blocks

16-117

LS_OnOffCam

LS_OnOffCam Availability

OnOff CAM Operation XMC

Motion Function Block

LS_OnOffCam

MasterMaster
Slave Slave UINTUINT

UINT UINT
BOOL Execute

BOOL CamOnOff

InSync BOOL

Busy BOOL

UINT MasterValueSource
UINT OnCam_ID

CamState UINT
UINT RunCam_ID
UINT OffCam_ID

Error BOOL
ErrorID WORD

EndOfProfile BOOL

BOOL SkipOnCam
BOOL SkipRunCam

Active BOOL
CommandAborted BOOL

UINT StartMode
LREAL StartModeParam

Input-Output
UINT Master Set the main axis. (1-32: real/virtual axis, 33-36: virtual axis, 1001-1002: Encoder)
UINT Slave Set the serve axis. (1-32: real/virtual axis, 33-36: virtual axis)

Input
BOOL Execute Give the OnOff cam operation command to the relevant axis on the rising Edge.

BOOL CamOnOff
Set the on/off state of the cam operation.
1: Complete OnCam and switch to RunCam.
0: Complete OffCam in RunCam and switch the cam to the stop status

BOOL SkipOnCam
Exclude OnCam from OnOff cam operation and carry out RunCam->OffCam in
order.

BOOL SkipRunCam
Exclude RunCam from OnOff cam operation and carry out OnCam->OffCam in
order.

UINT MasterValueSource
Select the source of the main axis for cam operation.
0: Synchronizes to the command position of the main axis.
1: Synchronizes to the current position of the main axis.

UINT OnCam_ID Specify the cam table to operate in the OnCam state.
UINT RunCam_ID Specify the cam table to operate in the RunCam state.
UINT OffCam_ID Specify the cam table to operate in the OffCam state.

UINT StartMode

Specify the method for starting the cam operation.
0: Start when CamOnOff is set to 1.
1: Start when CamOnOff is set to 1 and the main axis reaches the position set in
StartModeParam.
2: Start when CamOnOff is set to 1 and the main axis moves the distance set in
StartModeParam.
3: Use the profile generated with LS_CrossSealCamGen.

LREAL StartModeParam Set the parameter according to the method for starting the cam operation.

Output
BOOL InSync Indicates that cam operation has entered the RunCam state.

 Chapter 16. Motion Function Blocks

16-118

BOOL Busy Indicates that the execution of the motion function block is not completed.
BOOL Active Indicates that the current motion function block is controlling the relevant axis.

BOOL CommandAborted
Indicates that the current motion function block is interrupted by another
command.

BOOL Error Indicates whether an error occurs or not.
WORD ErrorID Outputs the error ID that occurred while the motion function block is running.
BOOL EndOfProfile Indicates the end of the current cam operation.

UINT CamState

0: Stop state
1: Executing OnCam
2: Executing RunCam
3: Executing OffCam

(1) This motion function block uses three cam tables to carry out the cam operation that is switched to a Stop state-

>OnCam->RunCam or a RunCam->OffCam->Stop state depending on the CamOnOff input.

Execute

CamOnOff

InSync

CamState Stop On Run Off Stop On StopOff

MasterAxis

SlaveAxis

EndOfProfile

(2) The cam operation runs under a state where Execute is the rising Edge. The cam operation does not stop even if

Execute is changed to Off during the operation. To stop the OnOffCam operation, you must give the MC_CamOut
command or run another motion function block.

(3) If StartMode is set to 0, OnCam runs as soon as 1 is input in CamOnOff. If StartMode is set to 1, OnCam does not
run as soon as 1 is input in CamOnOff, but when the position of the main axis passes by the position set in
StartModeParam. If StartMode is set to 2, OnCam runs when 1 is input in CamOnOff and the main axis then
moves in the distance set in StartModeParam.

(4) If you are using a cam generated with the LS_CrossSealCamGen function block, set StartMode to 3. If StartMode
is set to 3 and the length of OnCam_ID is 270, the same operation is conducted as if StartMode is set to 1 and
StartModeParam is 270. If OnCam_ID is 180, the same operation is conducted as if StartMode is set to 1 and
StartModeParam is set to 0.

(5) EndOfProfile outputs On when passing the end of a profile during the operation of each OnCam/OffCam/RunCam
cam profile.

Chapter 16. Motion Function Blocks

16-119

(6) If the CamOnOff signal is Off, the operation to switch to RunCam->OffCam->Stop state is performed. If the
CamOnOff signal is switched from Off to On in the RunCam state, the RunCam state is maintained if OffCam is
not yet executed. In a state where OffCam is executed, the state switches to the OnCam->RunCam state again
after switching to the OffCam->Stop state. (When turning off CamOnOff in RunCam, the operation must be
maintained until an EndOfProfile signal is generated.)

SlaveAxis

CamOnOff

CamState Run Off Stop On Run

EndOfProfile

Off

(7) If the SkipOnCam signal is On, RunCam is executed instantly without OnCam. If CamOnOff turns off after

executing RunCam, perform the operation to switch to RunCam->OffCam->Stop state. In an operation where the
SkipOnCam signal is On, the operation is executed from the middle of RunCam.

(8) If the SkipRunnCam signal is On, OffCam is executed without executing RunCam after executing OnCam. If
CamOnOff is On at this time, the operation repeats in the order of OnCam->OffCam->Stop->OnCam->OffCam-
>Stop.

(9) To stop the OnOffCam operation completely, use the halt (MC_Halt) or immediate stop (MC_Stop) motion function
block.

(10) The CamState value is output as Stop(0) / OnCam(1) / RunCam(2) / OffCam(3) depending on the state of cam
operation.

(11) Once the cam operation set in RunCam_ID is executed, InSync outputs On.
(12) MasterValueSource selects the source of the main axis for synchronization. If set to 0, the serve axis performs cam

operations based on the command position of the main axis calculated in the motion controller, and if set to 1, the
serve axis performs cam operations based on the current position received via communication from the servo drive
of the main axis.

(13) RunCam_ID sets the cam profile to execute during the operation of OnOffCam. Before executing RunCam in a
Stop state, set the cam profile to run as OnCam_ID. OffCam_ID sets the cam profile to execute before RunCam
reaches the Stop state. The setting range for each ID is 1-32, and an input value outside of the range causes a
"0x1115" error in the motion function block.

(14) Any changes made to the MasterValueSource/OnCam_ID/RunCam_ID/OffCam_ID value during operation are
not reflected.

(15) The corresponding axis is in a "SynchronizedMotion” state when this motion function block is running.
(16) For more information, see Chapter 8.6 RotaryKnife Operation under Chapter 8 Motion Control Function.
(17) This motion function block is supported in the following versions:

Category
Product

Module O/S XG5000

XMC-E32A V1.20 V4.25

 Chapter 16. Motion Function Blocks

16-120

LS_RotaryKnifeCamGen

LS_RotaryKnifeCamGen Availability

RotaryKnife cam profile generation XMC

Motion Function Block

LS_RotaryKnifeCamGen
Execute DoneBOOL BOOL

UINT CamType

Busy BOOL
Error BOOL

ErrorID WORD

UINT CamCurve
UINT CamPointNum

LREAL PartLength
LREAL Circumference
LREAL CuttingStart
LREAL CuttingEnd
LREAL CuttingSpdRatio

UINT CamTableID
UINT Axis Axis UINT

Input-Output

UINT Axis
Specify the axis to give the command.
(1-32: real/virtual axis, 33-36: virtual axis)

Input
BOOL Execute Performs cam profile generation in the rising Edge.
UINT CamTableID Set the cam table ID where the profile is stored.

LREAL PartLength Set the length of the object to cut by the RotaryKnife.
LREAL Circumference Set the circumference of the RotaryKnife.
LREAL CuttingStart Set the position for the RotaryKnife to start cutting.
LREAL CutingEnd Set the position for the RotaryKnife to end cutting.

LREAL CuttingSpdRatio
Adjust the synchronization speed by a percentage while the RotaryKnife is cutting. (If
100 is entered, the cutting speed is synchronized 1:1 with the main axis.)

UINT CamType
Set the type of the cam profile to generate.
(0:ALL 1:RampIn 2:Running 3:RampOut)
(4:sALL 5:sRampIn 6:Running 7:sRampOut)

UINT CamCurve Set the cam curve type used in cam profile generation. (0:Linear 1:Cubic)
UINT CamPointNum Set the number of cam points used for the cam profile.

Output
BOOL Done Indicates that the cam profile is generated successfully.
BOOL Busy Indicates that the execution of the motion function block is not completed.
BOOL Error Indicates whether an error occurs or not.
WORD ErrorID Outputs the error ID occurred while the motion function block is running.

(1) This motion function block generates the cam profile which performs the RotaryKnife action.
(2) Use the cam profile generated through LS_RotaryKnifeCamGen in the LS_OnOffCam function block.
(3) On the PartLength input, enter the length of the object to perform cutting using the RotaryKnife.

Chapter 16. Motion Function Blocks

16-121

(4) On the Circumference input, enter the circumference of the RotaryKnife.

Circumference

PartLength PartLength

(5) On the CuttingStart input, enter the starting position for the RotaryKnife to start cutting. On the CuttingStart input,

enter the ending position for the RotaryKnife to end cutting. The speed of the conveyor and the RotaryKnife are
synchronized between CuttingStart and CuttingEnd. (If you want a cutting region of 10 when the Circumference is
360, set CuttingStart to 175 and CuttingEnd to 185.)

(6) On the generated cam profile, the movement amount of the main axis is 360Degree in ratio to PartLength. This
means that you must set the gear ratio of the motor and the machine in the parameter so that 1 rotation of the main
axis equals PartLength.

(7) On the generated cam profile, the movement amount of the serve axis is 360Degree in ratio to the Circumference.
This means that you must set the gear ratio of the motor and the machine in the parameter so that 1 rotation of the
serve axis equals the Circumference.

(8) For CuttingStart, you cannot enter a value that is less than 1/8 of the Circumference or greater than CuttingEnd. A
"0x1172" error occurs if there is an error in the CuttingStart value.

(9) For CuttingEnd, you cannot enter a value that is greater than 7/8 of the Circumference or smaller than CuttingEnd.
A "0x1172" error occurs if there is an error in the CuttingEnd value. To set the cutting region to the minimum, set
CuttingEnd and CuttingStart as equal values.

(10) On the CamType, enter the type of cam profile to generate. Available values are 1:RampIn 2:Running 3:RampOut
5:sRampIn 6:Running 7:sRampOut. If you enter 0, RampIn/Running/RampOut will be generated at once. The
Running type generates a cam profile which performs repeated cutting actions. The RampIn type generates a
profile that includes the stop state to the action of the Running cam profile performing the cutting action. The
RampOut type generates a profile to switch RotaryKnife from a running state to a stop state. A "0x1176" error
occurs if the CamType value is outside of the range.

0

PartLength

0

Circumference
RampIn

RampOut

MasterAxis

SlaveAxis

(11) The sRampIn and sRampOut types generate a shortened cam profile of RampIn and RampOut respectively.

When operating using sRampIn and sRampOut and you want to main axis to reach the 1/2Circumference position
of the serve axis, the main axis must start at the 1/2 position of PartLength.

 Chapter 16. Motion Function Blocks

16-122

0

PartLength

0

Circumference

sRampIn

sRampOut

MasterAxis

SlaveAxis

(12) On the CuttingSpdRatio input, set the speed ratio for the cutting region. If CuttingSpdRatio is set to 100, a cam
profile is generated which operates by synchronizing 1:1 with the speed of the main axis in the cutting region. As
the CuttingSpdRatio value is higher, the faster the synchronization speed on the cutting region. The setting range of
CuttingSpdRatio is 50-200 and a "0x1174" error occurs if there is an error in the CuttingSpdRatio value.

(13) On the CamCurve, enter the curve of the cam profile to generate. If you enter 0:Linear, a cam profile is generated
using linear interpolation. Once you select linear interpolation, you must specify the number of cam profile points to
generate by setting CamPointNum. Take care when setting the number of points as too little can lead to a shock
due to the acceleration or deceleration of cam operation and too many can lead to an overload in the program due
to the amount of computing resources for saving cam profiles. If you enter 1:Cubic, a cam profile is generated that
uses cubic interpolation. A "0x1176" error occurs if the CamCurve value is outside of the range.

(14) The minimum number of cam points required for CamPointNum is 10 and a "0x1177" error occurs if there is an
error in the CamPointNum value.

(15) This motion function block is supported in the following versions:
Category

Product
Module O/S XG5000

XMC-E32A V1.20 V4.25

Chapter 16. Motion Function Blocks

16-123

LS_CrossSealCamGen

LS_CrossSealCamGen Availability

Cross sealer cam profile generation XMC

Motion Function Block

LS_CrossSealCamGen
Execute DoneBOOL BOOL

UINT CamType

Busy BOOL
Error BOOL

ErrorID WORD

UINT CamCurve
UINT CamPointNum

LREAL PartLength
LREAL Circumference
LREAL SealStart
LREAL SealEnd
LREAL SealSpdRatio

UINT CamTableID
UINT Axis Axis UINT

Input-Output

UINT Axis
Specify the axis to give the command.
(1-32: real/virtual axis, 33-36: virtual axis)

Input
BOOL Execute Performs cam profile generation in the rising Edge.
UINT CamTableID Set the cam table ID to store the cam profile.

LREAL PartLength Set length of the object sealed by the cross sealer.
LREAL Circumference Set circumference of the cross sealer.
LREAL SealStart Set the position for the cross sealer to start sealing.
LREAL SealEnd Set the position for the cross sealer to end sealing.

LREAL SealSpdRatio
Adjust the synchronization speed in percentage while the cross sealer is sealing. (If
100 is entered, the sealing speed is synchronized 1:1 with the main axis.)

UINT CamType
Set the type of the cam profile to generate.
(0:ALL 1:RampIn 2:Running 3:RampOut)
(4:sALL 5:sRampIn 6:Running 7:sRampOut)

UINT CamCurve Set the cam curve type used in cam profile generation. (0:Linear 1:Cubic)
UINT CamPointNum Set the number of cam points used for the cam profile.

Output
BOOL Done Indicates that the cam profile is generated successfully.
BOOL Busy Indicates that the execution of the motion function block is not completed.
BOOL Error Indicates whether an error occurs or not.
WORD ErrorID Outputs the error ID occurred while the motion function block is running.

(1) This motion function block generates the cam profile which performs the cross sealer action. Use the cam profile

generated through LS_CrossSealCamGen in the LS_OnOffCam function block.
(2) On the PartLength input, enter the length of the object to perform sealing using the cross sealer.

 Chapter 16. Motion Function Blocks

16-124

(3) On the Circumference input, enter the circumference of cross sealer.
(4) Both the main and serve axes of the generated cam profile is output within the 0-360 range. For the PartLength

and Circumference values, you must enter the distance moved by the main axis when the main and serve axes
move in 360 value.

Circumference

PartLength

(5) On the SealStart input, enter the starting position for the cross sealer to start sealing. On the SealStart input, enter
the starting position for the cross sealer to end sealing. The speed of conveyor and the cross sealer are
synchronized between SealStart and SealEnd. (If you want a sealing region of 10 when the Circumference is 360,
set SealStart to 175 and SealEnd to 185.)

(6) On the generated cam profile, the movement amount of the main axis is 360 in ratio to PartLength. This means
that you must set the gear ratio of the motor and the machine in the parameter so that when the main axis moves
360, the real distance equals PartLength.

(7) On the generated cam profile, the movement amount of the serve axis is 360 in ratio to Circumference. This
means that you must set the gear ratio of the motor and the machine in the parameter so that when the serve axis
moves 360, the real distance equals Circumference.

(8) For SealStart, you cannot enter a value that is less than 1/8 of the Circumference or greater than SealEnd. A
"0x1172" error occurs if there is an error in the SealStart value.

(9) For SealEnd, you cannot enter a value that is greater than 7/8 of the Circumference or smaller than SealEnd. A
"0x1172" error occurs if there is an error in the SealEnd value. To set the sealing region to the minimum, set
SealEnd and SealStart as equal values.

(10) On the CamType, enter the type of cam profile to generate. Available values are 1:RampIn 2:Running 3:RampOut
5:sRampIn 6:Running 7:sRampOut. If you enter 0, RampIn/Running/RampOut will be generated at once. The
Running type generates a cam profile which performs repeated sealing actions. The RampIn type generates a
profile that includes the stop state to the action of the Running cam profile performing the sealing action. The
RampOut type generates a profile to switch the cross sealer from a running state to a stop state. A "0x1176" error
occurs if the CamType value is outside of the range.

0

360

0

180

360

RampIn

RampOut

MasterAxis

SlaveAxis

270

180

Chapter 16. Motion Function Blocks

16-125

(11) The cam profile generated in the LS_CrossSealCamGen function is similar to the cam profile generated in the
LS_RotaryCutCamGen. For the RampIn profile, the operation starts when the main axis is at 270 and not at 0. The
profile also starts to perform sealing when the main axis is at 180 degrees.

(12) The sRampIn and sRampOut types generate a shortened cam profile of RampIn and RampOut respectively.
When operating using sRampIn and sRampOut, the cam operation starts when the main axis is at 0.

0

360

0

180

360

sRampIn

sRampOut

MasterAxis

SlaveAxis

270

180

(13) On the SealSpdRatio input, set the speed ratio for the sealing region. If SealSpdRatio is set to 100, a cam profile is
generated which operates by synchronizing 1:1 with the speed of the main axis in the sealing section. The higher
the SealSpdRatio value, the faster the synchronization speed in the cutting region. The setting range of
SealSpdRatio is 50-200 and a "0x1174" error occurs if there is an error in the SealSpdRatio value.

(14) On the CamCurve, enter the curve of the cam profile to generate. If you enter 0:Linear, a cam profile is generated
using linear interpolation. Once you select linear interpolation, you must specify the number of cam profile points to
generate by setting CamPointNum. Take care when setting the number of points as too little can lead to a shock
due to the acceleration or deceleration of cam operation and too many can lead to an overload in the program due
to the amount of computing resources for saving cam profiles. If you enter 1:Cubic, a cam profile is generated that
uses cubic interpolation. A "0x1176" error occurs if the CamCurve value is outside of the range.

(15) The minimum number of cam points required for CamPointNum is 10 and a "0x1177" error occurs if there is an
error in the CamPointNum value.

(16) This motion function block is supported in the following versions:
Category

Product
Module O/S XG5000

XMC-E32A V1.20 V4.25

 Chapter 16. Motion Function Blocks

16-126

LS_OnOffCamEx

LS_OnOffCamEx Applied model

Extended OnOff CAM Operation XMC

Motion function block type

LS_OnOffCamEx

MasterMaster
Slave Slave UINTUINT

UINT UINT
BOOL Execute

BOOL CamOnOff

InSync BOOL

Busy BOOL

UINT MasterValueSource
UINT OnCam_ID

CamState UINT
UINT RunCam_ID
UINT OffCam_ID

Error BOOL
ErrorID WORD

EndOfProfile BOOL

BOOL SkipOnCam
BOOL SkipRunCam

Active BOOL
CommandAborted BOOL

LREAL MasterOffset
LREAL SlaveOffset
LREAL MasterScaling
LREAL SlaveScaling

UINT StartMode
LREAL StartModeParam

Input-Output
UINT Master Set the main axis. (1-32: real/virtual axis, 33-36: virtual axis, 1001-1002: Encoder)
UINT Slave Set the serve axis. (1-32: real/virtual axis, 33-36: virtual axis)
input
BOOL Execute Give the OnOff cam operation command to the relevant axis on the rising Edge.

BOOL CamOnOff
Set the on/off state of the cam operation.
1: Complete OnCam and switch to RunCam.
0: Complete OffCam in RunCam and switch the cam to the stop status

BOOL SkipOnCam
Exclude OnCam from OnOff cam operation and carry out RunCam->OffCam in
order.

BOOL SkipRunCam
Exclude RunCam from OnOff cam operation and carry out OnCam->OffCam in
order.

UINT MasterValueSource
Select the source of the main axis for cam operation.
0: Synchronizes to the command position of the main axis.
1: Synchronizes to the current position of the main axis.

UINT OnCam_ID Specify the cam table to operate in the OnCam state.
UINT RunCam_ID Specify the cam table to operate in the RunCam state.
UINT OffCam_ID Specify the cam table to operate in the OffCam state.
LREAL MasterOffset Sets the offset value of the main axis.
LREAL SlaveOffset Sets the offset value of the serve axis.
LREAL MasterScaling Specifies the scale of the main axis.
LREAL SlaveScaling Specifies the scale of the serve axis.

UINT StartMode

Specify the method for starting the cam operation.
0: Start when CamOnOff is set to 1.
1: Start when CamOnOff is set to 1 and the main axis reaches the position set in
StartModeParam.
2: Start when CamOnOff is set to 1 and the main axis moves the distance set in
StartModeParam.

Chapter 16. Motion Function Blocks

16-127

3: Use the profile generated with LS_CrossSealCamGen.
LREAL StartModeParam Set the parameter according to the method for starting the cam operation.

Print
BOOL InSync Indicates that cam operation has entered the RunCam state.
BOOL Busy Indicates that the execution of the motion function block is not completed.
BOOL Active Indicates that the current motion function block is controlling the relevant axis.

BOOL CommandAborted
Indicates that the current motion function block is interrupted by another
command.

BOOL Error Indicates whether an error occurs or not.
WORD ErrorID Outputs the error ID that occurred while the motion function block is running.
BOOL EndOfProfile Indicates the end of the current cam operation.

UINT CamState

0: Stop state
1: Executing OnCam
2: Executing RunCam
3: Executing OffCam

(1) This motion function block is a motion function block that performs cam operation to switch to Stop state -> OnCam

-> RunCam or RunCam -> OffCam -> Stop state according to CamOnOff input by using 3 cam tables.

Execute

CamOnOff

InSync

CamState Stop On Run Off Stop On StopOff

MasterAxis

SlaveAxis

EndOfProfile

(2) The cam operation is executed while the Execute is at the rising edge. Cam operation does not stop even if

Execute is changed to Off during operation. To stop the on-off cam operation, the MC_CamOut command must be
issued or another motion function block must be activated.

(3) Set the offset of the cam table to apply to MasterOffset and SlaveOffset. MasterOffset sets offset from main axis
starting point, and SlaveOffset sets offset from starting point of subordinate axis. Please refer to the figure below.

 Chapter 16. Motion Function Blocks

16-128

(4) For MasterScaling and SlaveScaling, set the scale of the cam data to be applied. MasterScaling sets the main axis

data magnification and SlaveScaling sets the sub axis data magnification. Please refer to the figure below.

(5) If StartMode is set to 0, OnCam will be executed immediately when CamOnOff is set to 1. If StartMode is set to 1,

OnCam will be executed when CamOnOff is set to 1 but the OnCam is not executed immediately and the main
axis position passes the position set in StartModeParam. If StartMode is set to 2, OnCam will be executed after
moving CamOnOff by the distance set in StartModeParam at the position where 1 is entered.

(6) If you use the cam created by LS_CrossSealCamGen function block, set StartMode to 3. If StartMode is set to 3, if

OnCam_ID is 270, StartMode = 1 and StartModeParam = 270. If the length of OnCam_ID is 180, it performs the
same operation as set StartMode = 1, StartModeParam = 0.

(7) When MasterOffset / SlaveOffset is set, if 1 is input to CamOnOff, operation starts to the OnOffCam start position

set to StartMode and StartModeParam. OnOffCam operation is performed when the start position of OnOffCam is
reached. If MasterOffset / SlaveOffset is set and StartMode is 0 and OnOffCam operation is performed, a shock
may be generated at the start of operation.

Chapter 16. Motion Function Blocks

16-129

MasterOffset

SlaveOffset

Execute

CamOnOff

InSync

CamState Stop On Run

EndOfProfile

OnOffCam
StartPosition

(8) The EndOfProfile signal is turned on when the cam profile of OnCam / OffCam / RunCam is run.
(9) If the CamOnOff signal is off, RunCam-> OffCam-> Stop is executed. If the CamOnOff signal changes from Off to

On in the RunCam state, the RunCam state is maintained if OffCam is not yet running. When OffCam is running, it
switches to the OnCam-> RunCam state after switching to OffCam-> Stop state. (If CamOnOff is turned off in
RunCam, it must be maintained until the EndOfProfile signal is generated.)

SlaveAxis

CamOnOff

CamState Run Off Stop On Run

EndOfProfile

Off

(10) If the SkipOnCam signal is On, RunCam will run immediately without OnCam. If CamOnOff signal is turned off

after RunCam is executed, RunCam-> OffCam-> Stop is executed. When the SkipOnCam signal is ON, it is
executed from the middle of RunCam.

(11) If the SkipRunnCam signal is On, RunCam is not executed after OnCam execution but OffCam is executed. At this
time, when CamOnOff is ON, operation is repeated in the order of OnCam-> OffCam-> Stop-> OnCam-> OffCam-
> Stop.

(12) To stop the on-off cam operation completely, use the Stop (MC_Halt) or Immediate Stop (MC_Stop) Motion
Function Block.

(13) Depending on the cam operation status, CamState value is output as Stop (0) / OnCam (1) / RunCam (2) /
OffCam (3) value.

(14) InSync output turns on when the cam operation set in RunCam_ID is executed.
(15) MasterValueSource selects the source of the main axis to be synchronized. When set to 0, the command position

of the main axis computed by the motion controller is set to 1, and the subordinate axis performs cam operation
based on the current position received from the main axis servo drive via communication.

(16) Set the cam profile to be run during running on-off cam to RunCam_ID. Set the cam profile to be executed to
OnCam_ID before running RunCam in Stop state. OffCam_ID sets the cam profile to run before RunCam reaches
the Stop state. The setting range of each ID is 1 ~ 32. If the input value is out of the setting range, error "0x1115"
occurs in Motion Function Block.

(17) The value of MasterValueSource / OnCam_ID / RunCam_ID / OffCam_ID is not reflected even if you change it
while driving.

(18) OnCam / RunCam / OffCam You can change the spindle value during operation (V1.5 or later).
(19) When this Motion Function Block is running, the corresponding axis is "Synchronized Motion" status.

 Chapter 16. Motion Function Blocks

16-130

(20) For details, refer to 8.6 RotaryKnife Operation of Chapter 8 Motion Control Function.
(21) The available version information of this Motion Function Block is as follows.

Item

product name
Module O / S XG5000

XMC-E32A V1.50 V4. ??

Chapter 16. Motion Function Blocks

16-131

MC_SetKinTransform

MC_SetKinTransform Availability

Machine information setting XMC

Motion Function Block

MC_SetKinTransform
DoneExecute

AxesGroup AxesGroup
BOOLBOOL

UINT UINT
UINT KinType
UINT KinExtParam

Busy BOOL

CommandAborted BOOL
Error BOOL

ErrorID WORD

Active BOOL
ARRAY[0..11] OF LREAL[] KinParam

LREAL ToolOffsetX
LREAL ToolOffsetY

UINT ToolOffsetZ

Input-Output

UINT AxesGroup Set the axes group to set the machine information.(1 ~ 16 : Group 1 ~ Group 16)

Input

BOOL Execute Give the machine information setting command on the axis in the rising Edge.

UINT KinType Set the machine type.(0:XYZ, 1:Delta3)

UINT KinExtParam Unused

LREAL[] KinParam Set the machine information.

LREAL ToolOffsetX Set the X axis offset of at the end of the machine.

LREAL ToolOffsetY Set the Y axis offset of at the end of the machine.

LREAL ToolOffsetZ Set the Z axis offset of at the end of the machine.

Output

BOOL Done Indicate the machine information setting is successfully completed.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that machine information setting of the current axis is running.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block sets the ACS and MCS conversion based on the machine model defined in advance at

AxesGroup.

 Chapter 16. Motion Function Blocks

16-132

(2) The same setting can be applied to the XG5000 group parameter settings.
(3) The KinType input is used to set the type of the device. You can set the device as shown below.

1) 0: None
2) 1: XYZ
3) 2: Delta3
4) 3: Delta3R
5) 4: LinearDelta3
6) 5: LinearDelta3R

(4) KinParam input is used to set the device information. (It is not set for XYZ type.)
(5) ToolOffsetX / ToolOffsetY / ToolOffsedZ are the functions to set the offset at the end point of the device. In order to

cope with the case where a separate device is connected to the end of the TCP of the robot, the tool offset function is
provided separately from the device information.

TCP

 Offset 적용된 TCP

Y mcs

X mcs
Z mcs

Axis1

Axis3

Axis2

ToolOffsetY

ToolOffsetX

ToolOffsetZ

(6) When using Delta3, the device setting information is as follows. For more information, refer to 8.4.4 Machine

information setting.

Rf

Rm

Parameter Description

KinParam[0] Lf:: Link length of the fixed frame(mm)

KinParam[1] Lm: Link length of the moving frame(mm)

KinParam[2] Rf: Distance from center of the fixed frame to the

link fo the fixed frame (mm)

KinParam[3] Rm: Distance from the center of the moving

frame to the link of the moving frame (mm)

Chapter 16. Motion Function Blocks

16-133

MC_SetCartesianTransform

MC_SetCartesianTransform Availability

PCS setting XMC

Motion Function Block

MC_SetCartesianTransform
DoneExecute

AxesGroup AxesGroup
BOOLBOOL

UINT UINT
LREAL TransX
LREAL TransY

Busy BOOL

CommandAborted BOOL
Error BOOL

ErrorID WORD

Active BOOL
LREAL TransZ
LREAL RotAngleA
LREAL RotAngleB
LREAL RotAngleC

Input-Output

UINT AxesGroup Set the axes group to set the PCS.(1 ~ 16 : Group 1 ~ Group 16)

Input

BOOL Execute Give the PCS setting command on the axes group in the rising Edge.

LREAL TransX Movement from MCS to X Axis(mm)

LREAL TransY Movement from MCS to Y Axis(mm)

LREAL TransZ Movement from MCS to Z Axis(mm)

LREAL RotAngleA X Axis rotation amount (Degree)(reserved)

LREAL RotAngleB Y Axis rotation amount (Degree)(reserved)

LREAL RotAngleC Z Axis rotation amount (Degree)

Output

BOOL Done Indicate the PCS setting is successfully completed.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that machine information setting of the current axis is running.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block sets the perpendicular coordinate conversion between MCS and PCS at AxesGroup.
(2) Axis group setting can be performed in the same way at XG5000 axis group parameter setting.

 Chapter 16. Motion Function Blocks

16-134

(3) TransX/TransY/TransZ represent the distance of movement from the MCS origin point to the PCS origin point.

RotA/RotB/RotCare rotation values for PCS. RotA represents PCS rotation along X-axis. RotB represents PCS
rotation along Y-axis. RotC represents PCS rotation along Z-axisPCS rotation is performed in the following order:
RotC->RotB->RotA.
 Refer to chapter 8.4.3 PCS setting in motion controller’s manual for more details.

X mcs

Z mcs

Y mcs Y pcs

Z pcs

X pcs

TransY

TransX

TransZ

RotC

Ypcs

Zpcs=Z`pcs

Y`pcs

X`pcs

Y`pcs=Y``pcs
RotB

Z`pcs

Z``pcs

X`pcs
X``pcs

Y``pcs

X```pcs=X``pcs

RotA

Y```pcs

Z``pcs
Z```pcs

Chapter 16. Motion Function Blocks

16-135

LS MC_SetWorkspace

LS_SetWorkspace Availability

Work space setting XMC

Motion Function Block

LS_SetWorkspace
DoneExecute

AxesGroup AxesGroup
BOOLBOOL

UINT UINT
UINT WorkspaceType

BOOL WorkspaceError
Busy BOOL

CommandAborted BOOL
Error BOOL

ErrorID WORD

Active BOOL
ARRAY[0..7] OF LREAL[] WorksapceParam

Input-Output

UINT AxesGroup Set the axes group to set the work space.(1 ~ 16 : Group 1 ~ Group 16)

Input

BOOL Execute Give the work space setting command on the axes group in the rising Edge.

UINT WorkspaceType
Set the work space type

(1:Rectangle 2:Cylinder 3:Delta3 4:Sector)

BOOL WorkspaceError
Set whether an error occurs or not when a coordinate system operation

exceeds the work space.

LREAL[] WorkspaceParam Set the parameter of the work space.

Output

BOOL Done Indicate the PCS setting is successfully completed.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that machine information setting of the current axis is running.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block sets the work space based on the coordinate system at the axes group designated by

AxesGroup input.
(2) The same setting can be performed in XG5000 group parameter setting.

 Chapter 16. Motion Function Blocks

16-136

(3) WorkspaceType can be selected from 4 types (1:Rectangle 2:Cylinder 3:Delta3 4:Sector).
(4) WorkspaceError input determines whether an error occurs when a coordinate system operation exceeds the work

space.
(5) WorkspaceParam input sets the parameters depending on the work space type.
(6) Refer to chapter 8.4.5 Workspace setting in motion controller’s manual for more details.

1) Rectangle

Ym
in

Y
m
ax

Xmin
Xmax

X Axis

Y Axis
Parameter Value

WorkspaceParam[0] X max(mm)

WorkspaceParam[1] X min(mm)

WorkspaceParam[2] Y max(mm)

WorkspaceParam[3] Y min(mm)

WorkspaceParam[4] Z max(mm)

WorkspaceParam[5] Z min(mm)

2) Cylinder

Zm
ax

Zm
in

Radius

X Axis

Z Axis

Parameter Value

WorkspaceParam[0] Radius(mm)

WorkspaceParam[1] Z max(mm)

WorkspaceParam[2] Z min(mm)

Chapter 16. Motion Function Blocks

16-137

3) Delta

Z Axis

YAxis

Zu

H
cy

H
co

Rco

Rcy

Parameter Value

WorkspaceParam[0] Zu(mm)

WorkspaceParam[1] Hcy(mm)

WorkspaceParam[2] Hco(mm)

WorkspaceParam[3] Rcy(mm)

WorkspaceParam[4] Rco(mm)

WorkspaceParam[5] -

4) Sector

X Axis

Y Axis

StartAngle
EndAngle

Parameter Value

WorkspaceParam[0] L end (mm)

WorkspaceParam[1] L start(mm)

WorkspaceParam[2] Z max(mm)

WorkspaceParam[3] Z min(mm)

WorkspaceParam[4] EndAngle(degree)

WorkspaceParam[5] StartAngle(degree)

 Chapter 16. Motion Function Blocks

16-138

LS_MoveLinearTimeAbsolute

LS_MoveLinearTimeAbsolute Availability

Time-Linear interpolation operation for absolute position of coordinate

system
XMC

Motion Function Block

LS_MoveLinearTimeAbsolute
DoneExecute

AxesGroup AxesGroup
BOOLBOOL

UINT UINT
UINT CoordSystem

ARRAY[0..6] OF LREAL[] Position
Busy BOOL

Active BOOL
Error BOOL

ErrorID WORD
UINT TrajType

LREAL TrajTime
UINT BufferMode
UINT TransitionMode

LREAL TransitionParameter

Input-Output

UINT AxesGroup
Set the axes group to set the absolute position time linear interpolation.(1 ~

16 : Group 1 ~ Group 16)

Input

BOOL Execute
Give the time linear interpolation command on the axes group in the rising

Edge.

UINT CoordSystem Set the coordinate system type (1:MCS 2:PCS)

LREAL[] Position Enter the target position of the end point of the machine.

UINT TrajType Enter the operation acc/dec type.(0:Trapezoid 1:Sine1 2:Sine2)

LREAL TrajTime Set the time taken to reach the target position.(msec)

UINT BufferMode
Give the sequential operation of the motion function block.

(Refer to the 6.1.4 BufferMode input)

UINT TransitionMode Unused

LREAL TransitionParameter Unused

Output

BOOL Done Indicate the PCS setting is successfully completed.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that machine information setting of the current axis is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

Chapter 16. Motion Function Blocks

16-139

(1) This motion function block issues absolute position/time linear interpolation command based on coordinate system

on the axes group designated by AxesGroup input
(2) When this motion function block is executed, interpolation control is performed in a linear trajectory from the machine

end point of each axes group to the target position.
(3) TrajType input sets the type of velocity, acceleration, deceleration of interpolation trajectory. The type can be selected

from three types: Trapezoid/Sine1/Sine2.
(4) TrajTime sets the time taken to reach the target position.
(5) Please refer to 8. 4. 6 Coordinate System Absolute Position/Time Linear Interpolation Control further details.

 Chapter 16. Motion Function Blocks

16-140

LS_MoveLinearTimeRelative

LS_MoveLinearTimeRelative Availability

Time-Linear interpolation operation for relative position of coordinate

system
XMC

Motion Function Block

LS_MoveLinearTimeAbsolute
DoneExecute

AxesGroup AxesGroup
BOOLBOOL

UINT UINT
UINT CoordSystem

ARRAY[0..6] OF LREAL[] Position
Busy BOOL

Active BOOL
Error BOOL

ErrorID WORD
UINT TrajType

LREAL TrajTime
UINT BufferMode
UINT TransitionMode

LREAL TransitionParameter

Input-Output

UINT AxesGroup
Set the axes group to set the relative position time linear interpolation.(1 ~ 16 :

Group 1 ~ Group 16)

Input

BOOL Execute Give the time linear interpolation command on the axes group in the rising Edge.

UINT CoordSystem Set the coordinate system type (1:MCS 2:PCS)

LREAL[] Position Enter the target position of the end point of the machine.

UINT TrajType Enter the operation acc/dec type.(0:Trapezoid 1:Sine1 2:Sine2)

LREAL TrajTime Set the time taken to reach the target position.(msec)

UINT BufferMode
Give the sequential operation of the motion function block.

(Refer to the 6.1.4 BufferMode input)

UINT TransitionMode Unused

LREAL TransitionParameter Unused

Output

BOOL Done Indicate the PCS setting is successfully completed.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that machine information setting of the current axis is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

Chapter 16. Motion Function Blocks

16-141

(1) This motion function block issues relative position/time linear interpolation command based on coordinate system
on the axes group designated by AxesGroup input

(2) When this motion function block is executed, interpolation control is performed in a linear trajectory from the machine
end point of each axes group to the target position.

(3) TrajType inputs set the type of velocity, acceleration, deceleration of interpolation trajectory. The type can be selected
from three types: Trapezoid/Sine1/Sine2.

(4) TrajTime sets the time taken to reach the target position.
(5) Please refer to 8. 4. 6 Coordinate System Relative Position/Time Linear Interpolation Control for further details.

 Chapter 16. Motion Function Blocks

16-142

MC_MoveCircularAbolute2D

MC_MoveCircularAbsolute2D Availability

Circular interpolation operation for absolute position of coordinate system XMC

Motion Function Block

MC_MoveCircularAbsolute2D
DoneExecute

AxesGroup AxesGroup
BOOLBOOL

UINT UINT
UINT CircMode

LREAL[] AuxPoint
Busy BOOL

CommandAborted BOOL
Error BOOL

ErrorID WORD

LREAL[] EndPoint
Active BOOL

UINT PathChoice
LREAL Velocity
LREAL Acceleration
LREAL Deceleration
LREAL Jerk

UINT BufferMode
UINT TransitionMode

LREAL TransitionParameter

UINT CoordSystem

Input-Output

UINT AxesGroup
Set the axes group to set the absolute position circular interpolation.(1 ~ 16 : Group 1

~ Group 16)

Input

BOOL Execute Give the circular interpolation command on the axes group in the rising Edge.

UINT CircMode
The way to set the circular interpolation [0: Middle point

Aux point, 1: Center point, 2: Radius]

LREAL[] AuxPoint
The auxiliary point position for circular interpolation is designated as an absolute
coordinate.

LREAL[] EndPoint Set the circular end point as an absolute coordinate.

BOOL PathChoice
Set the circular path.

0: clockwise direction, 1: counter-clockwise direction

LREAL Velocity Set the maximum velocity of the path.. [u/s]

LREAL Acceleration Set the maximum acceleration. [u/s2]

LREAL Deceleration Set the minimum decleration. [u/s2]

LREAL Jerk Set the maximum acc/dec jerk. [u/s3]

UINT CoordSystem Set the coordinate system’s type. (1:MCS 2:PCS)

UINT BufferMode
the sequential operation of the motion function block.

(Refer to the chapter 6.1.4 BufferMode input)

Chapter 16. Motion Function Blocks

16-143

UINT TransitionMode Unused

LREAL TransitionParameter Unused

Output

BOOL Done Indicate whether to reach the specified point.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that whether or not motion function block is controlling the group.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block issues absolute position circular interpolation command based on coordinate system on the axis

group designated by AxesGroup input.
(2) When this motion function block starts, each axis performs circular trajectory interpolation control referring to the

auxiliary point input, and the movement direction is determined by Path Choice input. If PathChoice input is set to 0,
circular interpolation is operated in a clockwise direction, and if it is set to 1, circular interpolation is operated in a
counter-clockwise direction.

(3) At AuxPoint and EndPoint input, designate the arrangement of the absolute position of auxiliary points to refer to for
circular interpolation of each axis. The input corresponds in the order of X, Y, Z, unlike MC_MoveCircularAbsolute.

(4) Velocity, Acceleration, Deceleration, Jerk input sets the velocity, acceleration, deceleration, and
acceleration/deceleration rate change of the interpolation path, respectively.

(5) CircMode input sets the circular interpolation method. The circular interpolation methods corresponding to CircMode
values are as follows.
(a) Circular Interpolation Using Midpoint Specification (CircMode = 0)

This method performs circular interpolation by starting operation at the start position, passing the designated
midpoint, and reaching the target position. In the figure below, the start position corresponds to the axes group
coordinate at the start of the command, the midpoint corresponds to the coordinate input for the AuxPoint, and
the target position corresponds to the absolute coordinate input for the EndPoint.

StartPoint

X axis

Y
axis

EndPoint

AuxPoint

(b) Circular Interpolation Using Center Point Specification (CircMode = 1)

 Chapter 16. Motion Function Blocks

16-144

This method performs circular interpolation to the target position by starting operation at the current position,
and following a circular trajectory of which diameter corresponds to the distance to the designated center point.
In the figure below, the current position corresponds to the axes group coordinate at the start of the command,
the center point corresponds to the coordinate input for the AuxPoint, and the target position corresponds to
the absolute coordinate input for the EndPoint.

EndPoint

AuxPoint

CurrentPoint

X axis

Y
axis

(c) Circular Interpolation using Radius Speciation (CircMode = 2)

This method performs circular interpolation to the target position by starting operation at the current position,
and following a circular trajectory with a designated radius from the current position to the target position. In the
figure below, the current position corresponds to the axes group coordinate at the start of the command, the
radius corresponds to the X coordinate input for the AuxPoint, and the target position corresponds to the
absolute coordinate input for the EndPoint.

EndPointRadius
(AuxPoint)

CurrentPoint

X axis

Y
axis

(6) Refer to chapter 8.4.7 circular interpolation control in motion controller’s manual for more details.
(7) The changed parameters are applied by re-executing the function block (Execute input is On) before the command

is completed.
(8) Only, Velocity, Acceleration, Deceleration, Jerk, AuxPoint, Endpoint inpun can be updated.

Chapter 16. Motion Function Blocks

16-145

MC_MoveCircularRelative2D

MC_MoveCircularRelative2D Availability

Circular interpolation operation for relative position of coordinate system XMC

Motion Function Block

MC_MoveCircularRelative2D
DoneExecute

AxesGroup AxesGroup
BOOLBOOL

UINT UINT
UINT CircMode

LREAL[] AuxPoint
Busy BOOL

CommandAborted BOOL
Error BOOL

ErrorID WORD

LREAL[] EndPoint
Active BOOL

UINT PathChoice
LREAL Velocity
LREAL Acceleration
LREAL Deceleration
LREAL Jerk

UINT BufferMode
UINT TransitionMode

LREAL TransitionParameter

UINT CoordSystem

Input-Output

UINT AxesGroup
Set the group to do relative position circular interpolation operation. (1 ~ 16: Group 1 ~

Group 16)

Input

BOOL Execute
Give relative position circular interpolation operation command on the group in the

rising Edge.

UINT CircMode Circular interpolation method setting [0: Midpoint, 1: Central point, 2: Radius]

LREAL[] AuxPoint
Specify the position of auxiliary point depending on the circular interpolation method in

a relative coordinate.

LREAL[] EndPoint
Specify the end point of the circular trajectory as a relative coordinate from the start
point.

BOOL PathChoice
Set the circular path.

0: clockwise direction, 1: counter-clockwise direction

LREAL Velocity Set the maximum velocity of the path. [u/s]

LREAL Acceleration Set the maximum acceleration. [u/s2]

LREAL Deceleration Set the minimum decleration. [u/s2]

LREAL Jerk Set the maximum acc/dec jerk. [u/s3]

UINT CoordSystem Set the coordinate system’s type. (1:MCS 2:PCS)

UINT BufferMode The sequential operation of the motion function block.

 Chapter 16. Motion Function Blocks

16-146

(Refer to the chapter 6.1.4 BufferMode input)

UINT TransitionMode Unused

LREAL TransitionParameter Unused

Output

BOOL Done Indicate whether to reach the specified point.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that whether or not motion function block is controlling the group.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block issues relative position circular interpolation command on the axes group designated by

AxesGroup input.
(2) When this motion function block is executed, each axis performs circular interpolation control referring to the

auxiliary point input, and the direction is determined by Path Choice input. If PathChoiceinput is set to 0, circular
interpolation is operated in a clockwise direction, and if it is set to 1, circular interpolation is operated in a counter-
clockwise direction.

(3) At AuxPoint and EndPoint input, designate the arrangement of the relative position of auxiliary points to refer to for
circular interpolation of each axis. The input arrangement and the axes of the group correspond to the designated
axis IDs [ID1, ID2, ID3, ∙∙∙], in that order. (Since the number of axes comprising a group to issue circular interpolation
command is 3, arrangements of three sizes should be input for the Position input.)

(4) In Velocity, Acceleration, Deceleration, Jerk inputs, the acceleration, deceleration, change rate of acceleration,
velocity of the interpolation path are specified, respectively.

(5) CircMode input sets the circular interpolation method. The circular interpolation methods corresponding to CircMode
values are as follows.
(a) Circular Interpolation Using Midpoint Specification (BORDER, CircMode = 0)

This method is to perform the circular interpolation to the target position through the midpoint position after
starting operation at the current position. In the figure below, the current position corresponds to the axes
group coordinate at the start of the command, the midpoint corresponds to the coordinate input for the
AuxPoint, and the target position corresponds to the relative coordinate input for the EndPoint.

StartPoint

X axis

Y
axis

EndPoint

AuxPoint

Chapter 16. Motion Function Blocks

16-147

(b) Circular Interpolation Using Center Point Specification (CircMode = 1)

This method is to perform the circular interpolation to the target position by starting operation at the start
position, and following a circular trajectory of which diameter corresponds to the distance to the designated
center point. In the figure below, the current position corresponds to the axes group coordinate at the start of
the command, the center point corresponds to the coordinate input for the AuxPoint, and the target position
corresponds to the relative coordinate input for the EndPoint.

EndPoint

AuxPoint

Start Point

X axis

Y
axis

(c) Circular Interpolation using Radius Speciation (CircMode = 2)

This method is to perform the circular interpolation to the target position by starting operation at the current
position, passing the designated center point, and reaching the target position. In the figure below, the current
position corresponds to the axes group coordinate at the start of the command, the diameter corresponds to
the X coordinate input for the AuxPoint, and the target position corresponds to the relative coordinate input for
the EndPoint.

EndPoint

Radius
(AuxPoint)

StartPoint

X axis

Y
axis

(6) Refer to chapter 8.4.7 circular interpolation control in motion controller’s manual for more details.

 Chapter 16. Motion Function Blocks

16-148

MC_TrackConveyorBelt

MC_TrackConveyorBelt Availability

Synchronization setting of conveyor belt XMC

Motion Function Block

MC_TrackConveyorBelt
DoneExecute

AxesGroup AxesGroup
BOOLBOOL

UINT UINT
UINT ConveyorAxis

ARRAY[0..5] OF LREAL[] ConveyorOrigin
Busy BOOL

Active BOOL
Error BOOL

ErrorID WORD
ARRAY[0..5] OF LREAL[] ObjectPosition

UINT CoordSystem
UINT BufferMode

Input-Output

UINT AxesGroup Set the group to do conveyor belt synchronized setting.(1 ~ 16: Group 1 ~ Group 16)

Input

BOOL Execute
Give the conveyor belt synchronized setting command on the axes group in the rising

Edge.

UINT ConveyorAixs Set the conveyor axis.(1 ~ 32 : Axis 1~Axis 32)

LREAL[] ConveyorOrigin Enter the position from the MCS home position to the conveyor origin point.

LREAL[] ObjectPosition Input the conveyor home position to the object to work on.

UINT CoordSystem Set the coordinate system type.(2:PCS)

UINT BufferMode
Set the sequential operation of the motion function block.

(Refer to the 6.1.4 BufferMode input)

Output

BOOL Done Indicate the PCS setting is successfully completed.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that machine information setting of the current axis is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block sets conveyor belt synchronized operation for the axes group designated by AxesGroup

input.
(2) This motion function block is not directly involved in operation. When this function block is executed, the coordinate

system operation using the PCS coordinate system is synchronized to the designated conveyor belt axis.
(3) ConveyorAxis can be set to between 1 and 32. An axis belonging to the axes group set as AxesGroup cannot be

Chapter 16. Motion Function Blocks

16-149

designated.
(4) The operation parameter of the axis designated as ConveyorAxis must be in mm/inch.
(5) Infinite running repeat must be set for the operation parameter of the axis designated as ConveyorAxis
(6) Synchronized conveyor operation is terminated by performing coordinate system operation using the PCS coordinate

system or performing PCS setting with MC_SetCartesianTransform function block.
(7) Refer to chapter 8.4.9 synchronized conveyor operation in motion controller’s manual for more details

 Chapter 16. Motion Function Blocks

16-150

MC_TrackRotaryTable

MC_TrackRotaryTable Availability

Synchronization setting of rotary table XMC

Motion Function Block

MC_TrackRotaryTable
DoneExecute

AxesGroup AxesGroup
BOOLBOOL

UINT UINT
UINT RotaryAxis

ARRAY[0..5] OF LREAL[] RotaryOrigin
Busy BOOL

Active BOOL
Error BOOL

ErrorID WORD
ARRAY[0..5] OF LREAL[] ObjectPosition

UINT CoordSystem
UINT BufferMode

Input-Output

UINT AxesGroup Set the group to do rotary table synchronized setting.(1 ~ 16: Group 1 ~ Group 16)

Input

BOOL Execute
Give the rotary table synchronized setting command on the axes group in the rising

Edge.

UINT RotaryAixs Set the rotary table axis.(1 ~ 32 : Axis 1~Axis 32)

LREAL[] RotaryOrigin Enter the position from the MCS home position to the rotary table origin point.

LREAL[] ObjectPosition Input the rotary table home position to the object to work on.

UINT CoordSystem Set the coordinate system type.(2:PCS)

UINT BufferMode
Set the sequential operation of the motion function block.

(Refer to the 6.1.4 BufferMode input)

Output

BOOL Done Indicate the PCS setting is successfully completed.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that machine information setting of the current axis is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block sets rotary table synchronized operation for the axes group designated by AxesGroup

input.
(2) This motion function block is not directly involved in operation. When this function block is executed, the coordinate

system operation using the PCS coordinate system is synchronized to the designated rotary tablet axis.
(3) RotaryAxis can be set to between axis 1 and axis 32 belonging to the axes group set as AxesGroup cannot be

Chapter 16. Motion Function Blocks

16-151

designated.
(4) The operation parameter of the axis designated as RotaryAxis must be in mm/inch.
(5) Infinite running repeat must be set for the operation parameter of the axis designated as RotaryAxis
(6) Synchronized rotary table operation is terminated by performing coordinate system operation using the PCS

coordinate system or performing PCS setting with MC_SetCartesianTransform function block.
(7) Refer to chapter 8.4.10 synchronized rotary table operation in motion controller’s manual for more details

 Chapter 16. Motion Function Blocks

16-152

MC LS_RobotJog

LS_RobotJog Availability

JOG operation of the coordinate system XMC

Motion Function Block

LS_RobotJog

AxesGroupAxesGroup
Enable Enabled

UINTUINT
BOOL BOOL

BOOL Low_High Busy BOOL
Error BOOL

ErrorID WORD
BOOL Pos_X
BOOL Neg_X
BOOL Pos_Y
BOOL Neg_Y
BOOL Pos_Z
BOOL Neg_Z
BOOL Pos_A
BOOL Neg_A
BOOL Pos_B
BOOL Neg_B
BOOL Pos_C
BOOL Neg_C

Input-Output

UINT AxesGroup
Set the axis group to make the command.

(1 ~ 16 : Group 1 ~ Group 16)

Input

BOOL Enable
While the input is ON, the JOG operation command is sent to the relevant axis

group.

BOOL Low_High
Set the JOG speed in JOG operation.

(0: JOG low-speed operation, 1: JOG high-speed operation)

BOOL Pos_X
Set the linear operation direction at JOG operation.
(X-axis + direction)

BOOL Neg_X
Set the linear operation direction at JOG operation.
(X-axis –direction)

BOOL Pos_Y
Set the linear operation direction at JOG operation.

(Y-axis + direction)

BOOL Neg_Y
Set the linear operation direction at JOG operation.

(Y-axis –direction)

BOOL Pos_Z
Set the linear operation direction at JOG operation.

(Z-axis + direction)

BOOL Neg_Z Set the linear operation direction at JOG operation.

Chapter 16. Motion Function Blocks

16-153

(Z-axis –direction)

BOOL Pos_A
Set the rotary operation direction at JOG operation.

(X-axis counter-clockwise rotation)

BOOL Neg_A
Set the rotary operation direction at JOG operation.

(X-axis clockwise rotation)

BOOL Pos_B
Set the rotary operation direction at JOG operation.

(Y-axis counter-clockwise rotation)

BOOL Neg_B
Set the rotary operation direction at JOG operation.

(Y-axis clockwise rotation)

BOOL Pos_C
Set the rotary operation direction at JOG operation.

(Z-axis counter-clockwise rotation)

BOOL Neg_C
Set the rotary operation direction at JOG operation.

(Z-axis clockwise rotation)

Output

BOOL Enabled It indicates that the axis group is in the process of JOG operation.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block executes the JOG operation of the coordinate system for the corresponding axis group.
(2) The JOG operation is a manual operation function for testing. It is used for checking system operations, wiring

status, and position address for teaching. It can be respectively applied to both high speed and low speed.
(3) If you change the value set in Low / High when the Enable input is On (JOG operation status), the speed will

change without stopping JOG operation.
(4) If both the forward (Pox_) / reverse (Neg_) inputs are set for the same axis, the axis will stop.

 Chapter 16. Motion Function Blocks

16-154

MC LS_SetMovePath

LS_SetMovePath Availability

Set path operation data XMC

Motion Function Block

LS_SetMovePath
DoneExecute

AxesGroup AxesGroup
BOOLBOOL

UINT UINT
ARRAY[] OF BYTE PathData

UINT Step Busy BOOL
Active BOOL
Error BOOL

ErrorID WORD

UINT Mode
UINT CoordSystem

ARRAY[0..6] OF LREAL[] Positon
LREAL Velocity
LREAL Acceleration
LREAL Deceleration
LREAL Jerk

UINT BufferMode
UINT TransitionMode

LREAL TransitionParameter

UINT CommandType

PathData ARRAY[] OF BYTE

Input-Output

UINT AxesGroup Set the group to set the path operation data (1 ~ 16: Group 1 ~ Group 16)

BYTE[] PathData Set the location where the path data is stored.

Input

BOOL Execute
In the rising Edge, it sends the command for setting the path operation data to the

corresponding axis group.

UINT Step
Enter the step number of the path data.

(The step number is affected by the size of the data set in PathData.)

UINT CommandType

Select the type of path operation.

0: None

1: Linear interpolation operation for the absolute position of the coordinate system, 2:

Linear interpolation operation for the relative position of the coordinate system
3: Circular interpolation operation for the absolute position of the coordinate system,
4: Circular interpolation operation for the relative position of the coordinate system

UINT Mode

Select the method and path for circular interpolation operation of the coordinate

system

0/1/2: Clockwise, Midpoint/Central point/Radius
3/4/5: counter-clockwise Midpoint/Central point/Radius

UINT CoordSystem Select the coordinate system type.(1:MCS 2:PCS)

Chapter 16. Motion Function Blocks

16-155

LREAL[] Position

Enter the target position of the end point of the machine.

In the circular interpolation, the Central point/Waypoint should be set in Position [3]

Position [4] Position [5].

In the circular interpolation, the Radius should be in Position[3].

LREAL Velocity Specify the maximum speed of the path. [u/s]

LREAL Acceleration Specify the acceleration. [u/s2]

LREAL Deceleration Specify the deceleration. [u/s2]

LREAL Jerk Specify the change rate of acceleration/deceleration. [u/s3]

UINT Direction

Specify the operation direction.

(0~4: 0-Not specified, 1-Forward direction, 2-Shortest distance, 3-Reverse direction,

4-Current direction)

UINT BufferMode
Specify the sequential operation setting of motion function block.

(Refer to 6.1.4.BufferMode)

UINIT TransitionMode Unused

UREAL TransitionParameter Unused

Output

BOOL Done Indicate that the path data setting is done successfully.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that machine information setting of the current axis is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is the function block that sets the path data for the axis group specified in the AxesGroup

input.
(2) The step value can be set from 0, and the size of one step is 96 Bytes.
(3) The path data is saved in the area of data set in PathData. The variable set in PathData should be set to 96 times

or more of the number of the steps to use.
(4) The CommandType value selects the operation method for the path operation. If the CommandType value is set to 0,

it is considered that the data for the corresponding step is not set during path operation.
(5) The Mode value sets the direction of the circular interpolation when performing the circular interpolation operation.
(6) The value of BufferMode should be set to 1(Buffered).
(7) For more details, refer to Section 8.4.11, "Path Operation of the Coordinate System ".

 Chapter 16. Motion Function Blocks

16-156

MC LS_ResetMovePath

LS_ResetMovePath Availability

Delete path operation data XMC

Motion Function Block

LS_ResetMovePath
DoneExecute

AxesGroup AxesGroup
BOOLBOOL

UINT UINT
ARRAY[] OF BYTE PathData

UINT Step
Busy BOOL

Active BOOL
Error BOOL

ErrorID WORD

Input-Output

UINT AxesGroup Set the group to set the path operation data (1 ~ 16: Group 1 ~ Group 16)

Input

BOOL Execute
In the rising Edge, the command for deleting the path operation data is sent to the

corresponding axis group.

BYTE[] PathData Set the location where the path data is stored.

UINT Step
Enter the step number of the path data.
(The step number is affected by the size of the data set in PathData.)

Output

BOOL Done Indicate the deleting the path data is done successfully.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that machine information setting of the current axis is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is the function block to delete the path data of the axis group specified in the AxesGroup

input.
(2) The step value can be set from 0, and the size of one step is 96 Bytes.
(3) The path data is saved in the area of data set in PathData. The variable set in PathData should be set to 96 times

or more of the number of the steps to use.
(4) For more details, refer to Section 8.4.11, "Path Operation of the Coordinate System ".

Chapter 16. Motion Function Blocks

16-157

LS_GetMovePath

LS_GetMovePath Availability

Read path operation data XMC

Motion Function Block

LS_GetMovePath
DoneExecute

AxesGroup AxesGroup
BOOLBOOL

UINT UINT

Step
Busy BOOL

Active BOOL
Error BOOL

ErrorID WORD

UINTMode
UINTCoordSystem
ARRAY[0..6] OF LREAL[]Positon
LREALVelocity
LREALAcceleration
LREALDeceleration
LREALJerk
UINTBufferMode
UINTTransitionMode
LREALTransitionParameter

UINTCommandType

UINT
ARRAY[] OF BYTE PathData

Input-Output

UINT AxesGroup Set the group to set the path operation data(1 ~ 16: Group 1 ~ Group 16).

Input

BOOL Execute
In the rising Edge, the command for setting the path operation data is sent to the

corresponding axis group.

BYTE[] PathData Set the location where the path data is stored.

UINT Step
Enter the step number of the path data.
(The step number is affected by the size of the data set in PathData.)

Output

BOOL Done Indicate that the path data setting is done successfully.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that machine information setting of the current axis is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

UINT CommandType

Output the type of path operation.

0: None

1: Linear interpolation operation for the absolute position of the coordinate system,

 Chapter 16. Motion Function Blocks

16-158

2: Linear interpolation operation for the relative position of the coordinate system

3: Circular interpolation operation for the absolute position of the coordinate

system, 4: Circular interpolation operation for the relative position of the coordinate

system

UINT Mode Output the operation mode.

UINT CoordSystem Output the coordinate system type.(1:MCS 2:PCS)

LREAL[] Position Output the target position.

LREAL Velocity Output the maximum speed of the path. [u/s]

LREAL Acceleration Output the maximum acceleration [u/s2]

LREAL Deceleration Output the maximum deceleration [u/s2]

LREAL Jerk Output the change rate of acceleration/deceleration. [u/s3]

UINT BufferMode
Output the sequential operation setting of motion function block.

(Refer to 6.1.4.BufferMode)

UINT TransitionMode Unused

LREAL TransitionParameter Unused

(1) This motion function block is the function block to read the path data to the axis group specified in AxesGroup input.
(2) The step value can be set from 0, and the size of one step is 96 Bytes.
(3) The path data is saved in the area of data set in PathData. The variable set in PathData should be set to 96 times

or more of the number of the steps to use.
(4) For more details, refer to Section 8.4.11, "Path Operation of the Coordinate System ".

Chapter 16. Motion Function Blocks

16-159

LS_RunMovePath

LS_RunMovePath Availability

Perform path operation XMC

Motion Function Block

LS_RunMovePath
DoneExecute

AxesGroup AxesGroup
BOOLBOOL

UINT UINT
ARRAY[] OF BYTE PathData

UINT StartStep
Busy BOOL

Active BOOL

Error BOOL
ErrorID WORD

UINT EndStep CommandAborted BOOL

CurStep UINT

Input-Output

UINT AxesGroup
Set the group to execute the path operation data.

(1 ~ 16 : Group 1 ~ Group 16)

Input

BOOL Execute
In the rising Edge, the command for setting the path operation data is sent to the

corresponding axis group.

BYTE[] PathData Set the location where the path data is stored.

UINT StartStep
Enter the start step number of the path data.

(The step number is affected by the size of the data set in PathData.)

UINT EndStep
Enter the end step number of the path data.
(The step number is affected by the size of the data set in PathData.)

Output

BOOL Done Indicate that the path data setting is completed successfully.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that machine information setting of the current axis is running.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

UINT CurStep Output the currently running step number.

(1) This motion function block is the function block to execute the path operation for the axis group specified in the

AxesGroup input.
(2) The step value can be set from 0, and the size of one step is 96 Bytes.
(3) The path data is saved in the area of data set in PathData. The variable set in PathData should be set to 96 times

or more of the number of the steps to use.

 Chapter 16. Motion Function Blocks

16-160

(4) The difference between StartStep and EndStep cannot be set to 100 or more. (Up to 100 step operations can be
executed at one time.)

(5) If the CommandType of path data is 0 during the path operation, the operation is terminated even if EndStep is not
reached.

(6) If the path operation is executed, the current step number in operation is output to the CurStep.
(7) For more details, refer to Section 8.4.11, "Path Operation of the Coordinate System ".

Chapter 16. Motion Function Blocks

16-161

NC_LoadProgram

NC_LoadProgram Availability

Specify NC Program XMC

Motion Function Block

NC_LoadProgram

NcChannelNcChannel
Execute Done

UINTUINT
BOOL BOOL

Busy BOOL
Error BOOL

ErrorID WORD

STRING ProgramName
UINT LoadMode

Input-Output

UINT NC channel Set the NC channel to make the command.

Input

BOOL Execute Set the program to be executed in the rising Edge.

STRING ProgramName Set the name of the program to be executed.

UINT LoadMode Unused (Only‘0’is settable.)

Output

BOOL Done Indicate the state of motion function block completion.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is the function block to specify the NC program to be executed when NC control is

performed.
(2) When the program to be operated by the channel set in NC channel is set to ProgramName and the function block

is executed, the program is designated as the one to be executed.

 Chapter 16. Motion Function Blocks

16-162

NC_BlockControl

NC_BlockControl Availability

Specify block opeartion XMC

Motion Function Block

NC_BlockControl

NcChannelNcChannel
Enable Enabled

UINTUINT
BOOL BOOL

Busy BOOL
Error BOOL

ErrorID WORD

BOOL SingleBlock
BOOL OptionalStop

Input-Output

UINT NC channel Set the NC channel to make the command.

Input

BOOL Enable While the input is enabled, the corresponding channel becomes the status of

Single Block or Optional Stop.

BOOL SingleBlock Set the Single Block operation signal.

BOOL OptionalStop Set the Optional Stop operation signal.

Output

BOOL Done Indicate the state of Block Control completion.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block determines the method to execute the program under the NC control.
(2) If SingleBlock is set to '1', NC_CycleStart executes one block at a time and stops after execution. If SingleBlock

becomes '1' during the automatic operation and NC_BlockControl function block is executed, it will be stopped
after terminating the currently executing block.

(3) If OptionalStop is set to '1', and M01 is commanded during the program, it will wait until NC_CycleStart function
block is executed again.

(4) When both SingleBlock and OptionalStop are set to '1', SingleBlock setting is applied.

Chapter 16. Motion Function Blocks

16-163

NC_Reset

NC_Reset Availability

Reset NC opeartion XMC

Motion Function Block

NC_Reset

NcChannelNcChannel
Execute Done

UINTUINT
BOOL BOOL

Busy BOOL
Error BOOL

ErrorID WORD

Input-Output

UINT NC channel Set the NC channel to make the command.

Input

BOOL Execute In the rising Edge, the NC is reset.

Output

BOOL Done Indicate the state of motion function block completion.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is to make the NC reset state under the NC control.
(2) If NC_Reset is executed during the automatic operation, it stops the automatic operation and changes into the

reset state.
(3) The Reset state is as follows.

Contents Status

Setting Data Offset Value

Parameter

Various Data Program in Memory

Contents in the buffer storage

Display of Sequence Number

One shot G code

Modal G code

F

S, T, M

K (Number of repeats)

 Chapter 16. Motion Function Blocks

16-164

Work coordinate value

Action in operation Movement

Dwell

Issuance of M, S, T code

Tool Length compensation

Cutter compensation

Storing called subprogram number

항목 상태

Output Signal CNC Alarm signal AL Extinguish if there is no

cause for the alarm

Reference position return completion

LED

S, T, B Code

M Code

M, S, T strobe signal

Spindle revolution signal(S analog signal)

CNC ready signal MA

Servo ready signal SA ON

Cycle Start LED

Feed hold LED

Chapter 16. Motion Function Blocks

16-165

NC_Emergency

NC_Emergency Availability

Emergency stop XMC

Motion Function Block

NC_Emergency

NcChannelNcChannel
Enable Status

UINTUINT
BOOL BOOL

Busy BOOL
Error BOOL

ErrorID WORD

Valid BOOL

Input-Output

UINT NC channel Set the NC channel to make the command.

Input

BOOL Enable The emergency stop is executed while the input is '1'.

Output

BOOL Status Indicate the status of the emergency stop.

BOOL Valid Indicate the validity of the function block output.

(Same as the Status output).

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is to execute the emergency stop on the corresponding NC channel under the NC
control.

(2) If the emergency stop is executed, the current operation must be stopped immediately.

 Chapter 16. Motion Function Blocks

16-166

NC_CycleStart

NC_CycleStart Availability

Start automatic opeartion XMC

Motion Function Block

NC_CycleStart

NcChannelNcChannel
Execute Done

UINTUINT
BOOL BOOL

Busy BOOL
Error BOOL

ErrorID WORD

Input-Output

UINT NC channel Set the NC channel to make the command.

Input

BOOL Execute Start the automatic operation in the rising Edge.

Output

BOOL Done Indicate the state of motion function block completion.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is to execute the automatic operation on the corresponding NC channel under the NC
control.

(2) The program set in NC_LoadProgram is automatically operated.
(3) When the automatic operation is stopped due to M00, M01(Optional Stop) and single block, the automatic

operation is restarted.

Chapter 16. Motion Function Blocks

16-167

NC_FeedHold

NC_FeedHold Availability

Feed hold XMC

Motion Function Block

NC_FeedHold

NcChannelNcChannel
Enable Status

UINTUINT
BOOL BOOL

Valid BOOL
Error BOOL

ErrorID WORD

Input-Output

UINT NC channel Set the NC channel to make the command.

Input

BOOL Enable The NC channel will be in Feed Hold status while the input is enabled.

Output

BOOL Status Indicate the Feed Hold status.

BOOL Valid Indicate the validity of the function block output.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block is to make the Feed Hold command to the corresponding NC channel under the NC
control.

(2) If the NC_FeedHold is executed during the automatic operation, the automatic operation is stopped.
(3) If the NC_CycleStart is performed during the execution of the NC_FeedHold command, the NC_CycleStart

command is ignored.

 Chapter 16. Motion Function Blocks

16-168

NC_Home

NC_Home Availability

NC homing XMC

Motion Function Block

NC_Home

NcChannelNcChannel
Execute Done

UINTUINT
BOOL BOOL

Busy BOOL

Error BOOL
ErrorID WORD

NcAxisUINT

ReferenceNumUINT Active BOOL

Input-Output

UINT NC channel Set the NC channel to make the command.

Input

BOOL Execute Start the automatic operation in the rising Edge.

UINT NcAxis Set the channel axis. (1~10: X=1, Y=2, … B=8, C=9, S=10)

UINT ReferenceNum Select the origin type. (1~4: first origin ~ fourth origin)

Output

BOOL Done Indicate the state of motion function block completion.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that the current Function Block is controlling the axis.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

(1) This motion function block performs homing to the corresponding NC channel under the NC control.
(2) Homing to the 1st origin, 2nd origin, 3rd origin, and 4th origin is executed according to the values set in

ReferenceNum. The origin coordinates can be set for each axis parameters of NC parameters in XG5000.

Chapter 16. Motion Function Blocks

16-169

NC_RapidTraverseOverride

NC_RapidTraverseOverride Availability

Rapid traverse override XMC

Motion Function Block

NC_RapidTraverseOverride

NcChannelNcChannel
Enable Enabled

UINTUINT
BOOL BOOL

Busy BOOL
Error BOOL

ErrorID WORD

VelFactorLREAL
AccFactorLREAL
JerkFactorLREAL

Input-Output

UINT NC channel Set the NC channel to make the command.

Input

BOOL Enable Execute the Rapid Traverse Override operation on the channel while the input is

enabled.

LREAL VelFactor Specify the override rate of the speed. (0 ~ 1.0, 1.0=100%)

LREAL AccFactor Specify the override rate of acceleration / deceleration.

LREAL JerkFactor Specify the override ratio of the rate of change for acceleration.

Output

BOOL Enabled Indicate that the override rate was applied successfully.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.
(1) This motion function block makes the Rapid Traverse Override command for the corresponding NC channel under

the NC control.
(2) Specify the speed override ratio for the VelFactor input. If the specified value is 0.0, the axis stops.
(3) The default value of each factor is 1.0, which means 100% of the command speed of the currently executing

function block.
(4) Specify the acceleration / deceleration for the AccFactor input and the override rate of the jerk (rate of change of

acceleration) for the JerkFactor input, respectively.
(5) Negative numbers cannot be entered into each factor.

 Chapter 16. Motion Function Blocks

16-170

NC_CuttingFeedOverride

NC_CuttingFeedOverride Availability

Cutting feed override XMC

Motion Function Block

NC_CuttingFeedOverride

NcChannelNcChannel
Enable Enabled

UINTUINT
BOOL BOOL

Busy BOOL
Error BOOL

ErrorID WORD

VelFactorLREAL
AccFactorLREAL
JerkFactorLREAL

Input-Output

UINT NC channel Set the NC channel to make the command.

Input

BOOL Enable Execute the Cutting Feed Override operation on the channel while the input is

enabled.

LREAL VelFactor Specify the override rate of the speed. (0 ~ 1.0, 1.0=100%)

LREAL AccFactor Specify the override rate of acceleration / deceleration.

LREAL JerkFactor Specify the override ratio of the rate of change for acceleration.

Output

BOOL Enabled Indicate that the override rate was applied successfully.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.
(1) This motion function block makes the Cutting Feed Override command for the corresponding NC channel under

the NC control.
(2) Specify the speed override ratio for the VelFactor input. If the specified value is 0.0, the axis stops.
(3) The default value of each factor is 1.0, which means 100% of the command speed of the currently executing

function block.
(4) Specify the acceleration / deceleration for the AccFactor input and the override rate of the jerk (rate of change of

acceleration) for the JerkFactor input, respectively.
(5) Negative numbers cannot be entered into each factor.

Chapter 16. Motion Function Blocks

16-171

NC_SpindleOverride

NC_SpindleOverride Availability

Spindle override XMC

Motion Function Block

NC_SpindleOverride

NcChannelNcChannel
Enable Enabled

UINTUINT
BOOL BOOL

Busy BOOL
Error BOOL

ErrorID WORD

VelFactorLREAL
AccFactorLREAL
JerkFactorLREAL

Input-Output

UINT NC channel Set the NC channel to make the command.

Input

BOOL Enable Execute the Spindle Override operation on the channel while the input is enabled.

LREAL VelFactor Specify the override rate of the speed. (0 ~ 1.0, 1.0=100%)

LREAL AccFactor Specify the override rate of acceleration / deceleration.

LREAL JerkFactor Specify the override ratio of the rate of change for acceleration.

Output

BOOL Enabled Indicate that the override rate was applied successfully.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.
(1) This motion function block makes the Spindle Override command for the corresponding NC channel under the NC

control.
(2) Specify the speed override ratio for the VelFactor input. If the specified value is 0.0, the axis stops.
(3) The default value of each factor is 1.0, which means 100% of the command speed of the currently executing

function block.
(4) Specify the acceleration / deceleration for the AccFactor input and the override rate of the jerk (rate of change of

acceleration) for the JerkFactor input, respectively.
(5) Negative numbers cannot be entered into each factor.

 Chapter 16. Motion Function Blocks

16-172

NC_McodeComplete

NC_McodeComplete Availability

M code operation completed XMC

Motion Function Block

NC_McodeComplete

NcChannelNcChannel
Execute Done

UINTUINT
BOOL BOOL

Busy BOOL
Error BOOL

ErrorID WORD

Input-Output

UINT NC channel Set the NC channel to make the command.

Input

BOOL Execute Set the completion of the M Code operation on the corresponding the channel.

Output

BOOL Done Indicate the state of motion function block completion.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.
(1) This motion function block makes the completion command of the M Code operation for the corresponding NC

channel under the NC control.
(2) It is the command to check the M code on the corresponding channel and set that the M code operation is

completed.

Chapter 16. Motion Function Blocks

16-173

NC_ScodeComplete

NC_ScodeComplete Availability

S code operation completed XMC

Motion Function Block

NC_ScodeComplete

NcChannelNcChannel
Execute Done

UINTUINT
BOOL BOOL

Busy BOOL
Error BOOL

ErrorID WORD

Input-Output

UINT NC channel Set the NC channel to make the command.

Input

BOOL Execute Set the completion of the S Code operation on the corresponding the channel.

Output

BOOL Done Indicate the state of motion function block completion.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.
(1) This motion function block makes the completion command of the S Code operation for the corresponding NC

channel under the NC control.
(2) It is the command to check the S code on the corresponding channel and set that the S code operation is

completed.

 Chapter 16. Motion Function Blocks

16-174

NC_TcodeComplete

NC_TcodeComplete Availability

T code operation completed XMC

Motion Function Block

Input-Output

UINT NC channel Set the NC channel to make the command.

Input

BOOL Execute Set the completion of the T Code operation on the corresponding the channel.

Output

BOOL Done Indicate the state of motion function block completion.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.
(1) This motion function block makes the completion command of the T Code operation for the corresponding NC

channel under the NC control.
(2) It is the command to check the T code on the corresponding channel and set that the T code operation is

completed.

Chapter 16. Motion Function Blocks

16-175

NC_ReadParameter

NC_ReadParameter Availability

Read NC parameter XMC

Motion Function Block

NC_ReadParameter

NcChannelNcChannel
Enable Valid

UINTUINT
BOOL BOOL

UINT NcAxis Busy BOOL
Error BOOL

ErrorID WORD
Value LREAL

INT ParameterGroup
INT ParameterNumber

Input-Output

UINT NC channel Set the NC channel to make the command.

Input

BOOL Enable The relevant parameters are output while the input is enabled.

UINT NcAxis Set the channel axis. (1~10: X=1, Y=2, … B=8, C=9, S=10)

If it is set to 0, ‘Read Channel Parameters’ will be executed.

INT ParameterGroup Specify the group of the parameters to read.

INT ParameterNumber Specify the group number of the parameters to read.

Output

BOOL Valid Indicate the validity of the function block output.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

LREAL Value Output the values of the parameters.

(1) This motion function block is to read and output the parameters of the channel and channel / axis of the

corresponding channel.
(2) While the Enable input is active, the values of the relevant parameters are output continuously.
(3) ParameterGroup input specifies the parameter group number to read.
(4) ParameterNumber input specifies the number in the group of the parameters to be read.
(5) The group number and the number in the group of each parameter are as follows.

Parameters Group No. Item Description

1. Channel 1. Basic 1 Target machining quantity Set the target machining quantity.

 Chapter 16. Motion Function Blocks

16-176

Parameters Group No. Item Description

parameters

setting (0 ~ 2,147,483,647)

2 Target machining quantity

at M99 repeated

machining

Set the target machining quantity for repeated

machining with M99. If the set value matches the

current machining quantity, the cycle automatically

stops.

(0 ~ 2,147,483,647)

3 Check of decimal point Set whether to check decimal point of the NC

program.

0: Decimal point check

(Mm if there is a decimal point, um if there is no

decimal point)

1: No decimal point check (mm)

4 Keep Product Coordinate

System

Set whether to keep the Product Coordinate System

when resetting.

0: Keep

1: Do not keep

No. Item Description

5 Whether to call the macro

when the T code is

commanded

Set whether to call the macro program (9000.nc ~

9009.nc) when the T code is commanded.

0: Do not call

1: Call

6 DWELL Method Set the DWELL function (G04) to use the data

corresponding to X, P as time or the number of

revolutions of the spindle.

If the data is set to the number of revolutions of the

spindle, it is applied in the status of feed per

revolution (G95).

0: Time

1: Number of revolutions

7 Select a progress block at

reset

Set whether to initialize to the start block of the

program at reset.

※ If you want to set to 0 (keep the current block), the

parameters of "Keep Product Coordinate System"

should be set to 0 (keep).

0: Keep the current block

1: Initialize to the start block of the main program

Chapter 16. Motion Function Blocks

16-177

Parameters Group No. Item Description

2: Initialize to the current block of the main program

8 Whether or not to search

the Statement Number

The number of buffers that can store the program’s

Statement Number (N__) is limited to 1,000 in the

system.

This buffer is needed if the program changes the

sequence using a GOTO statement.

If more than 1,000 blocks have the N__ command,

an alarm will occur.

This parameter is used to input whether or not to

execute such Statement Number search.

Because high- capacity CAM programs do not have

GOTO using the Statement Number and in the

majority of cases, there are more than 1,000

Statement Numbers, you should set this parameter

as 1.

0: Search

1: Do not search

12 Minimum command unit When decimal point check is applied, set the

minimum unit of the commanded value.

(0 ~ 0.999mm)

18 Whether to use G22 No

Travelling Area

0: ‘No Travelling Area’ is valid.

1: ‘No Travelling Area’ is invalid.

19 Set the inner/outer side of

G22 No Travelling Area

0: Inner side

1: Outer side

20 Whether to use the 3rd ‘No

Travelling Area’

0: ‘No Travelling Area’ is valid.

1: ‘No Travelling Area’ is invalid.

No. Item Description

22 Rotary axis of Cylindrical

interpolation

In the cylindrical interpolation mode, the axis maps

the axis of rotation during the circular

interpolation.The axes are X, Y, Z and perform the

circular interpolation by mapping the axis of rotation

to the selected axis.

For example, if the axis of rotation is mapped to the X

axis under the state of the XY plane (G17), the width

becomes the axis of rotation and the height becomes

Y axis. When ZX (G18) is selected as the plane, the

width becomes the Z axis and the height becomes

 Chapter 16. Motion Function Blocks

16-178

Parameters Group No. Item Description

the axis of rotation. However, if you set the plane to

YZ (G19), you cannot perform the circular

interpolation on the commanded axis of rotation.

0: X-axis,

1: Y-axis,

2: Z-axis

23 Linear axis for interpolating

the polar coordinate

0: Unused

1: X, 2: Y, 3: Z, 4: A, 5: B, 6: C, 7: U, 8: V, 9: W

24 Rotary axis for interpolating

the polar coordinate

0: Unused

1: X, 2: Y, 3: Z, 4: A, 5: B, 6: C, 7: U, 8: V, 9: W

33 Monitoring time for in-

position completion

0 ~ 65,535ms

1 Regenerate the circular

center when the circular

alarm occurs

Set whether to recreate the central point of the arc

without generating an arc alarm when the distance

between the start point and the end point exceeds

the tolerance of the difference between the two radii

under the I, J, K circular commands.

0: An alarm occurs.

1: The central point of the arc is regenerated.

2 Speed-limiting function for

the circular milling ON/OFF

0: Unused

1: Used

3 Tolerance of arc radius Set the tolerance of the difference between the two

radii at the start point and the end point under the

circular arc command. If this value is large, the

accuracy of the end part of the arc may be degraded.

When set to 0, it is recognized as 0.001.

(0~ 1 unit, real number)

5 Circular radius with the

speed-limiting function for

the arc machining

(0 ~ 10,000 unit, real number)

6 Upper cutting speed limit of

the circular milling

The maximum speed is limited to the set value for

the circular arc below "Circular radius with the speed-

limiting function for the circular milling " .

(0 ~ 10,000 unit/min, real number)

7 Lower cutting speed limit of

the circular milling

If “Speed-limiting function for the circular milling

ON/OFF” is set to ON, the cutting speed is limited to

Chapter 16. Motion Function Blocks

16-179

Parameters Group No. Item Description

the set value or more.

(0 ~ 10,000 unit/min, real number)

9 Circular milling

acceleration

Set the acceleration at the circular milling.

10 Circular milling

deceleration

Set the deceleration at the circular milling.

11 Circular milling jerk Set the jerk at the circular milling.

No. Item Description

1 Set the upper speed limit

of the cutting feed

If the cutting speed exceeding the set value is

commanded, the cutting speed is limited to the set

value and an alarm occurs.

(0 ~ 100,000 unit/min, real number)

2 Set the lower speed limit of

the cutting feed

It is applied only when the cutting speed is not

commanded in the feed mode per minute.

(0 ~ 100,000 unit/min, real number)

4 Acceleration / deceleration

method of the interpolation

operation

1: Acceleration / deceleration before interpolation

7 Operating method of the

continuous blocks for

acceleration / deceleration

before interpolation

When executing the consecutive blocks, it creates

the connecting trajectory that draws an arc on the

corner of the connecting trajectory with the speed set

with the next block. 1: When it is set to Buffered, the

circular arc is not inserted.

1: Buffered

2: Blending Low

3: Blending Previous

4: Blending Next

5: Blending High

9 Acceleration at the time of

cutting feed (before

interpolation)

Acceleration at the time of cutting feed

10 Deceleration at the time of

cutting feed (before

interpolation)

Deceleration at the time of cutting feed

11 Jerk at the time of cutting

feed (before interpolation)

Jerk at the time of cutting feed

 Chapter 16. Motion Function Blocks

16-180

Parameters Group No. Item Description

129 How to apply the

compensation value of the

tool diameter

Set the method of applying the compensation

amount of the tool diameter when compensating the

tool diameter.

0: Apply the diameter value

1: Apply the radius value

130 Compensation type of the

tool diameter

Tool diameter Sets the type of traversing method at

the beginning and end of the calibration.

0: Type 1(Bypass traverse)

1: Type 2(Direct traverse)

131 Whether to check the tool

interference during tool

diameter compensation

Set whether to check the tool interference during tool

diameter compensation

0: Do not check

1: Check

1 Compensation amount of

the tool diameter 1

Compensation amount 1 to be used to compensate

the tool diameter

…… …… ……

128 Compensation amount of

the tool diameter 128

Compensation amount 128 to be used to

compensate the tool diameter

1 Compensation amount 1

of the tool length

Compensation amount 1 to be used to compensate

the tool length

…… …… ……

128 Compensation amount

128 of the tool length

Compensation amount 128 to be used to

compensate the tool length

1 Whether to use the

Product Coordinate

System Shift amount.

Set whether to use the Product Coordinate System

Shift amount.

0: Unused

1: Used

No. Item Description

11 Product Coordinate

System Shift amount 1

Set the Product Coordinate System Shift amount for

the X axis.

…… …… Set the Product Coordinate System Shift amount for

Chapter 16. Motion Function Blocks

16-181

Parameters Group No. Item Description

the 7 axes; Y, Z, A, B, C, U, V.

19 Product Coordinate

System Shift amount 9

Set the Product Coordinate System Shift amount for

the W axis.

41 G54 Product Coordinate

System value 1

Set the Product Coordinate System value for the X

axis.

…… …… Set the G54 Product Coordinate System values for

the 7 axes; Y, Z, A, B, C, U, V.

49 G54 Product Coordinate

System value 9

Set the G54 Product Coordinate System value for

the W axis.

51 G55 Product Coordinate

System value 1

Set the G55Product Coordinate System value for the

X axis.

…… …… Set the G55 Product Coordinate System values for

the 7 axes; Y, Z, A, B, C, U, V.

59 G55 Product Coordinate

System value 9

Set the G55 Product Coordinate System values for

the W axis.

61 G56 Product Coordinate

System value 1

Sets the G56 Product Coordinate System values for

the X axis.

…… …… Set the G56 Product Coordinate System values for

the 7 axes; Y, Z, A, B, C, U, V

69 G56 Product Coordinate

System value 9

Set the G56 Product Coordinate System values for

the W axis.

71 G57 Product Coordinate

System value 1

Set the G57 Product Coordinate System values for

the X axis.

…… …… Sets the G57 Product Coordinate System values for

the 7 axes; Y, Z, A, B, C, U, V

79 G57 Product Coordinate

System value 9

Set the G57 Product Coordinate System values for

the W axis.

81 G58 Product Coordinate

System value 1

Set the G58 Product Coordinate System values for

the X axis.

…… …… Set the G58 Product Coordinate System values for

the 7 axes; Y, Z, A, B, C, U, V

89 G58 Product Coordinate

System value 9

Set the G58 Product Coordinate System values for

the W axis.

91 G59 Product Coordinate

System value 1

Set the G59 Product Coordinate System values for

the X axis.

…… …… Set the G59 Product Coordinate System values for

 Chapter 16. Motion Function Blocks

16-182

Parameters Group No. Item Description

the 7 axes; Y, Z, A, B, C, U, V

99 G59 Product Coordinate

System value 9

Set the G59 Product Coordinate System values for

the W axis.

1 Whether to apply the single

block stop function to the

macro program

Set whether to apply the single block stop function to

the macro program(9000.nc ~ 9999.nc)

0: Stop

1: Do not stop

2 Display the macro program

block

Set whether to display the progress status of the

block on the screen when operating the macro

program (9000.nc ~ 9999.nc).

0: Do not display

1: Display

10 Macro program call G

code (9010.nc)

Set the G code number to call the macro program

(9010.nc ~ 9019.nc) that can be called by the G

code.

※ The setting values 0, 1, 2, 3 are ignored.

(0~255.9, real number)

…… ……

19 Macro program call G

code (9019.nc)

Set the G code number to call the macro program

(9010.nc ~ 9019.nc) that can be called by the G

code.

※ The setting values 0, 1, 2, 3 are ignored.

(0~255.9, real number)

No. Item Description

20 Macro program call M

code (9020.nc)

Assign the M code number to call the macro

program (9020.nc ~ (9020.nc ~ 9029.nc) with the M

code.

※ 0, 30 of the input values are ignored.

(0~255, integer)

…… ……

29 Macro program call M

code (9029.nc)

Assign the M code number to call the macro

program (9020.nc ~ (9020.nc ~ 9029.nc) with the M

code.

※ 0, 30 of the input values are ignored.

Chapter 16. Motion Function Blocks

16-183

Parameters Group No. Item Description

 (0~255, integer)

9 T code call Macro program

number

Enter the number of the macro program (9000.nc ~

9009.nc) to be called when the T code is

commanded.

(9000 ~ 9009, integer)

1 Modal traverse of default

settings

If there is no G00 or G01, select the G code to be

applied as the default modal.

0: Rapid Traverse(G00)

1: cutting feed(G01)

2 Modal plane of default

settings

If there is no G code instruction for G17, G18, G19

group, select the G code to be applied as the default

modal.

0: XY plane(G17)

1: XZ plane(G18)

2: YZ plane(G19)

3 Modal absolute / increment

with default settings

If there is no G code instruction for G90, G91 group,

select the G code to be applied as the default modal.

0: Absolute command (G90)

1: Incremental command (G91)

5 Check the modal

prohibited area with default

settings

If there is no G code instruction for G22, G23 group,

select the G code to be applied as the default modal.

0: Stroke On(G22)

1: Stroke Off(G23)

1 Relative coordinate’s offset

value #1

Set the relative coordinate’s offset value for the X

axis.

2 Relative coordinate’s offset

value #2

Set the relative coordinate’s offset value for the Y

axis.

3 Relative coordinate’s offset

value #3

Set the relative coordinate’s offset value for the Z

axis.

4 Relative coordinate’s offset

value #4

Set the relative coordinate’s offset value for the A

axis.

5 Relative coordinate’s offset

value #5

Set the relative coordinate’s offset value for the B

axis.

6 Relative coordinate’s offset

value #6

Set the relative coordinate’s offset value for the C

axis.

7 Relative coordinate’s offset Set the relative coordinate’s offset value for the U

 Chapter 16. Motion Function Blocks

16-184

Parameters Group No. Item Description

value #7 axis.

8 Relative coordinate’s offset

value #8

Set the relative coordinate’s offset value for the V

axis.

9 Relative coordinate’s offset

value #9

Set the relative coordinate’s offset value for the W

axis.

2 Setting the direction for the

modular axis

Set the traverse command for the axis set as the

modular axis.

0: One-way

1: Two-way

No. Item Description

1 Coordinates of the 2nd

origin

Set the coordinates of the 2nd origin.

2 Coordinates of the 3rd

origin

Set the coordinates of the 3rd origin.

3 Coordinates of the 4th

origin

Set the coordinates of the 4th origin.

2 Rapid traverse

acceleration

The set value is used as the acceleration of the G00

block.

3 Rapid traverse

deceleration

The set value is used as the deceleration of the G00

block.

4 Rapid traverse jerk The set value is used as the jerk of the G00 block.

5 Rapid traverse speed The set value is used as the traverse speed of the

G00 block.

(0~100000 unit/min, real number)

1 Minimum value of the G22

Traverse-Prohibited Area

range for the X, Y, and Z

axis.

Set the minimum value of the G22 Traverse-

Prohibited Area range for the X, Y, and Z axis.

(-100,000~100,000 unit, real number)

2 Maximum value of the G22

Traverse-Prohibited Area

range for the X, Y, and Z

axis.

Set the maximum value of the G22 Traverse-

Prohibited Area range for the X, Y, and Z axis.

 (-100,000~100,000 unit, real number)

3 Minimum value of the 3rd

Traverse-Prohibited Area

range for the X, Y, and Z

axis.

Set the minimum value of the 3rd Traverse-Prohibited

Area range for the X, Y, and Z axis.

(-100,000~100,000 unit, real number)

Chapter 16. Motion Function Blocks

16-185

Parameters Group No. Item Description

4 Maximum value of the 3rd

Traverse-Prohibited Area

range for the X, Y, and Z

axis.

Set the maximum value of the 3rd Traverse-

Prohibited Area range for the X, Y, and Z axis.

 (-100,000~100,000 unit, real number)

2 Overrun feed rare of single

direction positioning

Set the overrun feed rate of the 9 axes; X, Y, Z, A, B,

C, U, V, W when using the single direction

positioning function (G60).

After stopping at the position separated by the set

value for the G60 command block’s axis, it moves to

the command position to eliminate the effect of

backlash.

(-100 ~ 100 unit, real number)

 Chapter 16. Motion Function Blocks

16-186

NC_WriteParameter

NC_WriteParameter Availability

Read NC parameter XMC

Motion Function Block

NC_WriteParameter

NcChannelNcChannel
Execute Done

UINTUINT
BOOL BOOL

INT ParameterGroup
Busy BOOL
Error BOOL

ErrorID WORD
LREAL Value

UINT ExecutionMode

NcAxisUINT

INT ParameterNumber

Input-Output

UINT NC channel Set the NC channel to make the command.

Input

BOOL Execute The NC parameter is written in the rising Edge of the input.

UINT NcAxis Set the channel axis. (1~10: X=1, Y=2, … B=8, C=9, S=10)

When set to 0, ‘Write Channel Parameters’ is executed.

INT ParameterGroup Specify the group of the parameter to be written.

INT ParameterNumber Specify the number in the group of the parameter to be written.

LREAL Value Specify the value of the parameter to be written.

UNIT ExecutionMode Reserved

Output

BOOL Valid Indicate the validity of the function block output.

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.

LREAL Value Output the values of the parameters.

(1) This motion function block is the function block that writes the values specified in the parameters of the NC channel and

channels/axes.

(2) The parameters will be written in the rising edge of the Execute input.

(3) ParameterGroup input specifies the group number of the parameter to be written.

(4) ParameterNumber input specifies the number in the group of the parameter to be written. If the value that cannot be set

is applied, "Error 16 # 000B" occurs.

(5) In the Value input, specify the value to be written in the parameter.

Chapter 16. Motion Function Blocks

16-187

(6) For the group number and the number in the group of each parameter, refer to NC_ReadParameter.

 Chapter 16. Motion Function Blocks

16-188

NC_RetraceMove

NC_RetraceMove Applied model

Reverse operation XMC

Motion function block type

NC_RetraceMove

NcChannelNcChannel
Enable Enabled

UINTUINT
BOOL BOOL

Busy BOOL
Error BOOL

ErrorID WORD

Input-Output

UINT NcChannel Specify the NC channel to set the command (1 to 4: 1 to 4 channels)

input

BOOL Enable Reverse operation command is executed on the channel while the input is

active.

Print

BOOL Enabled Indicates that the function block has been successfully applied.

BOOL Busy Indicates that function block execution is not completed.

BOOL Error Indicates whether an error occurred.

WORD ErrorID The error number generated during function block output is output.

(1) This motion function block is a function block that gives reverse run command in corresponding NC channel.
(2) Enable Runs the operation in the opposite direction while the input is active.
(3) Reverse operation is possible only for G00, G01, G02, G03 blocks.
(4) The available version information of this Motion Function Block is as follows.

Item

product name
Module O / S XG5000

XMC-E32A V1.30 V4.28

Chapter 16. Motion Function Blocks

16-189

NC_BlockSkip

NC_BlockSkip Applied model

Block skip XMC

Motion function block type

NC_BlockSkip

NcChannelNcChannel
Enable Enabled

UINTUINT
BOOL BOOL

Busy BOOL
Error BOOL

ErrorID WORD

Skip1BOOL
Skip2BOOL
Skip3BOOL
Skip4BOOL

Input-Output

UINT NcChannel Specify the NC channel to set the command (1 to 4: 1 to 4 channels)

input

BOOL Enable Executes the specified block skip operation of the channel while the input is

active.

BOOL Skip1 Specify the block skip 1. (G31 / G31.1 / G37 / G37.1)

BOOL Skip2 Specifies block skip 2. (G31.2 / G37.2)

BOOL Skip3 Specify block skip 3. (G31.3 / G37.3)

BOOL Skip4 Specify block skip 4. (G31.4 / G37.4)

Print

BOOL Enabled Indicates that the function block has been successfully applied.

BOOL Busy Indicates that function block execution is not completed.

BOOL Error Indicates whether an error occurred.

WORD ErrorID The error number generated during function block output is output.

(1) This motion function block is a function block that issues a block skip or automatic tool length measurement
command in the corresponding NC channel.

(2) Skip Skip (G31 / G31.1), Skip2 (G31.2), Skip3 (G31.3) and Skip4 (G31.4) blocks while the Enable input is active.
(3) If there is a G31 / G31.1 (Skip1), G31.2 (Skip2), G31.3 (Skip3) or G31.4 (Skip4) instruction at the time of enabling

the Enable input, If there is an M / S / T code, the next block is executed after the corresponding code is executed.
(4) If there is a G37 / G37.1 (Skip1), G37.2 (Skip2), G37.3 (Skip3) or G37.4 (Skip4) instruction at the time of Enable

input activation, the automatic tool length measurement operation .
(5) When the function block is executed, the current machine position is stored in each NC channel / axis flag and the

skipped position can be known.
(6) The available version information of this Motion Function Block is as follows.

 Chapter 16. Motion Function Blocks

16-190

Item

product name
Module O / S XG5000

XMC-E32A V1.30 V4.28

Chapter 16. Motion Function Blocks

16-191

NC_DryRun

NC_DryRun Applied model

Dry run XMC

Motion function block type

NC_DryRun

NcChannelNcChannel
Enable Enabled

UINTUINT
BOOL BOOL

Busy BOOL
Error BOOL

ErrorID WORD

AuxFuncLockBOOL

Input-Output

UINT NcChannel Specify the NC channel to set the command (1 to 4: 1 to 4 channels)

input

BOOL Enable The corresponding parameter is output while the input is active.

BOOL AuxFuncLock When the input is activated, the auxiliary function code (M / S / T) is ignored.

Print

BOOL Enabled Indicates that the function block is being executed.

BOOL Busy Indicates that function block execution is not completed.

BOOL Error Indicates whether an error occurred.

WORD ErrorID The error number generated during function block output is output.

(1) This motion function block is a function block that performs the dry run operation in the corresponding NC channel.
(2) Perform the dry run operation while the Enable input is active.
(3) During dry run operation, according to the parameter set in G00, 0: Dry run speed operation, 1: Rapid traverse

speed operation.
(4) When the AuxFuncLock input is activated, the strobe signal of the auxiliary function code (M / S / T) except for M00,

M01, M02, M30, M98 and M99 is not output.
(5) The available version information of this Motion Function Block is as follows.

Item

product name
Module O / S XG5000

XMC-E32A V1.30 V4.28

 Chapter 16. Motion Function Blocks

16-192

NC_ToolMode

NC_ToolMode Applied model

Tool Escape / Return Operation XMC

Motion function block type

NC_ToolMode

NcChannelNcChannel
Execute Done

UINTUINT
BOOL BOOL

Busy BOOL
Error BOOL

ErrorID WORD

ToolModeUINT

Input-Output

UINT NcChannel Specify the NC channel to set the command (1 to 4: 1 to 4 channels)

input

BOOL Execute A tool escape or return operation command is issued to the rising edge of the

input.

UINT ToolMode Reduce the tool run (1) or return (2) run command.

Print

BOOL Done Indicates that the function block has been successfully applied.

BOOL Busy Indicates that function block execution is not completed.

BOOL Error Indicates whether an error occurred.

WORD ErrorID The error number generated during function block output is output.

(1) This motion function block is a function block that issues a tool escape or tool return operation command to the

corresponding NC channel.
(2) Execute A tool exit or a return run command is issued to the ToolMode at the rising edge of the input.
(3) Jog operation is required for escape operation during tool escape operation, and the position is memorized at the

point when the operation axis is changed during escape operation by jog operation. Up to 10 positions are
memorized.

(4) Jog operation must be created so that two axes or more are not selected at the same time during tool escape
operation.

(5) When returning to the tool, it returns to the point memorized.
(6) The available version information of this Motion Function Block is as follows.

Item

product name
Module O / S XG5000

XMC-E32A V1.30 V4.28

Chapter 16. Motion Function Blocks

16-193

NC_ReadToolMode

NC_ReadToolMode Applied model

Read tool escape / return mode XMC

Motion function block type

NC_ReadToolMode

NcChannelNcChannel
Enable Enabled

UINTUINT
BOOL BOOL

Error BOOL
ErrorID WORD

ToolMode UINT
Busy BOOL

Input-Output

UINT NcChannel Specify the NC channel to set the command (1 to 4: 1 to 4 channels)

input

BOOL Enable Check the state of tool escape / return while input is active.

Print

BOOL Enabled Indicates that the function block is being executed.

BOOL Busy Indicates that function block execution is not completed.

BOOL Error Indicates whether an error occurred.

WORD ErrorID The error number generated during function block output is output.

UINT ToolMode Indicates whether the tool is being moved (1) or returning (2).

(1) This motion function block is a function block that issues a command to check the state of tool escape / return in

the corresponding NC channel.
(2) While the Enable input is active, the ToolMode output shows the status of tool escape (1) or tool return (2).
(3) During the tool escape, make sure that no more than two axes are running.
(4) The available version information of this Motion Function Block is as follows.

Item

product name
Module O / S XG5000

XMC-E32A V1.30 V4.28

 Chapter 16. Motion Function Blocks

16-194

NC_MirrorImage

NC_MirrorImage Applied model

Mirror image XMC

Motion function block type

NC_MirrorImage

NcChannelNcChannel
Enable Enabled

UINTUINT
BOOL BOOL

Busy BOOL

Error BOOL
ErrorID WORD

NcAxisXBOOL

Active BOOLNcAxisYBOOL
NcAxisZBOOL

Input-Output

UINT NcChannel Specify the NC channel to set the command (1 to 4: 1 to 4 channels)

input

BOOL Enable Executes an inverse operation on the specified axis of the channel while the

input is active.

BOOL NcAxisX Give reverse operation signal to X axis.

BOOL NcAxisY It gives reverse operation signal to Y axis.

BOOL NcAxisZ It gives reverse operation signal to Z axis.

Print

BOOL Enabled Indicates that the function block is being executed.

BOOL Busy Indicates that function block execution is not completed.

BOOL Error Indicates whether an error occurred.

WORD ErrorID The error number generated during function block output is output.

(1) This motion function block is a function block that performs the operation to reverse the feed position on the NC

axis (X, Y, Z) of the corresponding NC channel.
(2) While the Enable input is active, the traversing position of the set axis is reversed and the operation is performed.
(3) Inverted operation is performed only for G00, G01, G02, G03, G31.x, G37.x among the specified G code.
(4) The available version information of this Motion Function Block is as follows.

Item

product name
Module O / S XG5000

XMC-E32A V1.30 V4.28

Chapter 16. Motion Function Blocks

16-195

NC_SpindleControl

NC_SpindleControl Applied model

Spindle operation control XMC

Motion function block type

NC_SpindleControl

NcChannelNcChannel
Enable Enabled

UINTUINT
BOOL BOOL

Busy BOOL
Error BOOL

ErrorID WORD

BOOL TgtVelReached
BOOL ZeroVelReached
BOOL SS_Control

Input-Output

UINT NcChannel Specify the NC channel to set the command (1 to 4: 1 to 4 channels)

input

BOOL Enable While the input is active, it is assigned to the main spindle of that channel

Perform the action.

BOOL TgtVelReached The target spindle speed is transmitted to the NC function module.

0: Target Speed Not Reached

1: Target speed is reached

BOOL ZeroVelReached Transfers to the NC function module whether or not the main spindle zero

speed has been reached.

0: Zero speed does not reach

1: Zero speed reached

BOOL SS_Control Start (end) SS control mode of the main spindle. (Future support)

 0: Start SS control

 1: SS control end

Print

BOOL Enabled Indicates that the function block is being executed.

BOOL Busy Indicates that function block execution is not completed.

BOOL Error Indicates whether an error occurred.

WORD ErrorID The error number generated during function block output is output.

(1) This motion function block performs the action specified by the user for the main spindle of the NC channel

specified by the function block that operates when the spindle control is executed in NC.
(2) If the spindle axis of the channel is not activated automatically in the NC function module, '0x36D0' error occurs.
(3) If the axis specified as the main spindle of the channel is not ready for operation, a '0x36D1' error will occur.
(4) For details on automatic operation in the NC function module, refer to '9.5.1 How to operate the spindle axis'.

 Chapter 16. Motion Function Blocks

16-196

(5) The available version information of this Motion Function Block is as follows.

Item

product name
Module O / S XG5000

XMC-E32A V1.30 V4.28

Chapter 16. Motion Function Blocks

16-197

NC_BlockOptionalSkip

NC_BlockOptionalSkip Applied model

NC Optional block skip XMC

Motion function block type

NC_BlockOptionalSkip

NcChannelNcChannel
Execute Done

UINTUINT
BOOL BOOL

Busy BOOL
Error BOOL

ErrorID WORD

SkipNumUINT

Input-Output

UINT NcChannel Specify the NC channel to set the command (1 to 4: 1 to 4 channels)

input

BOOL Execute Give SkipNum a skip signal at the rising edge of the input.

UINT SkipNum Signal designation for block skip (1 to 9)

(1: / or / 1, 2: / 2, 3: / 3, 4/4, 5/5, 6/6, 7/7,

If set to 0, skip function is canceled.

Print

BOOL Enabled Indicates that the function block is being executed.

BOOL Busy Indicates that function block execution is not completed.

BOOL Error Indicates whether an error occurred.

WORD ErrorID The error number generated during function block output is output.

(1) This motion function block is a function block that outputs an optional skip instruction to the NC channel.
(2) Skip the block with "/ n" in front of the NC program block according to the SkipNum input value at the rising edge of

the Execute input. For example, if SkipNum is 3, skip blocks with / 3 before the block. At this time, the current block
is skipped and the next block is executed. If there is an M / S / T code, the next block is executed after the
corresponding code is executed.

(3) When SkipNum is set to 0 and the command is executed, the skip function is disabled.
(4) If a value other than 0 to 9 is set to SkipNum, a "0x36A0" error will occur.
(5) The available version information of this Motion Function Block is as follows.

Item

product name
Module O / S XG5000

XMC-E32A V1.30 V4.28

 Chapter 16. Motion Function Blocks

16-198

NC_ManualToolComp

NC_ManualToolComp Applied model

Manual measurement of the NC correction amount XMC

Motion function block type

NC_ManualToolComp

NcChannelNcChannel
Execute Done

UINTUINT
BOOL BOOL

Busy BOOL
Error BOOL

ErrorID WORD

NcAxisUINT
JOG_MPGBOOL

DirectionBOOL

Low_HighBOOL

PinputBOOL

NInputBOOL

CompValue LREAL

Input-Output

UINT NcChannel Specify the NC channel to set the command (1 to 4: 1 to 4 channels)

UINT NcAxis Sets the channel axis. (1 to 3: X = 1, Y = 2, Z = 3)

input

BOOL Execute Decrease the command for inputting the correction amount input mode to the

rising edge of the input.

BOOL JOG_MPG Operation method selection (0: JOG, 1: MPG)

BOOL Direction Jog operation direction (0: Forward, 1: Reverse direction)

BOOL Low_High Jog operation speed (0: Low speed, 1: high speed)

BOOL PInput Forward measurement input signal

BOOL NInput- Reverse measurement input signal

Print

BOOL Done Indicates that the function block has been successfully applied.

BOOL Busy Indicates that function block execution is not completed.

BOOL Error Indicates whether an error occurred.

WORD ErrorID The error number generated during function block output is output.

LREAL CompValue The calculated correction amount is output.

(1) This motion function block is a function block that outputs a manual tool compensation amount measurement

command to the axis set in NcAxis of the corresponding NC channel
(2) Execute manual tool compensation amount measurement run command at the rising edge of the input.
(3) When the command is executed, the operation selected in JOG_MPG starts. When the signal selected in PInput

Chapter 16. Motion Function Blocks

16-199

or NInput becomes 1, operation is stopped and the compensation value is calculated by using the value of the
corresponding position.

(4) The correction amount is calculated by the formula below.

Amount of correction = PInput / NInput On axis position - Measurement reference position
(5) The measurement reference position is selected from the channel parameter "measuring reference distance X of

automatic tool offset" - "measuring reference distance Z of automatic tool offset" according to the axis. For example,
if NcAxis is selected as Y and NInput is On, the value set for "Measuring distance Y of automatic tool offset"
becomes the measurement reference position.

(6) The calculated compensation amount is output to CompValue and Done becomes 1.
(7) If both PInput and NInput are on at the same time, they are recognized as PInput.
(8) If an axis other than X to Z is set in NcAxis and a function block is executed, "0x36B0" error will occur.
(9) The available version information of this Motion Function Block is as follows.

Item

product name
Module O / S XG5000

XMC-E32A V1.30 V4.28

NC_ChgSpindleGear

 Chapter 16. Motion Function Blocks

16-200

NC_ChgSpindleGear Applied model

NC spindle gear conversion XMC

Motion function block type

NC_ChgSpindleGear

NcChannelNcChannel
Execute Done

UINTUINT
BOOL BOOL

Busy BOOL
Error BOOL

ErrorID WORD

ChangeVelocityLREAL
GearChangeCmplBOOL
MaxVelocityLREAL
GearOfMotorUINT
GearOfMachineUINT
BacklashLREAL
P_GainLREAL
FF_GainLREAL

Analog10VrpmLREAL

GearChangeEnable BOOL

Input-Output

UINT NcChannel Specify the NC channel to set the command (1 to 4: 1 to 4 channels)

input

BOOL Execute Give the spindle gear conversion command to the rising edge of the input.

LREAL ChangeVelocity Set the speed value to change

BOOL GearChangeCmpl A signal that the gear change is complete. On, the set values of each operand

are set to the corresponding parameters.

LREAL MaxVelocity Maximum speed parameter setting value

UINT GearOfMotor Motor side gear ratio parameter

UINT GearOfMachine Machine side gear ratio parameter

LREAL Backlash Backlash value

LREAL P_Gain P gain setting value

LREAL FF_Gain Feed Forward gain setting value

LREAL Analog 10Vrpm Unapplied

Print

BOOL Done Indicates that the function block has been successfully applied.

BOOL Busy Indicates that function block execution is not completed.

BOOL Error Indicates whether an error occurred.

WORD ErrorID The error number generated during function block output is output.

BOOL GearChangeEnable Indicates whether gear change is possible.

(1) This motion function block is a function block that issues a spindle gear change command to the corresponding NC

Chapter 16. Motion Function Blocks

16-201

channel.
(2) Execute Changes the spindle gear change command at the rising edge of the input.
(3) When the command is executed, change the current spindle speed to the value set in ChangeVelocity, which

enables gear conversion.
(4) If the spindle axis speed is changed to less than the value set in ChangeVelocity and the GearChangeEnable

output is On, the user operates the sequence program to perform gear conversion and inputs On to
GearChangeCmpl when gear conversion is completed.

(5) If GearChangeCmpl is On, set the values of the following items set in the function block as parameters and
operate the spindle with the changed settings.

Speed limit (MaxVelocity)

Motor side gear ratio (GearOfMotor)

Machine gear ratio (GearOfMachine)

Backlash correction amount (Backlash)

Position mode P gain (P_Gain)

Position Mode Feed Forward Gain (FF_Gain)
(6) If you set the value of ChageVelocity to a value larger than the speed limit of the axis and execute the function

block, "0x36C0" error occurs.
(7) When the value of MaxVelocity is set to a value less than 0 and the function block is executed, "0x36C1" error

occurs.
(8) If you set the value of GearOfMotor to a value less than 0 or a value larger than 65535 and execute the function

block, "0x36C2" error occurs.
(9) If you set the value of GearOfMachine to a value less than 0 or a value larger than 65535 and execute the function

block, "0x36C3" error occurs.
(10) If you set the backlash value to a value less than 0 and execute the function block, "0x36C4" error occurs.
(11) If you set the value of P_Gain to a value less than 0 or a value larger than 500 and execute the function block,

"0x36C5" error occurs.
(12) If you set the value of FF_Gain to a value less than 0 or a value larger than 100 and execute the function block,

"0x36C6" error occurs.
(13) The available version information of this Motion Function Block is as follows.

Item

product name
Module O / S XG5000

XMC-E32A V1.30 V4.28

FILE_OPEN

 Chapter 16. Motion Function Blocks

16-202

FILE_OPEN Applied model

Open file in SD memory card XMC

Motion function block type

DWORD

FILE_OPEN

DONEREQ

FileID

BOOLBOOL

STRING FileName

ModeUINT

STAT USINT

BOOLBUSY

input

BOOL REQ Set the program to run on the rising edge.

STRING FileName Set the file name to be specified.

UINT Mode File open mode.

Print

BOOL Done Indicates completion of function block completion.

BOOL Busy Indicates that function block execution is not completed.

DWORD FileID The ID of the file that was opened.

USINT STAT The error number generated during function block output is output.

(1) This motion function block is a function block that issues a spindle gear change command to the corresponding NC

channel.
(2) When executing Open, motion is classified according to Mode setting value.

Mode action

0 Open the file for read and write. If a file does not exist, it is created as a new one. If a file with the

same name exists, the contents of the file are deleted and a new one is created from scratch.

1 Open the file for reading and writing. If the file does not exist, it is newly created. If there is a file with

the same name, the write operation is continuously performed from the end of the file.

2 Open the file as read-only.
(3) It reads from the beginning of the file at FILE_READ after FILE_OPEN. However, when FILE_READ is executed

after FILE_WRITE, it is read from the end of file. Therefore, it should be moved to FILE_SEEK and read must be
performed.

(4) File Open The ID of the opened file is displayed as 'FileID' when it is executed normally.
(5) 'FileID' is used when executing FILE_WRITE, FILE_READ, FILE_SEEK, and FILE_CLOSE commands.
(6) STAT = 0 when executing FILE_OPEN normally, and STAT information when error occurs in other cases.
(7) The maximum number of FILE_OPEN is 50. (Including data log file)

Chapter 16. Motion Function Blocks

16-203

STAT Error state

0 normal

1 SD memory card access failed

2 File is already open

3 Mode 2 and there is no file in the Inst folder,

If the SD card is not installed

4 More than 50 files open

5 If Mode is a value other than 0 to 2
(8) FILE_OPEN One file must be FILE_CLOSE command after use to close the file.
(9) Even if the PLC mode is changed, the file is still open, so FILE_OPEN must be performed after closing the file.
 ■ Example Program

(1) LD

- FileName = 'ABC', Mode = 0

EN

FileName

ENO

BUSY

FILE_OPEN

FileName

%MX0

BUSY

Mode FileIDMode FileID

STAT STAT

(a) If execution condition (% MX0) is On, FILE_OPEN function will be executed.
(b) If the SD card is properly inserted, open the file that can be read and written with the file name FileName = 'ABC'.

If ABC file with the same name exists, it deletes the file contents and opens from scratch.
(c) Depending on the status of the SD card or the status of the file, an error is displayed in STAT. In normal

operation, 0 is output.

(2) ST
INST_FILE_OPEN (REQ: =% MX0, FileName: = 'ABC', Mode: = 0, DONE => DONE, BUSY => BUSY, FileID =>
FileID, stat => stat);

FILE_CLOSE

 Chapter 16. Motion Function Blocks

16-204

FILE_CLOSE Applied model

Close files in SD memory card XMC

Motion function block type

FILE_CLOSE

DONEREQ BOOLBOOL

DWORD FileID

STAT USINT

BOOLBUSY

input

BOOL REQ Set the program to run on the rising edge.

DWORD FileID The ID of the file that was opened.

Print

BOOL Done Indicates completion of function block completion.

BOOL Busy Indicates that function block execution is not completed.

USINT STAT The error number generated during function block output is output.

(1) Close the file specified as 'FileID' on the SD memory card
(2) STAT = 0 when executing FILE_CLOSE normally, and STAT information when error occurs

STAT Error state

0 normal

1 SD memory card access failed

2 If you do not have any open files

Chapter 16. Motion Function Blocks

16-205

■ Example Program

(1) LD

EN

FileID

ENO

BUSY

FILE_CLOSE

FileID

%MX0

BUSY

STAT STAT

(a) FILE_OPEN After this is successfully done, you must enter the output value FileID.
(b) When execution condition (% MX0) is On, FILE_CLOSE function is executed.
(c) Depending on the status of the SD card or the status of the file, an error is displayed in STAT. In normal

operation, 0 is output.

(2) ST

INST_FILE_CLOSE (REQ: =% MX0, FileID: = FileID, DONE => DONE, BUSY => BUSY, stat => stat);

FILE_WRITE

 Chapter 16. Motion Function Blocks

16-206

FILE_WRITE Applied model

Write files to SD memory card XMC

Motion function block type

BOOL

FILE_WRITE

DONEREQ

BUSY

BOOLBOOL

DWORD FileID

WriteAddrANY_PTR WrittenSize UINT

STAT USINTSizeUINT

input

BOOL REQ Set the program to run on the rising edge.

DWORD FileID The ID of the file that was opened.

ANY_PTR WriteAddr The address of the data to be written.

UINT Size The number of data to write.

Print

BOOL Done Indicates completion of function block completion.

BOOL Busy Indicates that function block execution is not completed.

UINT WrittenSize The number of data that has been written.

USINT STAT The error number generated during function block output is output.

(1) Write to a file opened with 'FileID' on the SD memory card.
(2) The write data is the contents of WriteAddr, and write is performed for the number of size.
(3) When WriteAddr is declared as an Array type, data in the array is written by the size to be written.
(4) Write data size is Array type, WriteAddr data type x Size. (In case of Byte, data type is 1)
(5) When WriteAddr is declared as a data type, only the corresponding data value is written regardless of the value of

Size.
(6) BUSY = 1 when writing, BUSY = 0 when completed and DONE = 1.
(7) Normally, the data size that is actually written when FILE_WRITE is executed is output to WrittenSize.
(8) STAT information is STAT = 0 at normal completion, and STAT information at the time of error occurrence is as

follows.
(9) FILE_CLOSE Data is not saved normally when you remove the SD card previously.

STAT Error state

Chapter 16. Motion Function Blocks

16-207

0 normal

1 SD memory card access failed

2 FileID is not open

3 The file is opened as read-only.

4 If the size is 0 (for the Array type) and the size is 65535 or larger

■ Example Program

(1) LD

EN

FileID

ENO

BUSY

FILE_WRITE

FileID

%MX0

BUSY

STAT STAT

WriteAddr WrittenSizeWriteAddr WrittenSize

SizeSize

(a) FILE_OPEN After this is successfully done, you must enter the output value FileID.
(b) When execution condition (% MX0) is On, FILE_WRITE function is executed.
(c) WriteAddr can be set to array type or data type.
(d) When set as an array type, data can be written to the SD card within the array range. For example, if 10 DWORD

arrays are set, 10 array values can be written from [0] to [9] using Size.
(e) When set to data type, only the corresponding data value is written to the SD card, and the size value is

meaningless.
(f) In normal operation, WrittenSize shows the actual size of the data written.
(g) Depending on the status of the SD card or the status of the file, an error is displayed in STAT. In normal

operation, 0 is output.

※ WriteAddr array type example
 - WriteAddr: ARRAY [0..9] OF DWORD

EN

FileID

ENO

BUSY

FILE_WRITE

FileID

%MX0

BUSY

STAT STAT

WriteAddr WrittenSizeWriteAddr WrittenSize

Size10

(a) When execution condition (% MX0) is On, FILE_WRITE function is executed.
(b) Since WriteAddr is an array type and Size is 10, WriteAddr [0] to [9] data write operations.
(c) After writing 10 DWORD data, WrittenSize is displayed as 40 and STAT is output as 0 after writing.
※ WriteAddr data type example
 - WriteAddr:% MD100

 Chapter 16. Motion Function Blocks

16-208

EN

FileID

ENO

BUSY

FILE_WRITE

FileID

%MX0

BUSY

STAT STAT

WriteAddr WrittenSize%MD100 WrittenSize

Size10

(a) When execution condition (% MX0) is On, FILE_WRITE function is executed.
(b) Since the size is 10 or WriteAddr is the data type, only the set% MD100 value will be written.
(c) Since it is DWORD data, WrittenSize is 4 and STAT is 0 after writing is completed.

(2) ST

INST_FILE_WRITE (REQ: =% MX0, FileID: = FileID, WriteAddr: = WriteAddr, Size: = Size, DONE => DONE,
BUSY => BUSY, WrittenSize => WrittenSize, stat => stat)

FILE_READ

Chapter 16. Motion Function Blocks

16-209

FILE_READ Applied model

Reading files in SD memory card XMC

Motion function block type

BOOL

FILE_READ

DONEREQ

BUSY

BOOLBOOL

DWORD FileID

ReadAddrANY_NUM ReadSize UINT

STAT USINTSizeUINT

input

BOOL REQ Set the program to run on the rising edge.

DWORD FileID The ID of the file that was opened.

ANY_NUM ReadAddr The starting address of the data to read.

UINT Size The number of data to read.

Print

BOOL Done Indicates completion of function block completion.

BOOL Busy Indicates that function block execution is not completed.

UINT ReadSize The number of data read completed.

USINT STAT The error number generated during function block output is output.

(1) Read from file opened with 'FileID' on SD memory card.
(2) Read after FILE_OPEN is read from the beginning of the file. When FILE_WRITE is executed, file pointer is read

from the last position.
(3) If you need to move the location, you must move it with FILE_SEEK command.
(4) The read data is stored in ReadAddr and is read as many as the size.
(5) If ReadAddr is declared as an Array type, it will be read as array by the size to be read.
(6) Read data size is Array type, ReadAddr data type x Size. (In case of Byte, data type is 1)
(7) When ReadAddr is declared as a data type, it is read only by the data type size regardless of the value of Size.
(8) BUSY = 1 when reading, BUSY = 0 when completed and DONE = 1.
(9) When FILE_READ is executed normally, the data size that is actually read is output to ReadSize.
(10) STAT information is STAT = 0 at normal completion, and STAT information at the time of error occurrence is as

follows.

 Chapter 16. Motion Function Blocks

16-210

STAT Error state

0 normal

1 SD memory card access failed

2 FileID is not open

3 If Size is 0 (Array type) or if there is no actual data to read

(11) Even if the file pointer is at the end of the file, STAT = 3 is output because there is no data to read.

■ Example Program

(1) LD

EN

FileID

ENO

BUSY

FILE_READ

FileID

%MX0

BUSY

STAT STAT

ReadAddr ReadSizeReadAddr ReadSize

SizeSize

(a) FILE_OPEN After this is successfully done, you must enter the output value FileID.
(b) When the execution condition (% MX0) is On, FILE_READ function is executed.
(c) ReadAddr can be set to array type or data type.
(d) When set as an array type, the data of the file stored on the SD card can be read as an array with the set size.

For example, if you set 10 DWORD array, the data stored in SD card will be read as array of size. When set as
data type, only the corresponding data value is read. Size value is meaningless.

(e) During normal operation ReadSize shows the actual read data size.
(f) Depending on the status of the SD card or the status of the file, an error is displayed in STAT. In normal

operation, 0 is output.

(2) ST

INST_FILE_READ (REQ: =% MX0, FileID: = FileID, ReadAddr: = ReadAddr, Size: = Size, DONE => DONE,

BUSY => BUSY, ReadSize => ReadSize, stat => stat);

FILE_SEEK

Chapter 16. Motion Function Blocks

16-211

FILE_SEEK Applied model

Move SD memory card inside XMC

Motion function block type

BOOL

FILE_SEEK

DONEREQ

BUSY

BOOLBOOL

DWORD FileID

OffsetDINT

OriginBYTE

RESULT DWORD

STAT USINT

input

BOOL REQ Set the program to run on the rising edge.

DWORD FileID The ID of the file that was opened.

DINT Offset The offset position from Origin.

BYTE Origin This is the base location.

Print

BOOL Done Indicates completion of function block completion.

BOOL Busy Indicates that function block execution is not completed.

DWORD Result Outputs the changed position.

USINT STAT The error number generated during function block output is output.

(1) Specify the location to access the file opened with 'FileID' on the SD memory card.
(2) The reference position is set in 3 modes as below.

Origin

value

Origin Location

0 In front of file

1 Current file pointer location

2 End of file

(3) Moves the file pointer position by adding the reference position setting value and the input offset value.
(4) When operating, BUSY = 1. When completed, BUSY = 0 and DONE = 1.
(5) The STAT information is STAT = 0, and the STAT information when an error occurs is as follows.

STAT Error state

 Chapter 16. Motion Function Blocks

16-212

0 normal

1 SD memory card access failed

2 FileID is not open

3 When the position value to move is smaller than the

origin value

■ Example Program

(1) LD

EN

FileID

ENO

BUSY

FILE_SEEK

FileID

%MX0

BUSY

STAT STAT

Offset RESULTOffset RESULT

OriginOrigin

(a) FILE_OPEN After this is successfully done, you must enter the output value FileID.
(b) When the execution condition (% MX0) is On, FILE_SEEK function is executed.
(c) Move the file pointer by adding the Offset value to the Origin setting. For example, if you want to move to the

beginning of the file, set Offset = 0, Origin = 0, and set Offset = 20, Origin = 0 to move to the 20 bytes from the
beginning.

(d) During normal operation RESULT displays the current file pointer.
(e) Depending on the status of the SD card or the status of the file, an error is displayed in STAT. In normal

operation, 0 is output.

※ Moving to 50 byte position when file size is 100 bytes Example

EN

FileID

ENO

BUSY

FILE_SEEK

FileID

%MX0

BUSY

STAT STAT

Offset RESULT50 RESULT

Origin0

(a) When the execution condition (% MX0) is On, FILE_SEEK function is executed.
(b) Since Origin = 0, it moves to the starting point of the file and moves to offset position by Offset = 50.
(c) The 50 bytes moved to RESULT are output.
(d) It is also possible to go backwards from the end of the file as shown below.

Chapter 16. Motion Function Blocks

16-213

EN

FileID

ENO

BUSY

FILE_SEEK

FileID

%MX0

BUSY

STAT STAT

Offset RESULT-50 RESULT

Origin2

(2) ST

INST_FILE_SEEK (REQ: =% MX0, FileID: = FileID, Offset: = Offset, Origin: = Origin, DONE => DONE, BUSY =>

BUSY, RESULT => RESULT, stat => stat);

 Chapter 16. Motion Function Blocks

16-214

PID

PID Applied model

PID operator XMC

Motion function block type

input

BOOL REQ Execute the function block.

LREAL SV Target value (SV)

LREAL PV Current value (PV)

LREAL K_p P constant (K_p)

LREAL T_i I constant (T_i) [sec]

LREAL T_d D constant (T_d) [sec]

LREAL MV_dmax MV variation limit

LREAL MV_max MV max limit

LREAL MV_min MV minimum limit

LREAL PV_dmax PV variation limit

BOOL AWD Anti Wind-up prohibited (0: operation, 1: prohibited)

BOOL D_on_ERR Differential calculation source selection (0: PV, 1: ERR)

Print

BOOL DONE Indicates that the PID operation is normally performed.

WORD STAT PID status alarm

LREAL MV Output value (MV)

Chapter 16. Motion Function Blocks

16-215

(1) This function block is a function block that receives the target value (SV) and the current value (PV) of the control

target and performs PID operation to output to MV.

(2) Target value SV input is the current status of the control target. This state is represented by a number, and it should

be converted to the PV reference according to the gain of the system. For example, in a system where the

temperature is 50 ° C and the PV is sensed at 5000, set SV to 5000 when controlling the temperature to 50 ° C.

(3) Current value The PV input is an indicator of the current state of the control object. In general, the input from the

sensor is stored in the CPU device via an input device such as an A / D conversion module, You must give.

(4) The K_p input sets the proportional constant of the current PID operator. Since K_p is multiplied by P, I, D

(proportional, integral, derivative) of the PID control effect, the proportional and differential effects become large and

the integral effect decreases when K_p becomes large. Especially when K_p input is 0, PID control is not performed.

(5) The T_i input sets the integral time constant of the loop. Since T_i divides the I (integral) term of the PID control

effect, the integral effect becomes smaller when T_i becomes larger. If T_i input is 0, I control is not performed.

(6) The T_d input sets the derivative time constant of the loop. T_d is multiplied by the D (derivative) term of the PID

control effect, so the larger the T_d, the greater the differential effect. If T_d input is 0, D control is not performed.

(7) The PV_dmax input limits the PV variation of the loop. In actual control, PV does not always reflect the exact state of

the system. Unwanted signals such as sensor malfunction, noise, disturbance, etc. may be mixed and reflected in

the PV. In such a case, the PV may suddenly change suddenly, causing a large change in the PID output. In order

to prevent this phenomenon, if the PV changes more than the value set in _PID [B] _ [L] dPV_max, it prevents it

from changing more than the setting value.

On the other hand, if PV_dmax is set too small, the change of the system may be delayed and the convergence

time may take a long time. Especially when the corresponding setting value is set to 0, the function of limiting the PV

change amount does not work.

(8) The MV_dmax input limits the amount of MV change in the loop. If the output of the control system suddenly

changes, the system may become unstable, or the actuator may be loaded with a large load, resulting in a

malfunction or unstable operation. This is an item that limits the amount of change in the controller output to prevent

this. This function does not work if the corresponding setting value is set to 0.

(9) The MV_max input limits the maximum MV of the loop. Limits the maximum value of the controller output delivered

to the output device to prevent overload and prevent system error in advance. It also prevents overflow and other

undesired values from being delivered.

(10) The MV_min input limits the minimum MV of the loop. Limits the minimum value of the controller output delivered to

the output device to prevent system faults in advance. It also prevents overflow and other undesired values from

being delivered.

(11) The D_on_ERR input sets the D operation source of the corresponding PID loop to ERR. D operation is calculated

by ERR or PV. When D operation is performed using ERR, the D response changes suddenly at the moment when

the SV is changed by the user, so that excessive input may be applied to the actuator momentarily. In order to

prevent this, PV method is used in D operation and default value is set to D operation using PV. If ERR is used

without this algorithm, this bit turns on. If the corresponding bit is Off, PID performs D operation with PV value, and

 Chapter 16. Motion Function Blocks

16-216

when it is On status, it performs D operation with ERR value.

(12) AWD input is the input to enable or disable Anti Wind-up function. If the input is turned on, the Anti Wind-up function

is disabled.

(13) Each bit of the STAT output indicates the status of the corresponding PID controller or an abnormal condition. Each

bit is ON only when the corresponding operation occurs, and returns to OFF when the corresponding operation is

released.

The lower 8 bits of STAT indicate various abnormal conditions of the loop, and the upper 8 bits indicate the control

status of the corresponding loop. The assignment of each bit is as follows.

beat condition

0 T_s setting is too small to indicate that the operation is skipping

One Signals that the K_p value is zero.

2 Notice that PV variation is limited.

3 Notice that MV variation is limited.

4 Signals that the MV maximum value is limited.

5 Signals that the MV minimum is limited.

8 PID operation is being performed.

15 Indicates that Anti Wind-up is in operation during PID operation

Chapter 16. Motion Function Blocks

16-217

LINAC

LINAC Applied model

Acceleration / deceleration command XMC

Motion function block type

LINAC

STATQS
REQ DONE

WORDBOOL
BOOL BOOL

LREAL VEL

LREAL ACC

QACC BOOL

LREAL DCC

QCCLREAL

QDCC BOOL

QZSP BOOL

QEQU BOOL

CV LREAL

DVDT LREAL

input

BOOL REQ Run the LINAC command.

BOOL QS Enter emergency stop

LREAL VEL Specify the target speed [u / s]

LREAL ACC Specify acceleration [u / s2]

LREAL DCC Specify the deceleration [u / s2]

LREAL QCC Specify rapid stop deceleration. [u / s2]

Print

BOOL DONE Indicates completion of function block execution.

WORD STAT Indicates the error value of the function block.

BOOL QACC Indicates whether acceleration is in progress.

BOOL QDCC Indicates whether deceleration is in progress.

BOOL QZSP Indicates whether the speed of the current speed is zero or not.

BOOL QEQU Indicates whether the target speed matches the current speed.

LREAL CV Indicates the current speed.

LREAL DVDT Indicates current acceleration / deceleration speed.

 Chapter 16. Motion Function Blocks

16-218

(1) This function block is a function block that outputs the reached speed value by applying constant acceleration /

deceleration to the input speed.

Time

VEL

Acceleration Deceleration

CV

Time

(2) REQ input At this rising edge, the ACC / DCC / QCC value is used in the function block and the ACC / DCC / QCC

value is not changed during operation.

(3) QACC / QDCC / QZSP / QEQU output during operation is as follows.

(4) If the QS value is 1, deceleration (deceleration) is set at the deceleration set by QCC. When the QS value is

changed to 0, deceleration is released and acceleration / deceleration is performed to the input target speed.

(5) When the stop status is 0, it accelerates in the direction of the input target speed and decelerates in the opposite

direction. In case of stop operation at zero speed, the direction of acceleration / deceleration is changed.

Chapter 16. Motion Function Blocks

16-219

When a negative number is input to ACC, QCC, DCC, 11 (0x000B) error is output to STAT.

 Chapter 16. Motion Function Blocks

16-220

SLINAC

SLINAC Applied model

S-Curve Accelerometer Command XMC

Motion function block type

SLINAC

STATQS
REQ DONE

WORDBOOL
BOOL BOOL

LREAL VEL

LREAL ACC

QACC BOOL

LREAL DCC

QCCLREAL

QDCC BOOL

QZSP BOOL

QEQU BOOL

CV LREAL

DVDT LREAL
JERKLREAL

input

BOOL REQ Run the SLINAC command.

BOOL QS Enter emergency stop

LREAL VEL Specify the target speed [u / s]

LREAL ACC Specify acceleration [u / s2]

LREAL DCC Specify the deceleration [u / s2]

LREAL QCC Specify rapid stop deceleration. [u / s2]

LREAL JERK Specifies the rate of acceleration / deceleration change. [u / s3]

Print

BOOL DONE Indicates completion of function block execution.

WORD STAT Indicates the error value of the function block.

BOOL QACC Indicates whether acceleration is in progress.

BOOL QDCC Indicates whether deceleration is in progress.

BOOL QZSP Indicates whether the speed of the current speed is zero or not.

BOOL QEQU Indicates whether the target speed matches the current speed.

LREAL CV Indicates the current speed.

LREAL DVDT Indicates current acceleration / deceleration speed.

Chapter 16. Motion Function Blocks

16-221

(1) This function block is a function block which outputs the reached speed value by applying acceleration /

deceleration applied JERK up to input speed.

(2) REQ input At this rising edge, the ACC / DCC / QCC value is used in the function block and the ACC / DCC / QCC

value is not changed during operation.

(3) QACC / QDCC / QZSP / QEQU output during operation is as follows.

(4) Overshoot or undershoot may occur if the target speed changes before the target speed is reached.

(5) If the QS value is 1, deceleration (deceleration) is set at the deceleration set by QCC. When the QS value is

changed to 0, deceleration is released and acceleration / deceleration is performed to the input target speed.

(6) When the values of ACC, DCC, QCC and JERK are negative, 11 (0x000B) error is output to STAT.

 Chapter 16. Motion Function Blocks

16-222

SLINAC

LS_MOVELINEARABSOLUTE Applied model

Coordinate system absolute positioning linear interpolation operation XMC

Motion Function Block

LS_MoveLinearAbsolute
DoneExecute

AxesGroup AxesGroup
BOOLBOOL

UINT UINT
UINT CoordSystem

ARRAY[0..5] OF LREAL[] Position
Busy BOOL

Active BOOL

Error BOOL
ErrorID WORD

LREAL Velocity
LREAL Acceleration

UINT BufferMode
UINT TransitionMode

LREAL TransitionParameter

CommandAborted BOOL

LREAL Deceleration
LREAL Jerk

Input-Output

UINT AxesGroup
Set the group to perform coordinate system absolute position linear interpolation

operation. (1 ~ 16: Group 1 ~ Group 16)

Input

BOOL Execute
Give coordinate system absolute position linear interpolation operation

command to the relevant group in the rising Edge.

UINT CoordSystem Set the coordinate system type (1:MCS 2:PCS)

LREAL[] Position Enter the target position of the end point of the machine.

LREAL Velocity Specify the maximum speed of the route. [u/s]

LREAL Acceleration Specify the maximum acceleration. [u/s2]

LREAL Deceleration Specify the maximum deceleration. [u/s2]

LREAL Jerk Specify the change rate of acceleration/deceleration. [u/s3]

UINT BufferMode
Specify the sequential operation setting of motion function block.

(Refer to 16.1.4. BufferMode)

UINT TransitionMode
Specify the route change mode of group operation.

(Refer to 16.1.6. TransitionMode)

LREAL TransitionParameter
Specify the parameter of the route change setting of group operation.

(Refer to 16.1.6. TransitionMode)

Output

BOOL Done Indicate that the execution of motion function block is completed.

Chapter 16. Motion Function Blocks

16-223

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that the current motion function block is controlling the relevant group.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.
(1) This motion function block issues absolute positioning linear interpolation command based on coordinate system

on the axes group designated by AxesGroup input.
(2) When this motion function block is executed, interpolation control is performed in a linear path from the current

position to the target position of the end point of the machine.
(3) Specify the speed, acceleration, deceleration, and the change rate of acceleration/deceleration of interpolation

route in Velocity, Acceleration, Deceleration, and Jerk inputs respectively.
(4) Velocity is to set the maximum interpolation speed of the machine respect to the combined distance of current

position to target position value(Position[0], Position[1], Position[2]). If the position value of the target position is the
same as the current position, it is the speed relative to the composite angle of the angle values (Position [3],
Position [4], Position [5]).

(5) The changed parameters can be applied by re-executing the function block (Execute input is On) before the
command is completed. Only Velocity, Acceleration, Deceleration, Jerk, Position input can be updated.

(6) Velocity input can be set to 0 or changed.
(7) Example program

This example shows the linear interpolation to the target position (100, 200, 0) when the current command position

is (0, 0, 0).
(a) Function block setting

Target Position

 Chapter 16. Motion Function Blocks

16-224

(b) Timing diagram

CMD_MoveLinearABS

LS_MoveLinearAbolute.Done

LS_MoveLinearAbolute.Busy

LS_MoveLinearAbolute.Active

_AG01_MTCP_Px

_AG01_MTCP_Py

_AG01_CMD_VEL

_AG01_CMD_ACCDEC

_AG01_CMD_JERK

Chapter 16. Motion Function Blocks

16-225

(8) The available version information of this Motion Function Block is as follows.

Item

product name
Module O / S XG5000

XMC-E32A V1.50 V4.30

XMC-E16A V1.50 V4.30

XMC-E08A V1.50 V4.30

XMC-E32C V1.50 V4.30

 Chapter 16. Motion Function Blocks

16-226

SLINAC

LS_MOVELINEARRELATIVE Applied model

Coordinate system relative positioning linear interpolation operation XMC

Motion Function Block

LS_MoveLinearRelative
DoneExecute

AxesGroup AxesGroup
BOOLBOOL

UINT UINT
UINT CoordSystem

ARRAY[0..5] OF LREAL[] Distance
Busy BOOL

Active BOOL

Error BOOL
ErrorID WORD

LREAL Velocity
LREAL Acceleration

UINT BufferMode
UINT TransitionMode

LREAL TransitionParameter

CommandAborted BOOL

LREAL Deceleration
LREAL Jerk

Input-Output

UINT AxesGroup
Set the group to perform coordinate system relative position linear interpolation

operation. (1 ~ 16: Group 1 ~ Group 16)

Input

BOOL Execute
Give coordinate system absolute position linear interpolation operation

command to the relevant group in the rising Edge.

UINT CoordSystem Set the coordinate system type (1:MCS 2:PCS)

LREAL[] Distance Enter the target distance of the end point of the machine.

LREAL Velocity Specify the maximum speed of the route. [u/s]

LREAL Acceleration Specify the maximum acceleration. [u/s2]

LREAL Deceleration Specify the maximum deceleration. [u/s2]

LREAL Jerk Specify the change rate of acceleration/deceleration. [u/s3]

UINT BufferMode
Specify the sequential operation setting of motion function block.

(Refer to 16.1.4. BufferMode)

UINT TransitionMode
Specify the route change mode of group operation.

(Refer to 16.1.6. TransitionMode)

LREAL TransitionParameter
Specify the parameter of the route change setting of group operation.

(Refer to 16.1.6. TransitionMode)

Output

BOOL Done Indicate that the execution of motion function block is completed.

Chapter 16. Motion Function Blocks

16-227

BOOL Busy Indicate that the execution of motion function block is not completed.

BOOL Active Indicate that the current motion function block is controlling the relevant group.

BOOL CommandAborted Indicate that the current motion function block is interrupted while it is running.

BOOL Error Indicate whether an error occurs or not.

WORD ErrorID Output the number of error occurred while motion function block is running.
(1) This motion function block issues relative positioning linear interpolation command based on coordinate system on

the axes group designated by AxesGroup input.
(2) When this motion function block is executed, interpolation control is performed in a linear path from the current

position to the target position of the end point of the machine.
(3) Specify the speed, acceleration, deceleration, and the change rate of acceleration/deceleration of interpolation

route in Velocity, Acceleration, Deceleration, and Jerk inputs respectively.
(4) Velocity is to set the maximum interpolation speed of the machine respect to the combined distance of target

distance value(Distance[0], Distance[1], Position[2]). If the distance value is zero, it is the speed relative to the
composite angle of the angle values (Distance[3], Distance[4], Distance[5]).

(5) The changed parameters can be applied by re-executing the function block (Execute input is On) before the
command is completed. Only Velocity, Acceleration, Deceleration, Jerk, Position input can be updated.

(6) Velocity input can be set to 0 or changed.
(7) The available version information of this Motion Function Block is as follows.

Item

product name
Module O / S XG5000

XMC-E32A V1.50 V4.30

XMC-E16A V1.50 V4.30

XMC-E08A V1.50 V4.30

XMC-E32C V1.50 V4.30

 Chapter 16. Motion Function Blocks

16-228

Chapter 17. IL(Instruction List)

17-1

Chapter 17. IL (Instruction List)

17.1. summary
1) IL programs are portable, with all text editors available.

2) It executes one command per line and can be applied to simple PLC program.

3) It is easy to program by someone familiar with computer assembly language.

17.2. Current Result: CR)
1) IL has the operation results up to that point in the calculation process, which is called the current value (CR).

2) There is only one CR in the IL operation.

3) CR is available in all data types and does not have a fixed size.

4) LD (Load) is the operator that determines the data type of the CR while putting a certain value in CR.

5) Operator performs operations on defined CRs and operands. Therefore, operators except LD, LDN, JMP, CAL, RET, and

SCAL can not perform operations unless CR is defined.

6) The operator defines (creates) or changes CRs according to each group of operators and makes them unaffected or

undefined.

 Chapter 17. IL(Instruction List)

17-2

Operator group Abbreviation Explanation

Create C Defines the CR. Existing CRs are replaced.

Process P The CR type or value is changed by the operation result.

Leave unchanged U The result of the operation does not affect the CR.

Set to undefined - Change the CR to an undefined state after the operation is finished.

<Table 1> CR conversion according to operator group

Example Explanation

LD% IX0.0.0

LD VAL_INT (* INT *)

Put the variable% IX0.0.0 value in CR. At this time, since the data type of the

direct variable represented by X is BOOL, the data type of CR is BOOL.

If the variable VAL_INT is declared as INT, VAL_INT value is put into CR, and

the data type of CR is INT

LD% IX0.0.0

ST VAL_INT (* INT *)

On the first line, the CR is specified as BOOL. On the second line, CR is set

as INT

I tried to use it, so I get an error at compile time.

LD TRUE

ST% QX0.0.0

LD 20

ST VAL_INT (* INT *)

This is a normal program because the data types for storing the specified CRs

are the same.

17.3. Expression
1) An expression consists of an operator that can have a modifier and an operand, a label, and an annotation that are the

subject of the operator. The operands are defined characters (numeric characters, strings, and time characters), defined

variables (general variables, direct variables) It may be a defined function (function, function block)

2) Each instruction starts on a new line, each line contains an operator with a selectable modifier, one or more operands

separated by commas if necessary for a particular operation, CR, the result of the previous operation, and the result of

the operation It affects the CR.

17.4. Label
1) Labels are displayed in the operator area with a colon (:) after the label name.

2) The label is used as the destination of the jump instruction.

Chapter 17. IL(Instruction List)

17-3

3) The label initializes the CR.

17.5. Modifier
1) The modifier is used immediately after the operator and is performed by modifying the original arithmetic function.

2) Modifiers include N, C, and (.

3) The modifier 'N' indicates the BOOL inverse of the operand (Boolean Negation).

4) Modifier 'C' indicates that the specified operation will only work if the currently computed CR is TRUE (1).

Example Explanation

ANDN% IX2.0.0 CR: = CR AND NOT% IX2.0.0

AND (% IX1.0.0

OR% IX2.0.0

)

CR: = CR AND (% IX1.0.0 OR% IX2.0.0)

The execution of the AND is deferred until a). As a result, it means that%

IX1.0.0 OR% IX2.0.0 in the parentheses is executed first, and then the

operation is performed with the result.

JMPC THERE If CR is TRUE (1), it means jump to THERE.

Note

If the modifier N is followed by a bitwise operator (LDN, STN, ANDN, ORN), it means BOOL inversion of the

operation result CR, and if it follows the execution operator (JMP, CAL, RET, SCAL) Conditional Execution. In this

case, if N is a modifier for conditional select, it means it works when CR is FALSE (0) as opposed to C.

5) Modifier The parentheses '(' indicates that the operation of the operator is delayed until ')' is encountered. Since there is

only one CR in the operation of IL, it is possible to perform a delay operation in which the CR is held for a while and

another operation is performed, and the result and the stored CR value are calculated.

6) Modifier The parentheses after the '(' operand are used after the LD. Please refer to <Table 1> of 15.5 which expresses

the same expression.

Technology example

Expressions in parentheses that begin with an explicit
operator

Expressions in parentheses (short forms)

<Table 1> IL language expression in parentheses

 Chapter 17. IL(Instruction List)

17-4

17.6. Basic operator
1) The basic operators are:

number Operator Modifier Operator

group

Explanation

One LD N C Put the operand into the CR.

2 ST N U Store the CR in the operand.

3

4

SET

RST

 U

U

If CR value is BOOL type TRUE (1), set BOOL type operand to TRUE

(1).

If CR value is BOOL type TRUE (1), BOOL type operand is FALSE (0).

5

6

7

AND

OR

XOR

N, (

N, (

(

P

P

P

Logic AND Operation

Logic OR operation

Logic XOR operation

8

9

10

11

ADD

SUB

MUL

DIV

(

(

(

(

P

P

P

P

Arithmetic addition operation

Arithmetic subtraction operation

Arithmetic multiplication operation

Arithmetic division operation

12

13

14

15

16

17

GT

GE

EQ

NE

LE

LT

(

(

(

(

(

(

P

P

P

P

P

P

Comparison operation:> (large)

Compare operation:> = (equal to or greater than)

Comparison operation: = (same)

Comparison operation: <> (not equal)

Comparison operation: <= (same or smaller)

Comparison operation: <(small)

18

19

20

21

JMP

CAL

RET

SCAL

C, N

C, N

C, N

C, N

-

-

-

-

Jump to label

Function call without function block or return value

Return from function or function block

Subroutine call

22) U Use '(' with modifier to do deferred operations.

2) Operators 5 through 17 are replaced with the current result (CR) used by the operator (OP) in relation to the operand as

shown below.

Current Result <= Current Result Operand Operand

It computes the CR and operand values using the operator's arithmetic function and stores the result back into the CR

3) The comparison operator compares the CR on the left with the operand on the right and stores the BOOL result in CR

Example Explanation

Chapter 17. IL(Instruction List)

17-5

AND% IX1.0.0 CR: = CR AND% IX1.0.0

GT% MW10 If CR is greater than the value in internal memory% MW10, the value of CR is

BOOL type TRUE (1); otherwise, it is FALSE (0).

LD VAL_INT1 (a)

EQ VAL_INT2 (b)

AND% IX0.0.0 (c)

ST% QX0.0.0 (d)

In line (a), place an INT value named VAL_INT1 in the CR. In the line (b), this

CR is compared with the INT value of VAL_INT2. If it is the same, the value of

BOOL type TRUE (1) is added. If it is different, the value of FALSE (0) is put

into CR. At this time, the data type of CR changes from INT to BOOL.

Therefore, no compile error occurs when using commands (c) and (d).

Note

Most of the operation instructions do not change the data type of CR even after the operation is finished. However,

unlike this, the data type of CR is different for comparison instructions, function, and JMP / CAL / RET / SCAL

operators.

For details, refer to <Table 1> CR conversion according to operator group in 15.2.

17.6.1. LD

1) Put the operand into the CR. At this time, the data type of CR is changed to the data type of the operand.

2) Modifier N: If the operand is BOOL, the operand value is inverted and placed in the CR

Operator group Modifier operand

C (Create)
C N (

All data types are available (ANY type). Water is available.
 ○

Example Explanation

LD TRUE

LD INT_VALUE

LD T # 1S

LDN B_VALUE

Put the value of BOOL 1 into CR. At this time, the data type of CR is BOOL.

Put INT variable INT_VALUE into CR. At this time, the data type of CR is INT.

Put the elapsed time constant T # 1S in CR. At this time, the data type of CR is TIME.

Invert the B_VALUE value, which is a BOOL variable, into the CR. At this time, the data

type of CR is BOOL.

Note

ANY types include all types. For details, refer to the data type hierarchy diagram in 3.2.2.

 Chapter 17. IL(Instruction List)

17-6

17.6.2. ST

1) Put the CR value into the operand. At this time, the data type of CR and the data type of operand must be the same data

type.

2) CR value does not change.

3) Modifier N: If the CR data type is BOOL, the CR value is inverted and put in the operand. At this time, the value of CR

does not change

Operator group Modifier operand

U (Leave unchanged)
C N (All data types are available. Constants are not allowed. Must

be the same as the data type of CR ○

Example Explanation

LD FALSE

ST B_VALUE1

STN B_VALUE2

LD INT_VALUE

ST I_VALUE1

LD D # 1995-12-25

ST D_VALUE1

BOOL Put the value of 0 into CR. At this time, the data type of CR is BOOL.

Put CR value 0 into B_VALUE1 variable whose data type is BOOL.

Inverts the CR value (1) and places it in B_VALUE2 whose data type is BOOL.

Put INT variable INT_VALUE into CR.

At this time, the data type of CR is INT.

Put CR value into I_VALUE1 variable with data type INT.

Put the date constant D # 1995-12-25 in the CR.

At this time, the data type of CR is DATE.

Put the CR value into the D_VALUE1 variable whose data type is DATE.

17.6.3. SET

1) If the CR value is BOOL 1, the operand whose data type is BOOL is set to 1.

2) If the CR value is BOOL 0, no operation is performed.

3) CR value does not change.

4) There is no change.

Operator group Modifier operand

U (Leave unchanged)
C N (Only BOOL data type is available. Constants are not

allowed.

Example Explanation

LD FALSE

S B_VALUE1

LD TRUE

BOOL Put the value of 0 into CR. At this time, the data type of CR is BOOL.

The CR value is 0, so no action is taken.

The value of the B_VALUE1 variable does not change.

Put the value of BOOL 1 into CR. At this time, the data type of CR is BOOL.

Chapter 17. IL(Instruction List)

17-7

S B_VALUE2 Since the CR value is 1, set the value of the B_VALUE2 variable whose data type is

BOOL to 1.

17.6.4. RST (Reset)

1) If the CR value is BOOL 1, the value of the operand whose data type is BOOL is set to 0.

2) If the CR value is BOOL 0, no operation is performed.

3) CR value does not change.

4) There is no change.

Operator group Modifier operand

U (Leave unchanged)
C N (Only BOOL data type is available. Constants are not

allowed.

Example Explanation

LD FALSE

R B_VALUE1

LD TRUE

R B_VALUE2

ST B_VALUE3

BOOL Put the value of 0 into CR. At this time, the data type of CR is BOOL.

The CR value is 0, so no action is taken.

The value of the B_VALUE1 variable does not change.

Put the value of BOOL 1 into CR. At this time, the data type of CR is BOOL.

Since the CR value is 1, the value of the B_VALUE2 variable whose data type is BOOL

is set to 0. CR value does not change.

Put CR value (1) in B_VALUE3 variable whose data type is BOOL.

17.6.5. AND

1) Logically ANDs the CR value and operand value and puts the result in CR. At this time, the data type of the CR and the

data type of the operand must be the same.

2) The value of the operand does not change.

3) Modifier N: If the data type of the operand is BOOL, the value of the operand is inverted and computed with the CR value.

4) Modifier (: If the data type of the operand is BOOL, keep the current CR value somewhere else and put the value of the

operand in CR. (Delay calculation)

Operator group Modifier operand

P (Process)
C N (Only BOOL, BYTE, WORD, DWORD, and LWORD data

types are allowed. Water is also available. ○ ○

Example Explanation

 Chapter 17. IL(Instruction List)

17-8

LD B_VALUE1

AND B_VALUE2

ANDN B_VALUE3

ST B_VALUE4

LD W_VALUE1

AND W_VALUE2

ST W_VALUE3

LD B_VALUE1

AND (B_VALUE2

OR B_VALUE3

)

ST B_VALUE4

Put the value of B_VALUE1 whose data type is BOOL into CR. At this time, the data

type of CR is BOOL.

ANDs the CR value with the value of B_VALUE2 whose data type is BOOL, and places

the result in CR.

The CR value and the value of B_VALUE3 whose data type is BOOL are inverted and

ANDed, and the result is put into CR.

Put CR value into B_VALUE4 variable whose data type is BOOL.

B_VALUE4 <== B_VALUE1 AND B_VALUE2 AND NOT (B_VALUE3)

Put the WORD variable W_VALUE1 into CR. At this time, the data type of CR is WORD.

The CR value and the value of W_VALUE2 whose data type is WORD are ANDed, and

the result is put into CR.

Put CR value into W_VALUE3 variable whose data type is WORD.

W_VALUE3 <== W_VALUE1 AND W_VALUE2

Put the value of B_VALUE1 whose data type is BOOL into CR. At this time, the data

type of CR is BOOL.

Keep the CR value elsewhere and put the value of B_VALUE2 whose data type is

BOOL into CR.

ORs the CR value and the value of B_VALUE3 whose data type is BOOL, and places

the result in CR.

ANDs the current CR value with the CR value stored elsewhere and places the result in

CR.

Put CR value into B_VALUE4 variable whose data type is BOOL.

B_VALUE4 <== B_VALUE1 AND (B_VALUE2 OR B_VALUE3)

17.6.6. OR

1) Logically ORs the CR value with the value of the operand and places the result in CR. At this time, the data type of the CR

and the data type of the operand must be the same.

2) The value of the operand does not change.

3) Modifier N: If the data type of the operand is BOOL, the value of the operand is inverted and computed with the CR value.

4) Modifier (: If the data type of the operand is BOOL, keep the current CR value somewhere else and put the value of the

operand in CR. (Delay calculation)

Operator group Modifier operand

P (Process)
C N (Only BOOL, BYTE, WORD, DWORD, and LWORD data

types are allowed. Water is also available. ○ ○

Chapter 17. IL(Instruction List)

17-9

Example Explanation

LD B_VALUE1

OR B_VALUE2

ORN B_VALUE3

ST B_VALUE4

LD W_VALUE1

OR W_VALUE2

ST W_VALUE3

LD B_VALUE1

OR (B_VALUE2

AND B_VALUE3

)

ST B_VALUE4

Put the value of B_VALUE1 whose data type is BOOL into CR. At this time, the data

type of CR is BOOL.

ORs the CR value with the value of B_VALUE2 whose data type is BOOL and places

the result in CR.

The CR value and the value of B_VALUE3 whose data type is BOOL are inverted and

ORed, and the result is put into CR.

Put CR value into B_VALUE4 variable whose data type is BOOL.

B_VALUE4 <== B_VALUE1 OR B_VALUE2 OR NOT (B_VALUE3)

Put the WORD variable W_VALUE1 into CR. At this time, the data type of CR is WORD.

ORs the CR value and the value of W_VALUE2 whose data type is WORD and puts the

result in CR.

Put CR value into W_VALUE3 variable whose data type is WORD.

W_VALUE3 <== W_VALUE1 OR W_VALUE2

Put the value of B_VALUE1 whose data type is BOOL into CR. At this time, the data

type of CR is BOOL.

Keep the CR value elsewhere and put the value of B_VALUE2 whose data type is

BOOL into CR.

ANDs the CR value and the value of B_VALUE3 whose data type is BOOL, and places

the result in CR.

ORs the current CR value with the CR value stored elsewhere and places the result in

CR.

Put CR value into B_VALUE4 variable whose data type is BOOL.

B_VALUE4 <== B_VALUE1 OR (B_VALUE2 AND B_VALUE3)

17.6.7. XOR

1) Logically XORs the CR value and operand value and puts the result in CR. At this time, the data type of the CR and the

data type of the operand must be the same.

2) The value of the operand does not change.

3) Modifier (: If the data type of the operand is BOOL, keep the current CR value somewhere else and put the value of the

operand in CR. (Delay calculation)

Operator group Modifier operand

P (Process)
C N (Only BOOL, BYTE, WORD, DWORD, and LWORD data

types are allowed. Water is also available. ○

 Chapter 17. IL(Instruction List)

17-10

Example Explanation

LD B_VALUE1

XOR B_VALUE2

XORN B_VALUE3

ST B_VALUE4

LD W_VALUE1

XOR W_VALUE2

ST W_VALUE3

LD B_VALUE1

XOR (B_VALUE2

AND B_VALUE3

)

ST B_VALUE4

Put the value of B_VALUE1 whose data type is BOOL into CR. At this time, the data

type of CR is BOOL.

XORs the CR value and the value of B_VALUE2 whose data type is BOOL, and places

the result in CR.

The CR value and the value of B_VALUE3 whose data type is BOOL are inverted,

XORed, and the result is put into CR.

Put CR value into B_VALUE4 variable whose data type is BOOL.

B_VALUE4 <== B_VALUE1 XOR B_VALUE2 XOR NOT (B_VALUE3)

Put the WORD variable W_VALUE1 into CR. At this time, the data type of CR is WORD.

XORs the CR value and the value of W_VALUE2 whose data type is WORD and puts

the result in CR.

Put CR value into W_VALUE3 variable whose data type is WORD.

W_VALUE3 <== W_VALUE1 XOR W_VALUE2

Put the value of B_VALUE1 whose data type is BOOL into CR. At this time, the data

type of CR is BOOL.

Keep the CR value elsewhere and put the value of B_VALUE2 whose data type is

BOOL into CR.

ANDs the CR value and the value of B_VALUE3 whose data type is BOOL, and places

the result in CR.

XORs the current CR value and the CR value stored elsewhere, and places the result in

CR.

Put CR value into B_VALUE4 variable whose data type is BOOL.

B_VALUE4 <== B_VALUE1 XOR (B_VALUE2 AND B_VALUE3)

17.6.8. ADD

1) Performs an arithmetic operation on the CR value and the value of the operand, and places the result in CR. At this time,

the data type of the CR and the data type of the operand must be the same.

2) The value of the operand does not change.

3) Modifier (: Keep the CR value somewhere else and put the value of the operand in CR. (Delay calculation)

Operator group Modifier operand

P (Process)
C N (SINT, INT, DINT, LINT, USINT, UINT, UDINT, ULINT,

REAL, LREAL data types are possible. Water is also
available. ○

Chapter 17. IL(Instruction List)

17-11

Example Explanation

LD I_VALUE1

ADD I_VALUE2

ST I_VALUE3

LD D_VALUE1

ADD (D_VALUE2

DIV D_VALUE3

)

ST D_VALUE4

Put the value of I_VALUE1 whose data type is INT into CR. At this time, the data type of

CR is INT.

Adds the CR value and the value of I_VALUE2 whose data type is INT, and adds the

result to CR.

Put CR value into I_VALUE3 variable whose data type is INT.

I_VALUE3 <== I_VALUE1 + I_VALUE2

Put the value of D_VALUE1 whose data type is DINT into CR. At this time, the data type

of CR is DINT.

Keep the CR value elsewhere and put the value of D_VALUE2 with data type DINT in

CR.

The CR value and the value of D_VALUE3 whose data type is DINT are subjected to

arithmetic division and the result is put into CR.

Performs an arithmetic operation on the current CR value and the CR value stored

elsewhere, and places the result in CR.

Place the CR value in the B_VALUE4 variable with a data type of DINT.

D_VALUE4 <== D_VALUE1 + (D_VALUE2 / D_VALUE3)

17.6.9. SUB

1) Subtracts the CR value and the value of the operand by arithmetic operation and puts the result into CR. At this time, the

data type of the CR and the data type of the operand must be the same.

2) The value of the operand does not change.

3) Modifier (: Keep the CR value somewhere else and put the value of the operand in CR (deferred operation).

Operator group Modifier operand

P (Process)
C N (SINT, INT, DINT, LINT, USINT, UINT, UDINT, ULINT,

REAL, LREAL data types are possible. Water is also
available. ○

Example Explanation

LD I_VALUE1

SUB I_VALUE2

ST I_VALUE3

Put the value of I_VALUE1 whose data type is INT into CR. At this time, the data type of

CR is INT.

Subtracts the value of I_VALUE2 whose CR value and data type are INT, and puts the

result into CR.

Put CR value into I_VALUE3 variable whose data type is INT.

 Chapter 17. IL(Instruction List)

17-12

LD D_VALUE1

SUB (D_VALUE2

MUL D_VALUE3

)

ST D_VALUE4

I_VALUE3 <== I_VALUE1 - I_VALUE2

Put the value of D_VALUE1 whose data type is DINT into CR. At this time, the data type

of CR is DINT.

Keep the CR value elsewhere and put the value of D_VALUE2 with data type DINT in

CR.

The CR value and the value of D_VALUE3 whose data type is DINT are arithmetically

multiplied and the result is put into CR.

Subtracts the current CR value from the CR value stored elsewhere and places the

result in CR.

Place the CR value in the B_VALUE4 variable with a data type of DINT.

D_VALUE4 <== D_VALUE1 - (D_VALUE2 * D_VALUE3)

17.6.10. MUL

1) Arithmically multiplies the CR value and operand value and puts the result in CR. At this time, the data type of the CR and

the data type of the operand must be the same.

2) The value of the operand does not change.

3) Modifier (: Keep the CR value somewhere else and put the value of the operand in CR (deferred operation).

Operator group Modifier operand

P (Process)
C N (SINT, INT, DINT, LINT, USINT, UINT, UDINT, ULINT,

REAL, LREAL data types are possible. Water is also
available. ○

Example Explanation

LD I_VALUE1

MUL I_VALUE2

ST I_VALUE3

LD D_VALUE1

MUL (D_VALUE2

SUB D_VALUE3

Put the value of I_VALUE1 whose data type is INT into CR. At this time, the data type of

CR is INT.

The CR value and the value of I_VALUE2 whose data type is INT are arithmetically

multiplied and the result is put into CR.

Put CR value into I_VALUE3 variable whose data type is INT.

I_VALUE3 <== I_VALUE1 * I_VALUE2

Put the value of D_VALUE1 whose data type is DINT into CR. At this time, the data type

of CR is DINT.

Keep the CR value elsewhere and put the value of D_VALUE2 with data type DINT in

CR.

Subtracts the CR value and the value of D_VALUE3 whose data type is DINT, and

Chapter 17. IL(Instruction List)

17-13

)

ST D_VALUE4

inserts the result into CR.

Multiply the current CR value and the CR value stored elsewhere by arithmetic, and put

the result in CR.

Place the CR value in the B_VALUE4 variable with a data type of DINT.

D_VALUE4 <== D_VALUE1 * (D_VALUE2 - D_VALUE3)

17.6.11. DIV

1) The arithmetic operation is performed on the CR value and the operand value, and the quotient is put into the CR. At this

time, the data type of the CR and the data type of the operand must be the same.

2) The value of the operand does not change.

3) Modifier (: Keep the CR value somewhere else and put the value of the operand in CR (deferred operation).

Operator group Modifier operand

P (Process)
C N (SINT, INT, DINT, LINT, USINT, UINT, UDINT, ULINT,

REAL, LREAL data types are possible. Water is also
available. ○

Example Explanation

LD I_VALUE1

DIV I_VALUE2

ST I_VALUE3

LD D_VALUE1

DIV (D_VALUE2

ADD D_VALUE3

)

ST D_VALUE4

Put the value of I_VALUE1 whose data type is INT into CR. At this time, the data type of

CR is INT.

The CR value and the value of I_VALUE2 whose data type is INT are subjected to

arithmetic division and the result is put into CR.

Put CR value into I_VALUE3 variable whose data type is INT.

I_VALUE3 <== I_VALUE1 / I_VALUE2

Put the value of D_VALUE1 whose data type is DINT into CR. At this time, the data type

of CR is DINT.

Keep the CR value elsewhere and put the value of D_VALUE2 with data type DINT in

CR.

The CR value and the value of D_VALUE3 whose data type is DINT are arithmetically

added and the result is put into CR.

Divides the current CR value and the CR value stored elsewhere by an arithmetic

operation, and puts the result into the CR.

Place the CR value in the B_VALUE4 variable with a data type of DINT.

D_VALUE4 <== D_VALUE1 / (D_VALUE2 + D_VALUE3)

 Chapter 17. IL(Instruction List)

17-14

17.6.12. GT

1) Compare the CR value with the operand value and put the BOOL result in CR.

2) CR is 1 only if CR is greater than operand. Otherwise, the CR value is 0.

3) The data type of CR and operand must be the same.

4) The value of the operand does not change.

5) After the operation, the data type of CR is BOOL regardless of the data type of the operand.

6) Modifier (: Keep the CR value somewhere else and put the value of the operand in CR (deferred operation).

Operator group Modifier operand

P (Process)
C N (All data types except ARRAY are possible. Water is also

available. ○

Example Explanation

LD I_VAL1

GT I_VAL2

ST B_VAL1

LD I_VAL2

GT I_VAL1

ST B_VAL2

LD I_VAL1

GT (I_VAL2

SUB I_VAL3

)

ST B_VAL3

Ex) I_VAL1 = 50, I_VAL2 = 100 IVAL_3 = 70

Put the value of I_VAL1 whose data type is INT into CR.

Compares the value of CR with the value of I_VAL2 whose data type is INT and puts the

result into CR (since I_VAL1 <I_VAL2, CR is 0)

Put CR value into B_VAL1 variable whose data type is BOOL.

B_VAL1 <== FALSE

Put the value of I_VAL2 whose data type is INT into CR.

Compares the value of CR with the value of I_VAL1 whose data type is INT and puts the

result into CR (I_VAL1 <I_VAL2, CR is 1)

Put CR value into B_VAL2 variable whose data type is BOOL.

B_VAL2 <== TRUE

Put the value of I_VAL1 whose data type is INT into CR.

Keep the CR value elsewhere and put the value of I_VAL2 with data type INT in CR.

The value of I_VAL3 with CR value and data type INT is subtracted and the result is put

into CR.

Compares the CR value stored elsewhere with the current CR value and puts the result

into the CR (storage CR> 1 because CR is the current CR).

Put CR value into B_VAL3 variable whose data type is BOOL.

B_VAL3 <== TRUE

Chapter 17. IL(Instruction List)

17-15

17.6.13. GE

1) Compare the CR value with the operand value and put the BOOL result in CR.

2) If CR is greater than or equal to the operand, CR is 1. Otherwise, the CR value will be zero.

3) The data type of CR and operand must be the same.

4) The value of the operand does not change.

5) After the operation, the data type of CR is BOOL regardless of the data type of the operand.

6) Modifier (: Keep the CR value somewhere else and put the value of the operand in CR (deferred operation).

Operator group Modifier operand

P (Process)
C N (All data types except ARRAY are possible. Water is also

available. ○

Example Explanation

LD I_VAL1

GE I_VAL2

ST B_VAL1

LD I_VAL2

GE I_VAL1

ST B_VAL2

LD I_VAL1

GE (I_VAL2

SUB I_VAL3

)

ST B_VAL3

Ex) I_VAL1 = 50, I_VAL2 = 100 IVAL_3 = 70

Put the value of I_VAL1 whose data type is INT into CR.

Compares the value of CR with the value of I_VAL2 whose data type is INT and puts the

result into CR (since I_VAL1 <I_VAL2, CR is 0)

Put CR value into B_VAL1 variable whose data type is BOOL.

B_VAL1 <== FALSE

Put the value of I_VAL2 whose data type is INT into CR.

Compares the value of CR with the value of I_VAL1 whose data type is INT and puts the

result into CR (I_VAL1 <I_VAL2, CR is 1)

Put CR value into B_VAL2 variable whose data type is BOOL.

B_VAL2 <== TRUE

Put the value of I_VAL1 whose data type is INT into CR.

Keep the CR value elsewhere and put the value of I_VAL2 with data type INT in CR.

The value of I_VAL3 with CR value and data type INT is subtracted and the result is put

into CR.

Compares the CR value stored elsewhere with the current CR value and puts the result

into the CR (storage CR> 1 because CR is the current CR).

Put CR value into B_VAL3 variable whose data type is BOOL.

B_VAL3 <== TRUE

 Chapter 17. IL(Instruction List)

17-16

17.6.14. EQ

1) Compare the CR value with the operand value and put the BOOL result in CR.

2) CR is 1 only if CR is equal to operand. Otherwise, the CR value is 0.

3) The data type of CR and operand must be the same.

4) The value of the operand does not change.

5) After the operation, the data type of CR is BOOL regardless of the data type of the operand.

6) Modifier (: Keep the CR value somewhere else and put the value of the operand in CR (deferred operation).

Operator group Modifier operand

P (Process)
C N (All data types except ARRAY are possible. Water is also

available. ○

Example Explanation

LD I_VAL1

EQ I_VAL2

ST B_VAL1

LD I_VAL1

EQ I_VAL3

ST B_VAL2

LD I_VAL1

EQ (I_VAL2

SUB I_VAL3

)

ST B_VAL3

Ex) I_VAL1 = 50, I_VAL2 = 100 IVAL_3 = 50

Put the value of I_VAL1 whose data type is INT into CR.

Compares the value of CR with the value of I_VAL2 whose data type is INT and puts the

result into CR (since I_VAL1 <I_VAL2, CR is 0)

Put CR value into B_VAL1 variable whose data type is BOOL.

B_VAL1 <== FALSE

Put the value of I_VAL2 whose data type is INT into CR.

Compare the value of CR with the value of I_VAL1 whose data type is INT and put the

result into CR (I_VAL1 = I_VAL3 so CR is 1)

Put CR value into B_VAL2 variable whose data type is BOOL.

B_VAL2 <== TRUE

Put the value of I_VAL1 whose data type is INT into CR.

Keep the CR value elsewhere and put the value of I_VAL2 with data type INT in CR.

The value of I_VAL3 with CR value and data type INT is subtracted and the result is put

into CR.

Compares the CR value stored elsewhere with the current CR value and puts the result

into CR (CR = 1 because the storage CR = current CR).

Put CR value into B_VAL3 variable whose data type is BOOL.

B_VAL3 <== TRUE

Chapter 17. IL(Instruction List)

17-17

17.6.15. NE

1) Compare the CR value with the operand value and put the BOOL result in CR.

2) If CR is different from the operand, CR is 1. Otherwise, the CR value is 0.

3) The data type of CR and operand must be the same.

4) The value of the operand does not change.

5) After the operation, the data type of CR is BOOL regardless of the data type of the operand.

6) Modifier (: Keep the CR value somewhere else and put the value of the operand in CR (deferred operation).

Operator group Modifier operand

P (Process)
C N (All data types except ARRAY are possible. Water is also

available. ○

Example Explanation

LD I_VAL1

NE I_VAL3

ST B_VAL1

LD I_VAL1

NE I_VAL2

ST B_VAL2

LD I_VAL1

NE (I_VAL2

SUB I_VAL3

)

ST B_VA3

Ex) I_VAL1 = 50, I_VAL2 = 100 IVAL_3 = 50

Put the value of I_VAL1 whose data type is INT into CR.

Compare the value of CR with the value of I_VAL3 whose data type is INT and put the

result into CR (I_VAL1 = I_VAL3, CR is 0)

Put CR value into B_VAL1 variable whose data type is BOOL.

B_VAL1 <== FALSE

Put the value of I_VAL1 whose data type is INT into CR.

Compare the value of CR with the value of I_VAL2 whose data type is INT and put the

result into CR (I_VAL1 <> I_VAL2, so CR is 1)

Put CR value into B_VAL2 variable whose data type is BOOL.

B_VAL2 <== TRUE

Put the value of I_VAL1 whose data type is INT into CR.

Keep the CR value elsewhere and put the value of I_VAL2 with data type INT in CR.

The value of I_VAL3 with CR value and data type INT is subtracted and the result is put

into CR.

Compares the CR value stored elsewhere with the current CR value and puts the result

into CR (CR = 0 because the storage CR = current CR)

Put CR value into B_VAL3 variable whose data type is BOOL.

B_VAL2 <== FALSE

 Chapter 17. IL(Instruction List)

17-18

17.6.16. LE

1) Compare the CR value with the operand value and put the BOOL result in CR.

2) If CR is less than or equal to the operand, CR is 1. Otherwise, the CR value will be zero.

3) The data type of CR and operand must be the same.

4) The value of the operand does not change.

5) After the operation, the data type of CR is BOOL regardless of the data type of the operand.

6) Modifier (: Keep the CR value somewhere else and put the value of the operand in CR (deferred operation).

Operator group Modifier operand

P (Process)
C N (All data types except ARRAY are possible. Water is also

available. ○

Example Explanation

LD I_VAL2

LE I_VAL1

ST B_VAL1

LD I_VAL1

LE I_VAL2

ST B_VAL2

LD I_VAL1

LE (I_VAL2

SUB I_VAL3

)

ST B_VA3

Ex) I_VAL1 = 50, I_VAL2 = 100 IVAL_3 = 70

Put the value of I_VAL2 whose data type is INT into CR.

Compare the value of CR with the value of I_VAL1 whose data type is INT and put the

result into CR (I_VAL1 <I_VAL2, so CR is 0)

Put CR value into B_VAL1 variable whose data type is BOOL.

B_VAL1 <== FALSE

Put the value of I_VAL1 whose data type is INT into CR.

Compares the value of CR with the value of I_VAL2 whose data type is INT and puts the

result into CR (I_VAL1 <I_VAL2, so CR is 1)

Put CR value into B_VAL2 variable whose data type is BOOL.

B_VAL2 <== TRUE

Put the value of I_VAL1 whose data type is INT into CR.

Keep the CR value elsewhere and put the value of I_VAL2 with data type INT in CR.

The value of I_VAL3 with CR value and data type INT is subtracted and the result is put

into CR.

Compares the CR value stored elsewhere with the current CR value and puts the result

into CR (storage CR> CR is 0 because it is the current CR).

Put CR value into B_VAL3 variable whose data type is BOOL.

B_VAL2 <== FALSE

Chapter 17. IL(Instruction List)

17-19

17.6.17. LT

1) Compare the CR value with the operand value and put the BOOL result in CR.

2) CR is 1 only if CR is less than operand. Otherwise, the CR value is 0.

3) The data type of CR and operand must be the same.

4) The value of the operand does not change.

5) After the operation, the data type of CR is BOOL regardless of the data type of the operand.

6) Modifier (: Keep the CR value somewhere else and put the value of the operand in CR (deferred operation).

Operator group Modifier operand

P (Process)
C N (All data types except ARRAY are possible. Water is also

available. ○

Example Explanation

LD I_VAL2

LT I_VAL1

ST B_VAL1

LD I_VAL1

LT I_VAL2

ST B_VAL2

LD I_VAL1

LT (I_VAL2

SUB I_VAL3

)

ST B_VA3

Ex) I_VAL1 = 50, I_VAL2 = 100 IVAL_3 = 70

Put the value of I_VAL2 whose data type is INT into CR.

Compare the value of CR with the value of I_VAL1 whose data type is INT and put the

result into CR (I_VAL1 <I_VAL2, so CR is 0)

Put CR value into B_VAL1 variable whose data type is BOOL.

B_VAL1 <== FALSE

Put the value of I_VAL1 whose data type is INT into CR.

Compares the value of CR with the value of I_VAL2 whose data type is INT and puts the

result into CR (I_VAL1 <I_VAL2, so CR is 1)

Put CR value into B_VAL2 variable whose data type is BOOL.

B_VAL2 <== TRUE

Put the value of I_VAL1 whose data type is INT into CR.

Keep the CR value elsewhere and put the value of I_VAL2 with data type INT in CR.

The value of I_VAL3 with CR value and data type INT is subtracted and the result is put

into CR.

Compares the CR value stored elsewhere with the current CR value and puts the result

into CR (storage CR> CR is 0 because it is the current CR).

Put CR value into B_VAL3 variable whose data type is BOOL.

B_VAL2 <== FALSE

 Chapter 17. IL(Instruction List)

17-20

17.6.18. JMP

1) Moves the execution flow to the label described in the operand section.

2) Modifier C: If the CR value whose data type is BOOL is TRUE (1), it moves to the label.

 If the CR value whose data type is BOOL is FALSE (0), the next command is executed without moving.

3) Modifier N: If the CR value whose data type is BOOL is FALSE (0), it moves to the label.

 If the CR value whose data type is BOOL is TRUE (1), the next instruction is executed without moving.

4) If there is no modifier, it moves to the label regardless of the CR value.

Operator group Modifier operand

- (Set to undefined)
C N (

Label name.
○ ○

Example Explanation

LD B_VAL1

JMPC THERE1

LD I_VAL1

JMP THERE2

THERE1:

LD I_VAL2

THERE2:

ST I_VAL3

LD B_VAL2

JMPN THERE3

LD B_VALUE

SEL (

(* G: = CR, *)

IN1: = I_VAL1

IN2: = I_VAL2

)

ST I_VAL3

THERE3:

Depending on the value of B_VAL1 whose data type is BOOL, I_VAL1 or

It is a program that puts the value of I_VAL2 in I_VAL3.
Put the value of B_VAL1 whose data type is BOOL into CR.

If the CR value is 1, move to the label THERE1; if it is 0, do the following statement.

CR <== I_VAL1

I go to the THERE2 label unconditionally.

THERE1 label

CR <== I_VAL2

THERE2 label

I_VAL3 <== CR

If the value of B_VAL2 whose data type is BOOL is 1, it executes the SEL function.
CR <== B_VAL2

If CR is 0 (FALSE), it moves to the label THERE3.

CR <== B_VALUE

Invokes the SEL function.

I_VAL3 <== CR

THERE3 label

Chapter 17. IL(Instruction List)

17-21

17.6.19. CAL

1) The function block with the name described in the operand part is called.

2) Modifier C: If the CR value whose data type is BOOL is TRUE (1), the function block is called.

 If the CR value whose data type is BOOL is FALSE (0), the function block is not called.

3) Modifier N: If the CR value whose data type is BOOL is FALSE (0), the function block is called.

 If the CR value whose data type is BOOL is TRUE (1), the function block is not called.

4) If there is no modifier, the function block is called irrespective of the CR value.

Operator group Modifier operand

- (Set to undefined)
C N (

Function name without function block name or return value
○ ○

Example Explanation

LD B_VAL1

CALC INST_TON (

IN: = T_INPUT

PT: = PRE_TIME

)

LD B_VAL2

CALN INST_CTU (

CU: = B_UP

R: = B_RESET

PV: = I_VAL1

)

LD B_VAL1

CAL XCHG (

(* SRC1: = CR, *)

SRC2: = B_VAL2

)

When the value of B_VAL1 whose data type is BOOL is 1 (TRUE), it is a program

that calls on-delay timer TON.
Put the value of B_VAL1 whose data type is BOOL into CR.

If the CR value is 1, the instance calls the on-delay timer TON with INST_TON.

If the value of B_VAL2 whose data type is BOOL is 0 (FALSE), it is a program that

calls up counter CTU_INT.
Put the value of B_VAL2 whose data type is BOOL into CR.

If the CR value is [0], the up counter CTU_INT whose instance is INST_CTU is called.

It is a program to call data exchange XCHG function unconditionally regardless of

CR value.

Invokes XCHG, a function with no return value.

 Chapter 17. IL(Instruction List)

17-22

17.6.20. RET

1) Return from function or function block.

2) Modifier C: If the CR value whose data type is BOOL is TRUE (1), it returns.

 If the CR value whose data type is BOOL is FALSE (0), it does not return.

3) Modifier N: If the CR value whose data type is BOOL is FALSE (0), it returns.

 If the CR value whose data type is BOOL is TRUE (1), it does not return.

4) If there is no modifier, it returns regardless of the CR value.

Operator group Modifier operand

- (Set to undefined)
C N (

There is not.
○ ○

Example Explanation

LD I_VAL1

MUL I_VAL2

ST I_VAL3

LD _ERR

RETN

LD 0

ST I_VAL3

RET

This function multiplies the value of I_VAL1 whose data type is INT by the value of

I_VAL2 whose data type is INT and puts the result into I_VAL3. In this case, if an

operation error occurs in the multiply operation, 0 is returned to I_VAL3.

CR <== System error flag

If the CR value is 0, the instance returns.

I_VAL3 <== 0

I will return unconditionally.

17.6.21. SCAL

1) Calls a subroutine with the name described in the operand section.

2) Modifier C: If the CR value whose data type is BOOL is TRUE (1), the subroutine is called.

 If the CR value whose data type is BOOL is FALSE (0), the subroutine is not called.

3) Modifier N: If the CR value whose data type is BOOL is FALSE (0), it calls the subroutine.

 If the CR value whose data type is BOOL is TRUE (1), the subroutine is not called.

4) If there is no modifier, the subroutine is called regardless of the CR value.

Operator group Modifier operand

- (Set to undefined)
C N (

Subroutine name.
○ ○

Chapter 17. IL(Instruction List)

17-23

Example Explanation

LD B_VAL1

SCALC SBRT1

LD B_VAL2

SCALN SBRT1

SCAL SBRT1

END_PROGRAM

SBRT SBRT1

LD B_VAL1

ST B_VAL2

RET

If the value of B_VAL1 whose data type is BOOL is 1 (TRUE), it is a program that

calls subroutine SBRT1.
Put the value of B_VAL1 whose data type is BOOL into CR.

If the CR value is 1, the subroutine SBRT1 is called.

If the value of B_VAL2 whose data type is BOOL is 0 (FALSE), it is a program that

calls subroutine SBRT2.
Put the value of B_VAL2 whose data type is BOOL into CR.

If the CR value is 0, the subroutine SBRT0 is called.

It is a program that calls subroutine SBRT1 unconditionally regardless of CR

value.
Calls subroutine SBRT1.

Declare SBRT1.

Return to RET.

Note

A subroutine (SBRT) can declare the subroutine name after END_PROGRAM and define its contents. The

subroutine returns via the RET command.

17.6.22.)

1) Use '(' to perform deferred operations.

Operator group Modifier operand

U (Leave unchanged)
C N (

There is not.

Example Explanation

LD I_VAL1

ADD I_VAL2

MUL I_VAL3

ST I_VAL4

I_VAL4 <== (I_VAL1 + IVAL2) * I_VAL3

 Chapter 17. IL(Instruction List)

17-24

LD I_VAL1

ADD (I_VAL2

MUL I_VAL3

)

ST I_VAL4

LD L_VAL1

ADD (L_VAL2

MUL (L_VAL3

SUB L_VAL4

)

ADD L_VAL5

)

DIV L_VAL6

ST L_VAL7

I_VAL4 <== I_VAL1 + (IVAL2 * I_VAL3)

L_VAL7 <== (L_VAL1 + (L_VAL2 * (L_VAL3 - L_VAL4) + L_VAL5)) / L_VAL6

Note

There can not be JMP, CAL, RET, SCAL, or label between the parentheses '(' and ')'. You can call parentheses

back inside parentheses. The maximum depth for this is 32, including the top-level body.

17.7. Non-executable statements (comments)
1) Non-executable statements (comments) provide two forms. There are two types of non-executing statements and non-

executing statements.

2) One line non-executable statement uses "//" and is executed until the end of the line.

3) Block non-executable statements process non-executable characters between "(*" and "*)".

Yes)

Chapter 17. IL(Instruction List)

17-25

17.8. Function and function block

17.8.1. Function

1) The function is called with the function name as an operator.

2) When calling a function, the CR enters the first input of the function

3) If there is more than one input of the function, specify the remaining input values and call the function.

4) The output value of the function enters CR.

5) The data type of CR is the output value data type of the function.

Example Explanation

LD R_VAL1

SIN

ST R_VAL2

LD% IX0.0.0

SEL (

(* G: = CR (BOOL), *)

IN0: = VAL1,

IN1: = VAL1

)

ST VAL3

Put the value of R_VAL1 (REAL) variable in CR.

When the SIN function is called, the CR at that time enters the first input

of the SIN function. Since the SIN function has only one input, the input

value is no longer required. After executing the SIN function, the output

value is assigned to CR.

The CR is stored in the R_VAL2 (REAL) variable.

An example of a function with multiple inputs.

% IX0.0.0 (BOOL) has been set on the CR.

The CR is entered as the first input value of the SEL function.

For the rest of the inputs, set the value and set the SEL function

If you call it, the result of the execution is also input to the CR.

Store the CR in the VAL3 variable.

17.8.2. Function block

1) The call to the function block uses the CAL operator and the operand is the instance name of the function block declared

in advance.

2) Function block does not enter CR as input of function block. Therefore, all necessary input values must be specified in the

function block. Also, the output value is not displayed as CR.

3) Can not be used between '(' and ')' modifiers.

4) Please refer to 15.6.19 Example of CAL for the function block calling method using CAL.

 Chapter 17. IL(Instruction List)

17-26

17.8.3. Stereotyped form

1) There are two types of function and function block input methods: formal and non-formalized. Either form can be used

depending on the situation.

2) Formalization type is a form to display the input and output parameter names of function and function block.

parameter Function Function block

common

Parameter order can be used in any order.

LD B

LIMIT (MX: = 20, IN: = 10)

LIMIT (IN: = 10, MX: = 20)

EN, ENO can be used or omitted

LD B

LIMIT (EN: = A, MX: = 20, IN: = 10, ENO = & gt;

Q2)

ST Q1

Parameter order can be used in any order.

INST (IN: =% IX0.0.0, PT: = T # 1s, Q => A, ET => E)

INST (PT: = T # 1s, IN: = IX0.0.0, Q => A, ET => E)

input

Input: Use = symbol for input / output parameter

assignment.

LIMIT (MX: = 20, IN: = 10)

Input: Use = symbol for input / output parameter

assignment.

INST (IN: =% IX0.0.0, PT: = T # 1s, Q = & gt; A, ET

= & gt; B)

Print

If the output parameter name is OUT or Y (user

defined function is function name), return value

is assigned.

The remaining output parameter assignments

use the => symbol.

LD B

Use => symbol to assign all output parameters

Output parameter assignment can be omitted.

INST (IN: =% IX0.0.0, PT: = T # 1s, Q => A, ET => E)

Chapter 17. IL(Instruction List)

17-27

parameter Function Function block

ARY_SCH (IN: = C, P => Q2, N => Q3)

However, output parameters that are not used

as shown below can be omitted. (Q2 and Q3 are

omitted)

LD B

ARY_SCH (IN: = C)

INST (IN: =% IX0.0.0, PT: = T # 1s)

LD INST.ET

ST T1

Note

Use the function block as the instance name. That is, declare a function block as a variable and set the variable

name (instance name)

Should be used.

 Example: Using a timer

INST_TON1(IN: = TRUE, PT: = T # 100MS, Q => Q_OUT, ET => ET_OUT)

17.8.4. Nonformatted form

1) It is a form to omit input and output parameter names of function and function block.

 Chapter 17. IL(Instruction List)

17-28

parameter Function Function block

common

All parameter sequences can not be changed.

All parameters are not omissible

LD B

LIMIT (20, 10)

ST Q1

EN, ENO can not be used.

All parameter sequences can not be changed.

All parameters can not be omitted.

INST (% IX0.0.0, T # 1s, A, E)

input

Input parameter order can not be changed.

LD B

LIMIT (20, IN: = 10)

Input parameter order can not be changed.

INST (% IX0.0.0, T # 1s, A, E)

Print

Assign the return value to CR when the output

parameter name is OUT or Y (user-defined

function is function name). The remaining

output parameter assignments are entered in

order.

LD B

ARY_SCH (C, Q2, Q3)

ST Q1

All output parameter assignments are entered in

order.

INST (% IX0.0.0, T # 1s, A, E)

Chapter 17. IL(Instruction List)

17-29

Note

Functions with variable parameter types are not supported by IL.

To operate normally, enter one of the following methods.

Example Explanation

LD INT # 1

ADD 2

You can set the type to a constant.

LD INT_VAL

ADD 2

Variable (INT_VAL) can be used.

LD 1

ADD_INT(2)

You can use the type-set function.

Note

1. Input parameter EN is a condition for executing the function. If EN is used as follows, the value of A is 1 day

Only the LIMTIT function is executed.

LD B

LIMIT (EN: = A, MX: = 20, IN: = 10)

ST OUT

2. The ENO parameter is set to 1 when the function is executed without error.

Note

1. IL does not support extended instructions (BREAK, CALL, END, FOR, INIT_DONE, JMP, NEXT, RET,

SBRT) but supports JMP, RET and SBRT in operators.

2. A function with the same name as an operator name can not be used (ADD, OR, XOR, AND, GT, etc.)

17.8.5. Example

1) Function

 Chapter 17. IL(Instruction List)

17-30

LD example Examples of using IL

1) Typical form

Using EN

LD Value1

ADD (EN: = A, IN2: = Value2)

ST OutValue

Disable EN

LD Value1

ADD (IN2: = Value2);

ST OutValue

2) Unstructured form

LD Value1

ADD (Value2)

ST OutValue

EN, ENO can not be used.

2) Function block

LD example Examples of using IL

1) Typical form

INST (IN: = A, PT: = T # 10S, Q => TimeOut)

2) Unstructured form

INST (A, T # 10S, TimeOut, TimeValue)

Output variables can not be omitted. Therefore, it is

necessary to connect the variable corresponding to the

output parameter ET. (TimeValue)

Chapter 17. IL(Instruction List)

17-31

3) Application

LD example Examples of using IL

INST1 (CD: = _T1S, PV: = 10, RST: = reset, Q =>

completed,

CV => current value)

LD completed

ST% QX0.1.0

LD current value

LT (IN2: = 5)

ST under

 Chapter 17. IL(Instruction List)

17-32

Appendix 1 Numerical System and Data Structure

A1-1

Appendix 1 Numerical System and Data Structure
A1.1 Numerical (data) Representation

 PLC CPU remembers and processes every data as the states of on and off or ‘1’and ’0’. Therefore, any numerical operation

is processed by binary system (1 or 0). On the other hand, we conveniently use the decimal system, so decimal or

hexadecimal number systems must be converted to hexadecimal or decimal number systems, respectively in order to write

or read numerical data to/from PLC. This chapter describes the representation of decimal, binary, hexadecimal and binary-

coded decimal notation and the relations.

1) Decimal

Decimal number system means the “number expressing an order or size (volume) using 0~9. And, followed by 0, 1, 2, 3,

4…9, it is carried to ‘10’ and keeps counting. For instance, a decimal number, 153 can be expressed as follows in the view

of line and “weight of line.”

153 = 100 + 50 + 3

 =1*100 + 5*10 + 3*1

 =1*10 + 5*10 + 3*102 1 0

Decimal number
system symbols
(0~9)

Weight of line

2) Binary

Binary numeral presents a numeral meaning an order and size by using two symbols, 0 and 1. Therefore, it is carried to

‘10’ followed by 0 and 1 and keeps counting. That is, a cipher of 0, 1 is called bit.

 Appendix 1 Numerical System and Data Structure

A1-2

Binary Decimal

0

1

10

11

100

101

110

111

1000

……

0

1

2

3

4

5

6

7

8

……

For instance, let us think that the given binary numeral can be expressed in decimal number system.

“10011101”

As considering line number and the weight of line in decimal number system, try to attach bit number and bit weight from the

very right.

01234567 Bit number
binary numeral

1 0 0 1 1 1 0 1

128 64 32 16 8 4 2 1 weight of bit

...

27 26 25 24 23 22 21 20

How about summing the multiplication of weights of each bit code like decimal number system?

 = 1 × 128 + 0 × 64 + 0 × 32 + 1 × 16 + 1 × 8 + 1 × 4 + 0 × 2 + 1 × 1

 = 128 + 16 + 8 + 4 + 1

 = 157

That is, as the above, a binary numeral is converted to a decimal numeral by adding the weights of bits of which code is 1.

In general, 1 byte consists of 8 bits while 1 word consists of 16 bits (2 bytes).

Appendix 1 Numerical System and Data Structure

A1-3

1 0 0 1 1 1 0 1

1 bit

1 byte

0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1

1 word (2 bytes)

3) Hexadecimal

Like decimal or binary numeral, hexadecimal numeral means the ‘number representing an order and size by using 0~9

and A~F.”

Then, followed by 0, 1, 2, …D, E, F, it is carried to ‘10’ and keeps counting.

Decimal Hexadecimal Binary

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

10

11

12

0

1

10

11

100

101

110

111

1000

1001

1010

1011

1100

1101

1110

1111

10000

10001

10010

 Appendix 1 Numerical System and Data Structure

A1-4

1 9 1 0 1 4 A 9 D 1101100110100100

4 A 9 D

3 2 1 0 Number of line
hexadecimal

numeral

 = (4) × 163 + (A) × 162 + (9) × 161 + (D) × 160

 = 4 × 4096 + 10 × 2568 + 9 × 16 + 13 × 1

 = 19101

A digit of hexadecimal number corresponds to 4 bits of binary numeral.

4) Binary Coded Decimal (BCD)

 Binary coded decimal means the “number expressing each line of a decimal numeral in binary number system.” Therefore,

binary coded decimal represents 0 ~ 9,999(max of 4 lines) of decimal numeral in 16 bits.

 For instance, a decimal numeral, 157 can be expressed as follows and the weight of each bit can be also expressed as

follows.

0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1

line 4

line 3

line 2
line 1

8000 4000 2000 1000 800 400 200 100 80 40 20 10 8 4 2 1
1 5 7

Weight of bit

Appendix 1 Numerical System and Data Structure

A1-5

 5) Table of Numeral Systems

Binary coded Decimal (BCD) Binary (BIN) Decimal Hexadecimal (H)

00000000 00000000

00000000 00000001

00000000 00000010

00000000 00000011

00000000 00000100

00000000 00000101

00000000 00000100

00000000 00000111

00000000 00001000

00000000 00001001

00000000 00000000

00000000 00000001

00000000 00000010

00000000 00000011

00000000 00000100

00000000 00000101

00000000 00000100

00000000 00000111

00000000 00001000

00000000 00001001

0

1

2

3

4

5

6

7

8

9

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

00000000 00010000

00000000 00010001

00000000 00010010

00000000 00010011

00000000 00010100

00000000 00010101

00000000 00001010

00000000 00001011

00000000 00001100

00000000 00001101

00000000 00001110

00000000 00001111

10

11

12

13

14

15

000A

000B

000C

000D

000E

000F

00000000 00000110

00000000 00000111

00000000 00001000

00000000 00001001

00000000 00100000

00000000 00100001

00000000 00100010

00000000 00100011

00000000 00010000

00000000 00010001

00000000 00010010

00000000 00010011

00000000 00010100

00000000 00010101

00000000 00010110

00000000 00010111

16

17

18

19

20

21

22

23

0010

0011

0012

0013

0014

0015

0016

0017

00000001 00000000

00000001 00100111

00000010 01010101

00010000 00000000

00100000 01000111

01000000 10010101

10011001 10011001

00000000 01100100

00000000 01111111

00000000 11111111

00000000 11100000

00000000 11111111

00000000 11111111

00000111 00001111

00100111 00010000

01111111 11111111

100

127

255

1,000

2,047

4,095

9,999

10,000

32,767

0064

007F

00FF

03E8

07FF

0FFF

270F

2710

7FFF

 Appendix 1 Numerical System and Data Structure

A1-6

A1.2 Integer Representation

 XGI command is based on negative number system operation (Signed)

 If the top level bit (MSB) is 0, it represents ‘positive number’ while if it is 1, it is expressed as ‘negative number’.

 The top level bit expressing negative/positive is called ‘sign bit.’

 Because of different position of MSB in 16 or 32 bits, be cautious of sign bit position.

  If 16 bits

b16 b0

Sign bit 0: 0 and positive number

1: negative number

Representation ran: -32,768 ~ 32,767

 If 32 bits

b31 b16

Sign bit 0 : 0 and positive number

1 : negative number

Representation range: -2,147,483,648 ~ 2,147,483,647

b15 b0

A1.3 Negative Number Representation

Ex) How to express – 0001
 (1) Represent 0001 in case of negative number (b15 = 1).

 b15 b0

1 0 ~ 0 1

 (2) Reverse the result of (1) (b15 = excluded).

 b15 b0

1 1 ~ 1 0

 (3) Plus 1 to the result of (2).

 b15 b0

1 1 ~ 1 1

 -0001 = 16#FFFF

Appendix 2 Flag List (XGI)

A2-1

Appendix 2 Flag List (XGI)
A2.1 Modes and Status

Reserved Variable Data Type Description

_SYS_STATE BOOL PLC mode and operation status

_RUN BOOL RUN status

_STOP BOOL STOP status

_ERROR BOOL ERROR status

_DEBUG BOOL DEBUG status

_LOCAL_CON BOOL Local control mode

_REMOTE_CON BOOL Remote control mode

_RUN_EDIT_ST BOOL Downloading edit program during run

_RUN_EDIT_CHK BOOL Processing edit program during run

_RUN_EDIT_DONE BOOL Complete edit program during run

_RUN_EDIT_NG BOOL Abnormally complete edit program during run

_CMOD_KEY BOOL Run mode changed by key

_CMOD_LPADT BOOL Run mode changed by local PADT

_CMOD_RPADT BOOL Run mode changed by remote PADT

_CMOD_RLINK BOOL Run mode changed by remote COM module

_FORCE_IN BOOL Forced input status

_FORCE_OUT BOOL Forced output status

_SKIP_ON BOOL I/O skip

_EMASK_ON BOOL Error mask on

_MON_ON BOOL Monitor on

_USTOP_ON BOOL Stop by STOP function

_ESTOP_ON BOOL Stop by ESTOP function

_INIT_RUN BOOL Initialization task is running

_PB1 BOOL Select program code 1

_PB2 BOOL Select program code 2

_USER_WRITE_F WORD Contact available by program

_RTC_WR BOOL Write/read data in RTC

_SCAN_WR BOOL Initialize scan value

_CHK_ANC_ERR BOOL Error detection from external device

_CHK_ANC_WAR BOOL Warning detection from external device

 Appendix 2 Flag List (XGI)

A2-2

Reserved Variable Data Type Description

_INIT_DONE BOOL Initialization task complete

_KEY DWORD Current status of local key

A2.2 System Error

Reserved Variable Data Type Description

_CNF_ER WORD System warning

_AB_SD_ER BOOL Stop by abnormal operation

_IO_TYER BOOL Module type inconsistence error

_IO_DEER BOOL Module installation error

_IO_TYER_N WORD Slot number of module type inconsistence error

_IO_DEER_N WORD Slot number of module installation error

_FUSE_ER BOOL Fuse disconnection

_FUSE_ER_N WORD Slot number of fuse blown

_FUSE_ERR
ARRARY [0..7]

OF WORD
Detail information of fuse blown (base and slot number)

_ANNUM_ER BOOL Heavy trouble detection error of external device

_BPRM_ER BOOL Basic parameter error

_IOPRM_ER BOOL IO configuration parameter error

_SPPRM_ER BOOL Special module parameter error

_CPPRM_ER BOOL Communication module parameter error

_PGM_ER BOOL Program error

_CODE_ER BOOL Program code error

_SWDT_ER BOOL System watch-dog on

_BASE_POWER_ER BOOL Base power error

_WDT_ER BOOL Scan watch-dog timer on

_IO_TYERR
ARRARY [0..7]

OF WORD
Main base and extension base module type error

_IO_DEERR
ARRARY [0..7]

OF WORD
Main base and extension base module installation error

Appendix 2 Flag List (XGI)

A2-3

A2.3 System Warning

Reserved Variable Data Type Description

_CNF_WAR DWORD System error status

_RTC_ER BOOL RTC data error

_TASK_ER BOOL Task conflict

_BAT_ER BOOL Battery error

_ANNUM_WAR BOOL External device warning detected

_BASE_INFO_ER BOOL Base information error

_HS_WAR1 BOOL Over high-speed link parameter 1

_HS_WAR2 BOOL Over high-speed link parameter 2

_HS_WAR3 BOOL Over high-speed link parameter 3

_HS_WAR4 BOOL Over high-speed link parameter 4

_HS_WAR5 BOOL Over high-speed link parameter 5

_HS_WAR6 BOOL Over high-speed link parameter 6

_HS_WAR7 BOOL Over high-speed link parameter 7

_HS_WAR8 BOOL Over high-speed link parameter 8

_HS_WAR9 BOOL Over high-speed link parameter 9

_HS_WAR10 BOOL Over high-speed link parameter 10

_HS_WAR11 BOOL Over high-speed link parameter 11

_HS_WAR12 BOOL Over high-speed link parameter 12

_P2P_WAR1 BOOL Over P2P – parameter 1

_P2P_WAR2 BOOL Over P2P – parameter 2

_P2P_WAR3 BOOL Over P2P – parameter 3

_P2P_WAR4 BOOL Over P2P – parameter 4

_P2P_WAR5 BOOL Over P2P – parameter 5

_P2P_WAR6 BOOL Over P2P – parameter 6

_P2P_WAR7 BOOL Over P2P – parameter 7

_P2P_WAR8 BOOL Over P2P – parameter 8

_CONSTANT_ER BOOL Fixed cycle error

_ANC_ERR WORD Error info of external device

_ANC_WAR WORD Warning info of external device

 Appendix 2 Flag List (XGI)

A2-4

A2.4 User Flag

Reserved Variable Data Type Description

_T20MS BOOL 20ms cycle clock

_T100MS BOOL 100ms cycle clock

_T200MS BOOL 200ms cycle clock

_T1S BOOL 1s cycle clock

_T2S BOOL 2s cycle clock

_T10S BOOL 10s cycle clock

_T20S BOOL 20s cycle clock

_T60S BOOL 60s cycle clock

_ON BOOL All time on bit

_OFF BOOL All time off bit

_1ON BOOL The only first scan on bit

_1OFF BOOL The only first scan off bit

_STOG BOOL Reversal at every scanning

A2.5 Operation Result Flag

Reserved Variable Data Type Description

_ERR BOOL Operation error flag

_LER BOOL On for 1 scan if any operation error

_ARY_IDX_ERR BOOL Out of arrangement index error flag

_ARY_IDX_LER BOOL Out of arrangement index latch error flag

_ALL_OFF BOOL On if every output is off

_PUTGET_ERR WORD PUT/GET error

_PUTGET_NDR WORD PUT/GET complete

Appendix 2 Flag List (XGI)

A2-5

A2.6 System Run Status Information

Reserved Variable Data Type Description

_CPU_TYPE WORD CPU type information

_CPU_VER WORD CPU version

_OS_VER DWORD OS version

_OS_DATE DWORD OS distribution date

_SCAN_MAX WORD Max. scan time after run in 0.1ms

_SCAN_MIN WORD Min. scan time after run in 0.1ms

_SCAN_CUR WORD Present scan time in 0.1ms

_RTC_TIME
ARRARY [0..7]

OF BYTE
Present time data of PLC

_RTC_TIME[0] BYTE Year data of present time

_RTC_TIME[1] BYTE Month data of present time

_RTC_TIME[2] BYTE Day data of present time

_RTC_TIME[3] BYTE Hour data of present time

_RTC_TIME[4] BYTE Minute data of present time

_RTC_TIME[5] BYTE Second data of present time

_RTC_TIME[6] BYTE Day of the week data of present time

_RTC_TIME[7] BYTE Year of hundred data of present time

_RTC_TIME_USER
ARRARY [0..7]

OF BYTE
Time data to set

_RTC_TIME_USER[0] BYTE Year data of time to set

_RTC_TIME_USER[1] BYTE Month data of time to set

_RTC_TIME_USER[2] BYTE Day data of time to set

_RTC_TIME_USER[3] BYTE Hour data of time to set

_RTC_TIME_USER[4] BYTE Minute data of time to set

_RTC_TIME_USER[5] BYTE Second data of time to set

_RTC_TIME_USER[6] BYTE Day of the week data of time to set

_RTC_TIME_USER[7] BYTE Year of hundred data of time to set

_RTC_DATE WORD Present data of RTC

_RTC_WEEK WORD Present a day of the week of RTC

_RTC_TOD DWORD Present time of RTC (ms unit)

_BASE_INFO
ARRARY [0..7]

OF WORD
Slot information of main and extension base

 Appendix 2 Flag List (XGI)

A2-6

Reserved Variable Data Type Description

_RBANK_NUM WORD Block number currently used

_AC_F_CNT WORD Instantaneous AC failure frequency

_FALS_NUM WORD FALS number

Appendix 2 Flag List (XGI)

A2-7

A2.7 High-speed Link Flag (* = 0 ~ 12, *** = 000 ~ 127)

Reserved Variable Data Type Description

_HS*_RLINK BOOL Every station of high speed link no.* normally works

_HS*_LTRBL BOOL Abnormal status after _HS*RLINK on

_HS*_STATE*** BOOL General status of *** block of high speed link no.*

_HS*_MOD*** BOOL Run operation mode of *** block of high speed link no.*

_HS*_TRX*** BOOL Normal communication with *** block station of high speed link no.*

_HS*_ERR*** BOOL Run error mode of *** block station of high speed link no.*

_HS*_SETBLOCK*** BOOL *** block setting of high speed link no.*

A2.8 P2P Flag (* = 0 ~ 8, ** = 0 ~ 63)

Reserved Variable Data Type Description

_P2P*_NDR** BOOL ** block service of P2P no.* completed successfully

_P2P*_ERR** BOOL ** block service of P2P no.* completed abnormally

_P2P*_STATUS** WORD Error code in case of ** block service of P2P no.*

_P2P*_SVCCNT** DWORD ** block normal service frequency of P2P no.*

_P2P*_ERRCNT** DWORD ** block abnormal service frequency of P2P no.*

A2.9 PID Flag (* = 0 ~ 7, ** = 0 ~ 31)

Reserved Variable Data Type Description

_PID*_MAN DWORD PID output selection(0:auto ,1:manual) – block*

PID***MAN BOOL PID output selection(0:auto ,1:manual) - block* loop**

_PID*_PAUSE DWORD PID pause (0:STOP/RUN ,1:PAUSE) – block*

PID***PAUSE BOOL PID pause (0:STOP/RUN ,1:PAUSE) – block* loop**

_PID*_REV DWORD PID operation selection(0:forward ,1:reverse) – block*

PID***REV BOOL PID operation selection(0:forward ,1:reverse) – block* loop**

_PID*_AW2D DWORD PID Anti Wind-up2 prohibited(0:enable ,1:disable) – block*

PID***AW2D BOOL PID Anti Wind-up2 prohibited(0:enable ,1:disable) – block* loop**

_PID*_REM_RUN DWORD PID remote(HMI) execution bit (0:STOP ,1:RUN) – block*

PID***REM_RUN DWORD PID remote(HMI) execution bit (0:STOP ,1:RUN) – block* loop**

_PID*_P_on_PV DWORD PID proportional(P) cal source selection (0:ERR, 1:PV) – block*

PID***P_on_PV BOOL PID proportional(P) cal source selection (0:ERR, 1:PV) - block* loop**

_PID*_D_on_ERR DWORD PID differential(D) cal source selection (0:PV, 1:ERR) – block*

 Appendix 2 Flag List (XGI)

A2-8

Reserved Variable Data Type Description

PID***D_on_ERR BOOL PID differential(D) cal source selection (0:PV, 1:ERR) - block* loop**

_PID*_AT_EN DWORD PID auto tuning setting (0:Disable, 1:Enable) – block*

PID***AT_EN BOOL PID auto tuning setting (0:Disable, 1:Enable) – block* loop**

_PID*_MV_BMPL DWORD
PID mode change(A/M) - MV no impact change setting (0:Disable,

1:Enable) – block*

PID***MV_BMPL BOOL
PID mode change(A/M) - MV smoothing setting (0:Disable, 1:Enable) –

block* loop**

PID***SV INT PID target value (SV) – block* loop**

PID***T_s WORD PID operation cycle (T_s)[0.1ms] – block* loop**

PID***K_p REAL PID P - constant (K_p) – block* loop**

PID***T_i REAL PID I - constant (T_i)[sec] – block* loop**

PID***T_d REAL PID D - constant (T_d)[sec] – block* loop**

PID***d_PV_max WORD PID PV variation limit – block* loop**

PID***d_MV_max WORD PID MV variation limit – block* loop**

PID***MV_max INT PID MV max. value limit – block* loop**

PID***MV_min INT PID MV min. value limit – block* loop**

PID***MV_man INT PID manual output (MV_man) – block* loop**

PID***STATE WORD PID State – block* loop**

PID***ALARM0 BOOL PID Alarm 0 (1:T_s setting is low) – block* loop**

PID***ALARM1 BOOL PID Alarm 1 (1:K_p is 0) – block* loop**

PID***ALARM2 BOOL PID Alarm 2 (1:PV variation is limited) – block* loop**

PID***ALARM3 BOOL PID Alarm 3 (1:MV variation is limited) – block* loop**

PID***ALARM4 BOOL PID Alarm 4 (1:MV max. value is limited) – block* loop**

PID***ALARM5 BOOL PID Alarm 5 (1:MV min. value is limited) – block* loop**

PID***ALARM6 BOOL PID Alarm 6 (1:AT abnormal cancellation) – block* loop**

PID***ALARM7 BOOL PID Alarm 7 – block* loop**

PID***STATE0 BOOL PID State 0 (0:PID_STOP, 1:PID_RUN) – block* loop**

PID***STATE1 BOOL PID State 1 (0:AT_STOP, 1:AT_RUN) – block* loop**

PID***STATE2 BOOL PID State 2 (0:AT_UNDONE, 1:DONE) – block* loop**

PID***STATE3 BOOL PID State 3 (0:REM_STOP, 1:REM_RUN) – block* loop**

PID***STATE4 BOOL PID State 4 (0:AUTO_OUT, 1:MAN_OUT) – block* loop**

PID***STATE5 BOOL PID State 5 (0:CAS_STOP, 1:CAS_RUN) – block* loop**

PID***STATE6 BOOL PID State 6 (0:SLV/SINGLE, 1:CAS_MST) – block* loop**

PID***STATE7 BOOL PID State 7 (0:AW_STOP, 1:AW_ACT) – block* loop**

Appendix 2 Flag List (XGI)

A2-9

Reserved Variable Data Type Description

PID***PV INT PID present value (PV) – block* loop**

PID***PV_old INT PID previous value (PV_old) – block* loop**

PID***MV INT PID output value (MV) – block* loop**

PID***MV_BMPL_val INT
PID no impact operation memory (user setting prohibited) – block*

loop**

PID***ERR DINT PID control error value – block* loop**

PID***MV_p REAL PID output P element – block* loop**

PID***MV_i REAL PID output I element – block* loop**

PID***MV_d REAL PID output D element – block* loop**

PID***DB_W WORD PID deadband setting (operation after stabilization) – block* loop**

PID***Td_lag WORD PID differential function LAG filter – block* loop**

PID***AT_HYS_val WORD PID auto tuning hysteresis setting – block* loop**

PID***AT_SV INT PID auto tuning SV setting – block* loop**

PID***AT_step WORD PID auto tuning status (user setting prohibited) – block* loop**

PID***INT_MEM WORD PID internal memory (user setting prohibited) – block* loop**

 Appendix 2 Flag List (XGI)

A2-10

Appendix 3 Flag List (XGR)

A3-1

Appendix 3 Flag list (XGR)
Appendix 3.1 User Flag

1. User flag

Address Flag name Type Writable Contents Description

%FX6144 _T20MS BOOL - 20ms cycle clock Clock signal used in user program reverses on/off per half cycle

Use more enough long clock signal than PLC scan time.

Clock signal starts from off condition when initialization program
starts or scan program starts.

_T100ms clock example
 50ms 50ms

%FX6145 _T100MS BOOL - 100ms cycle clock

%FX6146 _T200MS BOOL - 200ms cycle clock

%FX6147 _T1S BOOL - 1s cycle clock

%FX6148 _T2S BOOL - 2s cycle clock

%FX6149 _T10S BOOL - 10s cycle clock

%FX6150 _T20S BOOL - 20s cycle clock

%FX6151 _T60S BOOL - 60s cycle clock

%FX6153 _ON BOOL - Ordinary time On Always on state flag, used when writing user program.

%FX6154 _OFF BOOL - Ordinary time Off Always off state flag, used when writing user program.

%FX6155 _1ON BOOL - 1’st scan On Only first scan on after operation start

%FX6156 _1OFF BOOL - 1’st scan Off Only first scan off after operation start

%FX6157 _STOG BOOL -
Reversal every scan
(scan toggle)

On/Off reversed flag per every scan when user program is
working. (on state for first scan)

%FX6163 _ALL_OFF BOOL - All output Off On in case all outputs are off

%FX30720 _RTC_WR BOOL Available Writing data to RTC Write data to RTC and read

%FX30721 _SCAN_WR BOOL Available Initialize scan value
Initialize scan value

%FX30722 _CHK_ANC_ERR BOOL Available
Request for detecting heavy

fault of external device
Flag that requests detecting heavy fault of external

%FX30723 _CHK_ANC_WAR BOOL Available
Request for detecting light fault

of external device
Flag that requests detecting light fault (warning) of external

%FX30724 _MASTER_CHG BOOL Available Master/Standby switching Flag used when switching master/standby

%FW3860 _RTC_TIME_USER
ARRAY[0..7]

OF BYTE
Available Time to set

Flag for user to set time
(year, month, hour, minute, second, day, century available)

 Appendix 3 Flag List (XGR)

A3-2

Appendix 3.2 System Error Representative Flag
Master CPU system error representative flag

Address Flag name Type Bit position Contents Description

%FD65 _CNF_ER DWORD
Represent
ative flag

System error (heavy fault
error)

Handles error flags about non-operation fault error as
below.

%FX2081 _IO_TYER BOOL BIT 1
Error when Module type
mismatched

Representative flag displays when I/O
configuration parameter for each slot is not matched with
practical module configuration or a specific module is
applied in the wrong location.
(Refer to “_IO_TYER_N, _IO_TYER[n]”)

%FX2082 _IO_DEER BOOL BIT 2
Module detachment
error

Representative flag displays when the module
configuration for each slot is changed while running.
(Refer to “_IO_DEER_N, _IO_DEER[n]”)

%FX2083 _FUSE_ER BOOL BIT 3 Fuse cutoff error
Representative flag displays when the fuse of module is
cut off.
(Refer to “_FUSE_ER_N, _FUSE_ER[n]”)

%FX2086 _ANNUM_ER BOOL BIT 6
Heavy fault detection
error in external device

Representative flag displays when heavy fault error
detected by user program is recorded in “_ANC_ERR[n]”.

%FX2088 _BPRM_ER BOOL BIT 8 Basic parameter error Basic parameter does not match CPU type.

%FX2089 _IOPRM_ER BOOL BIT 9 I/O parameter error It is abnormal to the I/O configuration parameter.

%FX2090 _SPPRM_ER BOOL BIT 10
Special module
parameter error

It is abnormal to the special module parameter.

%FX2091 _CPPRM_ER BOOL BIT 11
Communication module
parameter error

It is abnormal to the communication module parameter.

%FX2092 _PGM_ER BOOL BIT 12 Program error Indicates that there is problem with user-made program.

%FX2093 _CODE_ER BOOL BIT 13 Program code error
Indicates that while user program is running, the program
code cannot be interpreted.

%FX2094 _SWDT_ER BOOL BIT 14 CPU abnormal ends.
Displays when the saved program gets damages by an
abnormal end of CPU or program does not work.

%FX2095
_BASE_POWE

R_ER
BOOL BIT 15 Abnormal base power Base power off or power module error

%FX2096 _WDT_ER BOOL BIT 16 Scan watchdog error
Indicates that the program scan time exceeds the scan
watchdog time specified by a parameter.

%FX2097
_BASE_INFO_E

R
BOOL BIT 17 Base information error Base information is abnormal

%FX2102 _BASE_DEER BOOL BIT 22
Extension base
detachment error Extension base is detatched

%FX2103
_DUPL_PRM_E

R
BOOL BIT 23

Redundant parameter
error Abnormal Redundant parameter

%FX2104 _INSTALL_ER BOOL BIT 24
Module attachment
position error

The module which cannot be inserted into main base is

inserted in to main base or The module which cannot be

Appendix 3 Flag List (XGR)

A3-3

Address Flag name Type Bit position Contents Description

inserted into extension base is inserted in to extension base

%FX2105 _BASE_ID_ER BOOL BIT 25
Overlapped extension
base number extension base number is overlapped

%FX2106
_DUPL_SYNC_

ER
BOOL BIT 26

Redundant operation
Sync. error

Synchronization between master and standby CPU is

abnormal

%FX2107
_AB_SIDEKEY_

ER
BOOL BIT 27

A/B SIDE key overlap
error

A,B side key of master, standby CPU are overlapped. They

should be different.

 Standby CPU System error representative flag

Address Flag name Type Bit position Contents Description

%FD129 _SB_CNF_ER DWORD
Represent
ative flag

System error (heavy
fault error)

Handles error flags about non-operation fault error .

%FX4129 _SB_IO_TYER BOOL BIT 1
Module type mismatch
error

Attached module is different with I/O parameter or some
module which cannot be inserted into some slot is inserted
some slot. Representative flag that detects them and
displays
(refer to _SB_IO_TYER_N, _SB_IO_TYERR)

%FX4130 _SB_IO_DEER BOOL BIT 2
Module detachment
error

Representative flag displays when the module
configuration for each slot is changed while running.
 (refer to _SB_IO_DEER_N,_SB_IO_DEERR]

%FX4131 _SB_FUSE_ER BOOL BIT 3 Fuse cutoff error Representative flag displays when the fuse of module is
cut off.

%FX4134 _SB_ANNUM_ER BOOL BIT 6
Heavy fault detection
error in external device

Representative flag displays when heavy fault error
detected by user program is recorded in “_ANC_ERR[n]”.

%FX4136 _SB_BPRM_ER BOOL BIT 8 Basic parameter error Basic parameter does not match CPU type.

%FX4137 _SB_IOPRM_ER BOOL BIT 9 I/O parameter error It is abnormal to the I/O configuration parameter

%FX4138 _SB_SPPRM_ER BOOL BIT 10
Special module
parameter error

It is abnormal to the special module parameter.

%FX4139 _SB_CPPRM_ER
BOOL

BIT 11
Communication
module parameter
error

It is abnormal to the communication module parameter.

%FX4141 _SB_CODE_ER BOOL BIT 13 Program code error
Indicates that while user program is running, the program
code cannot be interpreted.

%FX4142 _SB_SWDT_ER BOOL BIT 14 CPU abnormal ends.
Displays when the saved program gets damages by an
abnormal end of CPU or program cannot work.

%FX4143
_SB_BASE_POWE

R_ER
BOOL BIT 15 Abnormal base power Base power off or power module error

%FX4144 _SB_WDT_ER BOOL BIT 16 Scan watchdog error
Indicates that the program scan time exceeds the scan
watchdog time specified by a parameter.

%FX4145 _SB_BASE_INFO_ BOOL BIT 17 Base information error Base information is abnormal

 Appendix 3 Flag List (XGR)

A3-4

Address Flag name Type Bit position Contents Description

ER

%FX4150 _SB_BASE_DEER BOOL BIT 22
Extension base
detachment error Extension base is detached.

%FX4151
_SB_DUPL_PRM_

ER
BOOL BIT 23

Abnormal redundant
parameter Redundant parameter is abnormal

%FX4152 _SB_INSTALL_ER BOOL BIT 24
Module attachment
position error

The module which cannot be inserted into main base is

inserted in to main base or the module which cannot be

inserted into extension base is inserted in to extension base

%FX4153 _SB_BASE_ID_ER BOOL BIT 25
Overlapped extension
base number Extension base number overlaps.

%FX4154
_SB_DUPL_SYNC

_ER
BOOL BIT 26

Redundant operation
Sync. error

Synchronization between master and standby CPU is

abnormal

%FX4156
_SB_CPU_RUN_E

R
BOOL BIT 28 Standby CPU run error

Standby CPU fails to join redundant operation when
MASTER CPU is error

Appendix 3.3 System Error Detail Flag
Master CPU system error detail flag

Address Flag name Type Writable Contents Description

%FW424 _IO_TYERR
ARRAY[0..31]

OF WORD
- Module type mismatch error

Indicates slot and base where module mismatch error
occurs.

%FW456 _IO_DEERR
ARRAY[0..31]

OF WORD
- Module detachment error

Indicates slot and base where module detachment error
occurs.

%FW488 _FUSE_ERR
ARRAY[0..31]
OF WORD

- Fuse cutoff error Indicates slot and base where fuse cutoff error occurs.

%FD83 _BASE_DEERR DWORD -
Extension base detachment

error
Indicates base where extension base is detached.

%FD574
_BASE_POWER

_FAIL
DWORD -

Information of base where

power module error occurs
Indicates base where power module error occurs.

%FW416 _IO_TYER_N WORD -
Module type mismatch slot

number

Indicates slot number where module type mismatch error
occurs. When two or more occurs, first slot indicates.

%FW417 _IO_DEER_N WORD -
Module detachment slot

number

Indicates slot number where module detachment error
occurs. When two or more occurs, first slot indicates.

%FW418 _FUSE_ER_N WORD - Fuse cutoff slot number
Indicates slot number Fuse cutoff error occurs. When two
or more occurs, first slot indicates.

%FW1922 _ANC_ERR WORD
Availabl

e

Heavy fault information of

external device

Classifies the type of user-defined error and writes value
except 0. If detection of heavy fault is requested, it
develops an external heavy fault detection error. By
monitoring this flag, the user can know a reason of heavy
fault.

Appendix 3 Flag List (XGR)

A3-5

2. Standby CPU system error detail flag

Address Flag name Type Writable Contents Description

%FD147 _SB_BASE_DEERR DWORD - Extension base detachment

error

Indicates base where extension base is
detached.

%FW588 _SB_IO_TYERR WORD - Module type mismatch error
Indicates slot and base where module
mismatch error occurs.

%FW589 _SB_IO_DEERR WORD - Module detachment error
Indicates slot and base where module
detachment error occurs.

Appendix 3.4 System Warning Representative Flag
 MASTER CPU System warning representative flag

Address Flag name Type Bit position Contents Description

%FD66 _CNF_WAR DWORD
Representative

flag
System warning

Representative flag displayed the system

warning state.

%FX2112 _RTC_ER BOOL BIT 0 RTC error Indicates that RTC data is abnormal.

%FX2114 _BASE_EXIST_WAR BOOL BIT 2 Not joined base
Warns there is base which doesn’t join
operation.

%FX2115 _AB_SD_ER BOOL BIT 3 Stop by operation error Stopped by abnormal operation.

%FX2116 _TASK_ER BOOL BIT 4 Task collision It is collided to the task.

%FX2117 _BAT_ER BOOL BIT 5 Battery error It has the error in the battery state.

%FX2118 _ANNUM_WAR BOOL BIT 6 External device fault Indicates that the light fault in the external
device is detected.

%FX2120 _HS_WAR BOOL BIT 8 High speed link Abnormal HS parameter

%FX2121 _REDUN_WAR BOOL BIT 9
Redundant
configuration warning

The single CPU RUN mode and redundant
configuration is not configured

%FX2122 _OS_VER_WAR BOOL BIT 10 O/S version mismatch
OS versions between CPUs, extension
managers, extension drive modules are
different.

%FX2123 _RING_WAR BOOL BIT 11
Ring topology
configuration warning

Configure an extension cable as the Ring
topology.

%FX2132 _P2P_WAR BOOL BIT 20 P2P parameter Abnormal P2P parameter

%FX2140 _CONSTANT_ER BOOL BIT 28 Fixed cycle error Fixed cycle error

%FX2141 _BASE_POWER_WAR BOOL BIT 29
Power module error
warning

One or two power module is error

%FX2142 _BASE_SKIP_WAR BOOL BIT 30
Base skip cancelation
warning

In case of canceling the base skip, base is

different with IO parameter

%FX2143 _BASE_NUM_OVER_WAR BOOL BIT 31
Base number setting
error

Base number of extension drive module is
not 1~31

 Appendix 3 Flag List (XGR)

A3-6

 Standby CPU System warning representative flag
Address Flag name Type Bit position Contents Description

%FD130 _SB_CNF_WAR DWORD
Represent
ative flag

System warning
Representative flag displayed the system

warning state

%FX4160 _SB_RTC_ER BOOL BIT 0 RTC error Indicates that RTC data is abnormal

%FX4162
_SB_BASE_EXIST_

WAR
BOOL BIT 2 Not joined base Warns there is base which does not join operation.

%FX4163 _SB_AB_SD_ER BOOL BIT 3 Stop by operation error Stopped by abnormal operation

%FX4164 _SB_TASK_ER BOOL BIT 4 Task collision It is collided to the task

%FX4165 _SB_BAT_ER BOOL BIT 5 Battery error It is to the error in the battery state

%FX4166 _SB_ANNUM_WAR BOOL BIT 6 External device fault Indicates that the light fault in the external device is
detected.

%FX4168 _SB_HS_WAR BOOL BIT 8 High speed link Abnormal HS parameter

%FX4170 _SB_OS_VER_WAR BOOL BIT 10 O/S version mismatch
OS versions between CPUs, extension managers,
extension drive modules are different

%FX4171 _SB_RING_WAR BOOL BIT 11
Ring topology
configuration warning

Configure an extension cable as the Ring topology

%FX4180 _SB_P2P_WAR BOOL BIT 20 P2P parameter Abnormal P2P parameter

%FX4188

_SB_CONSTANT_E

R
BOOL BIT 28 Fixed cycle error Fixed cycle error

%FX4189
_SB_BASE_POWER

_WAR
BOOL BIT 29

Power module error
warning

One or two power module is error

%FX4190
_SB_BASE_SKIP_W

AR
BOOL BIT 30

Base skip cancelation
warning

In case of canceling the base skip, base is different
with IO parameter

%FX4191
_SB_BASE_NUM_O

VER_WAR
BOOL BIT 31 Base number setting error Base number of extension drive module is not 1~31

Appendix 3 Flag List (XGR)

A3-7

Appendix 3.5 System Warning Detail Flag
 Master CPU system warning detail flag

Address Flag name Type Writable Contents Description

%FX2624 _HS_WARN
ARRAY[0..11] OF

BOOL
- Abnormal HS parameter

Relevant flag is on in case Hs parameter is
abnormal

%FX2640 _P2P_WARN ARRAY[0..7] OF BOOL - Abnormal P2P parameter
Relevant flag is on in case P2P parameter is
abnormal P2P

%FD587
_BASE_ACPF

_WAR
DWORD -

Instantaneous power cutoff

occurrence warning information

Indicates base where Instantaneous power
cutoff occurs

%FW164 _HS_WAR_W WORD - Abnormal HS parameter Indicates abnormal HS link number by bit

%FW165 _P2P_WAR_W WORD - Abnormal P2P parameter Indicates abnormal P2P link number by bit

%FW1923 _ANC_WAR WORD -
Light fault information external

device

Classifies the type of user-defined error and
writes value except 0. If detection of heavy
fault is requested, it develops an external light
fault detection error. By monitoring this flag,
the user can know the reason of light fault.

Standby CPU system warning detail flag

Address Flag name Type Writable Contents Description

%FX4672
_SB_HS_WA

RN

ARRAY[0..11] OF

BOOL
- Abnormal HS parameter

Relevant flag is on, in case Hs parameter is
abnormal

%FX4688
_SB_P2P_WA

RN
ARRAY[0..7] OF BOOL - Abnormal P2P parameter

Relevant flag is on, in case P2P parameter is
abnormal P2P

%FW292
_SB_HS_WA

R_W
WORD - Abnormal HS parameter Indicates abnormal HS link number by bit

%FW293
_SB_P2P_WA

R_W
WORD - Abnormal P2P parameter Indicates abnormal P2P link number by bit

 Appendix 3 Flag List (XGR)

A3-8

Appendix 3.6 System Operation Status Information Flag
Master CPU system operation status information flag

Address Flag name Type
Bit

position
Contents Description

%FD64 _SYS_STATE DWORD
Represen
tative flag

PLC Mode and operation
state Indicates PLC mode and operation state of system.

%FX2048 _RUN BOOL BIT 0 RUN

Indicates CPU’s operation status
%FX2049 _STOP BOOL BIT 1 STOP

%FX2050 _ERROR BOOL BIT 2 ERROR

%FX2051 _DEBUG BOOL BIT 3 DEBUG

%FX2052 _LOCAL_CON BOOL BIT 4 Local control Indicates operation mode changeable state only by
the Mode key and XG5000.

%FX2054 _REMOTE_CON BOOL BIT 6 Remote Mode On It is Remote control mode

%FX2058
_RUN_EDIT_DON

E
BOOL BIT 10

Editing during Run
completed

Indicates completion of editing during Run

%FX2059 _RUN_EDIT_NG BOOL BIT 11
Editing during Run
abnormally completed

Edit is ended abnormally during Run

%FX2060 _CMOD_KEY BOOL BIT 12
Operation mode change
by key Indicates Operation mode change by key

%FX2061 _CMOD_LPADT BOOL BIT 13
Operation mode change
by local PADT Indicates operation mode change by local PADT

%FX2062 _CMOD_RPADT BOOL BIT 14
Operation mode change
by remote PADT Indicates operation mode change by remote PADT

%FX2063 _CMOD_RLINK BOOL BIT 15

Operation mode change
by remote communication
module

Indicates operation mode change by remote

communication module

%FX2064 _FORCE_IN BOOL BIT 16 Forced Input Forced On/Off state about input contact

%FX2065 _FORCE_OUT BOOL BIT 17 Forced Output Forced On/Off state about output contact

%FX2066 _SKIP_ON BOOL BIT 18 Input/Output Skip I/O Skip on execution

%FX2067 _EMASK_ON BOOL BIT 19 Fault mask Fault mask on execution

%FX2069 _USTOP_ON BOOL BIT 21
Stopped by STOP
function

Stopped after scan completion by ‘STOP’ function
while RUN mode operation.

%FX2070 _ESTOP_ON BOOL BIT 22
Stopped by ESTOP
function

Instantly stopped by ‘ESTOP’ function while
RUN mode operation.

%FW192 _SL_OS_VER
ARRAY[0..31]

OF WORD
-

O/S version of extension
drive module

Indicates O/S version of extension drive module

%FW600 _BASE_INFO
ARRAY[0..31]

OF WORD
- Base information Indicates how many base is installed

%FB12 _RTC_TIME
ARRAY[0..7] OF

BYTE
- Current clock Indicates current clock

%FX2072 _INIT_RUN BOOL -
Initialization task on
execution User-defined Initialization program on execution.

Appendix 3 Flag List (XGR)

A3-9

Address Flag name Type
Bit

position
Contents Description

%FX2074 _AB_SIDE BOOL - CPU position CPU position (A-SIDE: ON, B-SIDE: OFF)

%FX2076 _PB1 BOOL - Program Code 1 Program code 1 is selected

%FX2077 _PB2 BOOL - Program Code 2 Program code 1 is selected

%FX30736 _INIT_DONE BOOL writable
Initialization task execution
completion

If this flag is set by user’s initial program, it is started to
execution of scan program after initial program
completion.

%FW584 _RTC_DATE DATE - RTC’s current date Indicates RTC’s current date

%FD67 _OS_VER DWORD - O/S version Indicates CPU O/S version

%FD68 _OS_DATE DWORD - O/S data Indicates CPU O/S data

%FD69 _CP_OS_VER DWORD -
Extension manager O/S
version

Indicates extension manager O/S version

%FD573 _OS_TYPE DWORD - For PLC classification Whether it is provided to other division

%FW1081 _FALS_NUM INT - FALS number Indicates FALS number

%FD293 _RTC_TOD TIME_OF_DAY - RTC’s current clock Indicates RTC’s current clock RTC. (ms unit)

%FD582 _RUN_EDIT_CNT UDINT -
The no. of editing during
Run

Indicates the no. of editing during Run

%FW140 _AC_F_CNT UINT -
The no. of instantaneous
power cutoff

Indicates the no. of instantaneous power cutoff

%FW158
_POWER_OFF_C

NT
UINT - The no. of power cutoff Indicates the no. of power cutoff

%FW386 _SCAN_MAX UINT writable Max. scan time Indicates max. scan time after(unit: 0.1ms)

%FW387 _SCAN_MIN UINT writable Min. scan time Indicates min. scan time after Run

%FW388 _SCAN_CUR UINT writable Current scan time Indicates current scan time (unit 0.1ms)

%FW585 _RTC_WEEK UINT - RTC’s current day Indicates RTC’s current day

%FW141 _CPU_TYPE WORD - CPU ID (XGR - 0xA801) Indicates CPU type

%FW633 _RBANK_NUM WORD - Currently used block no. Indicates currently used block no.

Standby CPU system operation status information flag

Address Flag name Type
Bit

position
Contents Description

%FD128 _SB_SYS_STATE DWORD
Represen
tative flag System information Handles system information

%FX4096 _SB_RUN BOOL BIT 0 RUN

Indicates CPU’s operation status %FX4097 _SB_STOP BOOL BIT 1 STOP

%FX4098 _SB_ERROR BOOL BIT 2 ERROR

%FX4100 _SB_LOCAL_CON BOOL BIT 4 Local control Local control mode

javascript:flink(%22initialize%22);

 Appendix 3 Flag List (XGR)

A3-10

Address Flag name Type
Bit

position
Contents Description

%FX4102
_SB_REMOTE_CO

N
BOOL BIT 6 Remote mode On Remote control mode

%FX4106
_SB_RUN_EDIT_D

ONE
BOOL BIT 10

Editing during Run
completed

Indicates completion of editing during Run

%FX4107
_SB_RUN_EDIT_N

G
BOOL BIT 11

Editing during Run
abnormally completed

Edit is ended abnormally during Run

%FX4108 _SB_CMOD_KEY BOOL BIT 12
Operation mode change by
key Indicates Operation mode change by key

%FX4109
_SB_CMOD_LPAD

T
BOOL BIT 13

Operation mode change by
local PADT Indicates operation mode change by local PADT

%FX4110
_SB_CMOD_RPAD

T
BOOL BIT 14

Operation mode change by
remote PADT Indicates operation mode change by remote PADT

%FX4111 _SB_CMOD_RLINK BOOL BIT 15

Operation mode change by
remote communication
module

Indicates operation mode change by remote

communication module

%FX4112 _SB_FORCE_IN BOOL BIT 16 Forced Input Forced On/Off state about input contact

%FX4113 _SB_FORCE_OUT BOOL BIT 17 Forced Output Forced On/Off state about output contact

%FX4114 _SB_SKIP_ON BOOL BIT 18 Input/Output Skip I/O Skip on execution

%FX4115 _SB_EMASK_ON BOOL BIT 19 Fault mask Fault mask on execution

%FX4117 _SB_USTOP_ON BOOL - Stopped by STOP function Stopped after scan completion by ‘STOP’ function while
RUN mode operation.

%FX4118 _SB_ESTOP_ON BOOL -
Stopped by ESTOP
function

Instantly stopped by ‘ESTOP’ function while
RUN mode operation.

%FD131 _SB_OS_VER DWORD - O/S version Indicates CPU O/S version

%FD132 _SB_OS_DATE DWORD - O/S data Indicates CPU O/S data

%FD133 _SB_CP_OS_VER DWORD -
O/S version of extension
drive module

Indicates O/S version of extension drive module

%FW286
_SB_POWER_OFF

_CNT
UINT - The no. of power cutoff Indicates the no. of power cutoff

%FW269 _SB_CPU_TYPE WORD - CPU ID (XGR - 0xA801) Indicates CPU type

%FW632 _SB_BASE_INFO WORD - Base information Indicates how many base installed.

Appendix 3 Flag List (XGR)

A3-11

Appendix 3.7 Redundant Operation Mode Information Flag

 Redundant operation mode information

Address Flag name Type
Bit

position
Contents Description

%FD0 _REDUN_STATE DWORD
Represen
tative flag

Redundant operation
information

Representative flag that indicates Redundant operation
information

%FX0 _DUAL_RUN BOOL BIT 0 Redundant operation Now Redundant operation CPU A, CPU B are normal

%FX1
_RING_TOPOLOG

Y
BOOL BIT 1 Ring topology status Extension base is configure as ring

%FX2 _LINE_TOPOLOGY BOOL BIT 2 Line topology status Extension base is configure as line

%FX4 _SINGLE_RUN_A BOOL BIT 4 A-SIDE single Run mode Indicates A-SIDE single Run mode

%FX5 _SINGLE_RUN_B BOOL BIT 5 B-SIDE single Run mode Indicates B-SIDE single Run mode

%FX6 _MASTER_RUN_A BOOL BIT 6

A-SIDE is master Run

mode (Incase standby

CPU exists)

Indicates A-SIDE is master Run mode

%FX7 _MASTER_RUN_B BOOL BIT 7

B-SIDE is master Run

mode (Incase standby

CPU exists)

Indicates B-SIDE is master Run mode

Appendix3.8 Operation Result Information Flag

Operation Result Information Flag

Address Flag name Type Writable Contents Description

%FX672 _ARY_IDX_ERR BOOL Writable
Index range excess error in

case of using array
In case of using array, index is out of setting value’s range

%FX704 _ARY_IDX_LER BOOL Writable
Index range excess error

latch in case of using array

Error occurred when index is out of setting value’s range, in
case of using array, is kept and the user erases this by
program

%FX6160 _ERR BOOL Writable Operation error flag
As an operation error flag by unit of operation function (FN)
or function block (FB), it is renewed every operation

%FX6165 _LER BOOL Writable Operation error latch flag

Operation error latch flag by program block (PB) unit.
Error is kept until relevant program ends and the user erases
this by program.

 Appendix 3 Flag List (XGR)

A3-12

Appendix 3.9 Operation mode Key Status Flag

 Operation mode key status flag

Address Flag name Type Writable Contents Description

%FX291 _REMOTE_KEY BOOL -
Remote key status
information

CPU key position status information (remote: off, not remote:
On)

%FX294 _STOP_KEY BOOL - Stop key status information CPU key position status information (Stop: off, not stop: On)

%FX295 _RUN_KEY BOOL - Run key status information CPU key position status information (Run: off, not Run: On)

Appendix 3 Flag List (XGR)

A3-13

Appendix 3.10 Link Flag (L) List
 It describes data link (L) flag

[Table 1.10.1] Communication Flag List according to High speed link no. (High speed link no. 1 ~ 12)

Item Keyword Type Content Description

HS link

_HSn_RLINK Bit

High speed link
parameter “n”
normal operation
of all station

Indicates normal operation of all station according to parameter set in High
speed link, and on under the condition as below.
1. In case that all station set in parameter is RUN mode and no error.
2. All data block set in parameter is communicated normally.
3. The parameter set in each station itself is communicated normally.

Once RUN_LINK is On, it keeps On unless stopped by LINK_DISABLE.

_HSn_LTRBL Bit

Abnormal state
after
_HSn_RLINK
ON

In the state of _HSmRLINK flag On, if communication state of the station
set in the parameter and data block is as follows, this flag shall be on.
1. In case that the station set in the parameter is not RUN mode, or
2. There is an error in the station set in the parameter, or
3. The communication state of data block set in the parameter is not good.

LINK TROUBLE shall be on if the above 1, 2 & 3 conditions occur, and if
the condition return to the normal state, it shall be off again.

_HSn_STATE[k]
(k=000~127)

Bit
Array

High speed link
parameter “n”, k
block general
state

Indicates the general state of communication information for each data
block of setting parameter.

HS1STATEk=HS1MODk&_HS1TR X k&(~_HSnERRk)

_HSn_MOD[k]
(k=000~127)

Bit
Array

High speed link
parameter “n”, k
block station
RUN operation
mode

Indicates operation mode of station set in k data block of parameter.

_HSn_TRX[k]
(k=000~127)

Bit
Array

Normal
communication
with High speed
link parameter
“n”, k block
station

Indicates if communication state of k data of parameter is communicated
smoothly according to the setting.

_HSn_ERR[k]
(k=000~127)

Bit
Array

High speed link
parameter “n”, k
block station
operation error
mode

Indicates if the error occurs in the communication state of k data block of
parameter.

_HSn_SETBLOCK[k]
bit
Array

High speed link
parameter “n”, k
block setting

Indicates whether or not to set k data block of the parameter.

 Appendix 3 Flag List (XGR)

A3-14

[Table 2] Communication Flag List according to P2P Service Setting
 P2P parameter no.(n) : 1~8, P2P block(xx) :

0~63
No. Keyword Type Contents Description

P2P

_P2Pn_NDRxx Bit
P2P parameter n, xx
Block service normal
end

Indicates P2P parameter n, xx Block service normal end

_P2Pn_ERRxx Bit
P2P parameter n, xx
Block service abnormal
end

Indicates P2P parameter n, xx Block service abnormal end

_P2Pn_STATUSxx Word
P2P parameter n, xx
Block service abnormal
end error Code

Indicates error code in case of P2P parameter n, xx Block
service abnormal end

_P2Pn_SVCCNTxx Double
word

P2P parameter n, xx
Block service normal
count

Indicates P2P parameter n, xx Block service normal count

_P2Pn_ERRCNTxx Double
word

P2P parameter n, xx
Block service abnormal
count

Indicates P2P parameter n, xx Block service abnormal count

Notes

High Speed Link no. L area address Remarks

1 L000000~L00049F Comparing with High speed link 1 from [Table 1], the flag address of different
high speed link station no. is as follows by a simple calculation formula.

∗ Calculation formula : L area address =

L000000 + 500 x (High speed link no. – 1)

In case of using high speed line flag for program and monitoring, you can use
the flag map registered in XG5000 conveniently.

2 L000500~L00099F

3 L001000~L00149F

4 L001500~L00199F
5 L002000~L00249F
6 L002500~L00299F
7 L003000~L00349F
8 L003500~L00399F
9 L004000~L00449F
10 L004500~L00499F
11 L005000~L00549F

k means block no. and appears 8 words by 16 per 1 word for 128 blocks from 000~127.
For example, mode information (_HS1MOD) appears from block 0 to block 15 for L00010, and block 16~31, 32~47, 48~63, 64~79,
80~95, 96~111, 112~127 information for L00011, L00012, L00013, L00014, L00015, L00016, L00017. Thus, mode information of block
no. 55 appears in L000137.

Appendix 3 Flag List (XGR)

A3-15

Appendix 3.11 Communication Flag (P2P) List

Link Register List according to P2P No. P2P Parameter No. (n) : 1~8, P2P Block(xx) :
0~63

No. Flags Type Contents Description

N00000 _PnBxxSN Word P2P parameter n, xx block
another station no

Saves another station no. of P2P parameter 1, 00 block.
In case of using another station no. at XG-PD, it is possible to edit
during RUN by using P2PSN command.

N00001 ~
N00004 _PnBxxRD1 Device

structure
Area device 1 to read P2P
parameter n, xx block

Saves area device 1 to read P2P parameter n, xx block.

N00005 _PnBxxRS1 Word
Area size 1 to read P2P
parameter n, xx block

Saves area size 1 to read P2P parameter n, xx block.

N00006 ~
N00009 _PnBxxRD2 Device

structure
Area device 2 to read P2P
parameter n, xx block

Saves area device 2 to read P2P parameter n, xx block.

N00010 _PnBxxRS2 Word
Area size 2 to read P2P
parameter n, xx block

Saves area size 2 to read P2P parameter n, xx block.

N00011 ~
N00014 _PnBxxRD3 Device

structure
Area device 3 to read P2P
parameter n, xx block

Saves area device 3 to read P2P parameter n, xx block.

N00015 _PnBxxRS3 Word
Area size 3 to read P2P
parameter n, xx block

Saves area size 3 to read P2P parameter n, xx block.

N00016 ~
N00019 _PnBxxRD4 Device

structure
Area device 4 to read P2P
parameter n, xx block

Saves area device 4 to read P2P parameter n, xx block.

N00020 _PnBxxRS4 Word
Area size 4 to read P2P
parameter n, xx block

Saves area size 4 to read P2P parameter n, xx block.

N00021 ~
N00024 _PnBxxWD1 Device

structure
Area device 1 to save P2P
parameter n, xx block

Saves area device 1 to save P2P parameter n, xx block.

N00025 _PnBxxWS1 Word
Area size 1 to save P2P
parameter n, xx block

Saves area size 1 to save P2P parameter n, xx block.

N00026 ~
N00029 _PnBxxWD2 Device

structure
Area device 2 to save P2P
parameter n, xx block

Saves area device 2 to save P2P parameter n, xx block.

N00030 _PnBxxWS2 Word
Area size 2 to save P2P
parameter n, xx block

Saves area size 2 to save P2P parameter n, xx block.

N00031 ~
N00034 _PnBxxWD3 Device

structure
Area device 3 to save P2P
parameter n, xx block

Saves area device 3 to save P2P parameter n, xx block.

N00035 _PnBxxWS3 Word
Area size 3 to save P2P
parameter n, xx block

Saves area size 3 to save P2P parameter n, xx block.

N00036 ~
N00039 _PnBxxWD4 Device

structure
Area device 4 to save P2P
parameter n, xx block

Saves area device 4 to save P2P parameter n, xx block.

N00040 _PnBxxWS4 WORD
Area size 4 to save P2P
parameter n, xx block

Saves area size 4 to save P2P parameter n, xx block.

Notes

N area shall be set automatically when setting P2P parameter by using XG-PD and available to modify during RUN by using P2P
dedicated command.

N area has a different address classified according to P2P parameter setting no., block index. The area not used by P2P
service as address is divided and can be used by internal device.

 Appendix 3 Flag List (XGR)

A3-16

Appendix 3.12 Reserved Word
The reserved words are predefined words to use in the system.
Therefore, it is impossible to use them as the identifier.

Reserved Words
ACTION ... END_ACTION
ARRAY ... OF
AT
CASE ... OF ... ELSE ... END_CASE
CONFIGURATION ... END_CONFIGURATION
Name of Data Type
DATE#, D#
DATE_AND_TIME#, DT#
EXIT
FOR ... TO ... BY ... DO ... END_FOR
FUNCTION ... END_FUNCTION
FUNCTION_BLOCK ... END_FUNCTION_BLOCK
Names of Function Block
IF ... THEN ... ELSIF ... ELSE ... END_IF
OK
Operator (IL Language)
Operator (ST Language)
PROGRAM
PROGRAM ... END_PROGRAM
REPEAT ... UNTIL ... END_REPEAT
RESOURCE ... END_RESOURCE
RETAIN
RETURN
STEP ... END_STEP
STRUCTURE ... END_STRUCTURE
T#
TASK ... WITH
TIME_OF_DAY#, TOD#
TRANSITION ... FROM... TO ... END_TRANSITION
TYPE ... END_TYPE
VAR ... END_VAR
VAR_INPUT ... END_VAR
VAR_OUTPUT ... END_VAR
VAR_IN_OUT ... END_VAR
VAR_EXTERNAL ... END_VAR
VAR_ACCESS ... END_VAR
VAR_GLOBAL ... END_VAR
WHILE ... DO ... END_WHILE
WITH

Appendix 4 Flag List (XEC)

A4-1

Appendix 4 Flag List (XEC)
A4.1 Special Relay (F) List

Reserved variable Data type Contents

_SYS_STATE Mode and state Indicates PLC mode and operation State.

_RUN Run Run state.

_STOP Stop Stop state.

_ERROR Error Error state.

_DEBUG Debug Debug state.

_LOCAL_CON Local control Local control mode.

_REMOTE_CON Remote mode Remote control mode.

_RUN_EDIT_ST

Online editing

Editing program download during RUN.

_RUN_EDIT_CHK Internal edit processing during RUN.

_RUN_EDIT_DONE Edit is done during RUN.

_RUN_EDIT_NG Edit is ended abnormally during RUN.

_CMOD_KEY

Change Operation Mode

Operation mode changed by key.

_CMOD_LPADT Operation mode changed by local PADT.

_CMOD_RPADT Operation mode changed by Remote PADT.

_CMOD_RLINK Operation mode changed by Remote communication module.

_FORCE_IN Forced input Forced input state.

_FORCE_OUT Forced output Forced output state.

_MON_ON Monitor Monitor on execution.

_USTOP_ON Stop by STOP function PLC stops by STOP function after finishing current scan

_ESTOP_ON Stop by Estop function PLC stops by ESTOP function promptly

_INIT_RUN Initialize Initialization task on execution.

_PB1 Program Code 1 Select Program Code 1.

_PB2 Program Code 2 Select Program Code 2.

_CB1 Compile Code 1 Select Compile Code 1.

_CB2 Compile Code2 Select Compile Code 2.

_CNF_ER System error Reports heavy error state of system.

_IO_TYER Module Type error Module Type does not match.

_IO_DEER Module detachment error Module is detached.

_IO_RWER Module I/O error Module I/O error.

_IP_IFER Module interface error Special/communication module interface error.

 Appendix 4 Flag List (XEC)

A4-2

Reserved variable Data type Contents

_ANNUM_ER External device error Detected heavy error in external device.

_BPRM_ER Basic parameter Basic parameter error.

_IOPRM_ER IO parameter I/O configuration parameter error.

_SPPRM_ER Special module parameter Special module parameter is abnormal.

_CPPRM_ER
Communication module
parameter

Communication module parameter is abnormal.

_PGM_ER Program error There is error in Check Sum of user program

_CODE_ER Program code error Meets instruction can not be interpreted

_SWDT_ER
CPU abnormal stop
Or malfunction

The saved program is damaged because of CPU abnormal end or
program can not be executed.

_WDT_ER Scan watchdog Scan watchdog operated.

_CNF_WAR System warning Reports light error state of system.

_RTC_ER RTC data error RTC data Error occurred

_DBCK_ER Backup error Data backup error.

_HBCK_ER Restart error Hot Restart is not available

_ABSD_ER Operation shutdown error Stop by abnormal operation.

_TASK_ER Task collision Tasks are under collision

_BAT_ER Battery error There is error in battery status

_ANNUM_WAR External device error Detected light error of external device.

_HS_WAR1 High speed link 1 High speed link – parameter 1 error.

_HS_WAR2 High speed link 2 High speed link – parameter 2 error.

_P2P_WAR1 P2P parameter 1 P2P – parameter 1 error.

_P2P_WAR2 P2P parameter 2 P2P – parameter 2 error.

_P2P_WAR3 P2P parameter 3 P2P – parameter 3 error.

_CONSTANT_ER Constant error Constant error.

_USER_F User contact Timer used by user.

_T20MS 20ms As a clock signal available at user program, it reverses on/off every
half period. Since clock signal is dealt with at the end of scan, there
may be delay or distortion according to scan time. So use clock that’s
longer than scan time. Clock signal is Off status at the start of scan
program and task program.

_T100ms clock

_T100ms clock
 50ms 50ms

_T100MS 100ms

_T200MS 200ms

_T1S 1s Clock

_T2S 2 s Clock

_T10S 10 s Clock

_T20S 20 s Clock

_T60S 60 s Clock

Appendix 4 Flag List (XEC)

A4-3

Reserved variable Data type Contents

 Ordinary time On Always on state Bit.

_Off Ordinary time Off Always off state Bit.

_1On 1scan On First scan on Bit.

_1Off 1scan Off First scan off bit.

_STOG Reversal Reversal every scan.

_USER_CLK User Clock Clock available for user setting.

_USR_CLK0 Setting scan repeat On/off as much as set scan Clock 0.

_USR_CLK1 Setting scan repeat On/off as much as set scan Clock 1.

_USR_CLK2 Setting scan repeat On/off as much as set scan Clock 2.

_USR_CLK3 Setting scan repeat On/off as much as set scan Clock 3.

_USR_CLK4 Setting scan repeat On/off as much as set scan Clock 4.

_USR_CLK5 Setting scan repeat On/off as much as set scan Clock 5.

_USR_CLK6 Setting scan repeat On/off as much as set scan Clock 6.

_USR_CLK7 Setting scan repeat On/off as much as set scan Clock 7.

_LOGIC_RESULT Logic result Indicates logic results.

_ERR operation error On during 1 scan in case of operation error.

_LER Operation error latch Continuously on in case of operation error

_FALS_NUM FALS no. Indicates FALS no.

_PUTGET_ERR0 PUT/GET error 0 Main base Put / Get error.

_PUTGET_NDR0 PUT/GET end 0 Main base Put/Get end.

_CPU_TYPE CPU Type Indicates information for CPU Type.

_CPU_VER CPU version Indicates CPU version.

_OS_VER OS version Indicates OS version.

_OS_DATE OS date Indicates OS distribution date.

_SCAN_MAX Max. scan time Indicates max. scan time.

_SCAN_MIN Min. scan time Indicates min. scan time.

_SCAN_CUR Current scan time Current scan time.

_MON_YEAR Month/year Clock data (month/year)

_TIME_DAY Hour/date Clock data (hour/date)

_SEC_MIN Second/minute Clock data (Second/minute)

_HUND_WK Hundred year/week Clock data (Hundred year/week)

_REF_COUNT Refresh count Increase when module Refresh.

_REF_OK_CNT Refresh OK Increase when module Refresh is normal.

 Appendix 4 Flag List (XEC)

A4-4

Reserved variable Data type Contents

_REF_NG_CNT Refresh NG Increase when module Refresh is abnormal.

_REF_LIM_CNT Refresh Limit Increase when module Refresh is abnormal (Time Out).

_REF_ERR_CNT Refresh Error Increase when module Refresh is abnormal.

_BUF_FULL_CNT Buffer Full Increase when CPU internal buffer is full.

_PUT_CNT Put count Increase when Put count.

_GET_CNT Get count Increase when Get count.

_KEY Current key Indicates the current state of local key.

_KEY_PREV Previous key Indicates the previous state of local key

_IO_TYER_N Mismatch slot Module Type mismatched slot no.

_IO_DEER_N Detach slot Module detached slot no.

_IO_RWER_N RW error slot Module read/write error slot no.

_IP_IFER_N IF error slot Module interface error slot no.

_IO_TYER0 Module Type 0 error Main base module Type error.

_IO_DEER0 Module Detach 0 error Main base module Detach error.

_IO_RWER0 Module RW 0 error Main base module read/write error.

_IO_IFER_0 Module IF 0 error Main base module interface error.

_AC_FAIL_CNT
Current time of RTC (unit:
ms)

As time data based on 00:00:00 within one day, unit is ms

_ERR_HIS_CNT Power shutdown times Saves the times of power shutdown.

_MOD_HIS_CNT Error occur times Saves the times of error occur.

_SYS_HIS_CNT Mode conversion times Saves the times of mode conversion.

_LOG_ROTATE History occur times Saves the times of system history.

_BASE_INFO0 Slot information 0 Main base slot information.

_RBANK_NUM Currently used block No. Indicates currently used block no.

_RBLOCK_STATE Currently used block status Indicates Currently used block status (Read/Write/Error)
_RBLOCK_RD_FLA
G

Read flash N block When reading data of flash N block, Nth bit is on.

_RBLOCK_WR_FL
AG

Write flash N block When writing data of flash N block, Nth bit is on.

_RBLOCK_ER_FLA
G

Flash N block error When error occurs during flash N block service, Nth bit is on.

_USER_WRITE_F Available contact point Contact point available in program.

_RTC_WR RTC RW Data write and read in RTC.

_SCAN_WR Scan WR Initializing the value of scan.

_CHK_ANC_ERR
Request detection of external
serious error

Request detection of external error.

Appendix 4 Flag List (XEC)

A4-5

Reserved variable Data type Contents

_CHK_ANC_WAR
Request detection of external
slight error (warning)

Request detection of external slight error (warning).

_USER_STAUS_F User contact point User contact point.

_INIT_DONE Initialization completed Initialization complete displayed.

_ANC_ERR
Display information of
external serious error

Display information of external serious error

_ANC_WAR
Display information of
external slight error (warning)

Display information of external slight error (warning)

_MON_YEAR_DT Month/year Clock data (month/year)

_TIME_DAY_DT Hour/date Clock data (hour/date)

_SEC_MIN_DT Second/minute Clock data (Second/minute)

_HUND_WK_DT Hundred year/week Clock data (Hundred year/week)

_ARY_IDX_ERR
Array –index- range
exceeded- error flag Error flag is indicated when exceeding the no. of array

_ARY_IDX_LER Array –index- range
exceeded- latch-error flag Error latch flag is indicated when exceeding the no. of array

A4.2 High Speed Link Flag (* = 1~2, *** = 000~063)

Reserved variable Data type Contents

_HS*_RLINK BOOL Every station of high speed link no.* normally works

_HS*_LTRBL BOOL Abnormal status after _HS*RLINK on

_HS*_STATE*** BOOL General status of *** block of high speed link no.*

_HS*_MOD*** BOOL Run operation mode of *** block of high speed link no.*

_HS*_TRX*** BOOL Normal communication with *** block station of high speed link no.*

_HS*_ERR*** BOOL Run error mode of *** block station of high speed link no.*

_HS*_SETBLOCK*** BOOL *** block setting of high speed link no.*

 A4.3 P2P Flag (* = 0 ~ 8, ** = 0 ~ 63)

Reserved variable Data type Contents

_P2P*_NDR** BOOL ** block service of P2P no.* completed successfully

_P2P*_ERR** BOOL ** block service of P2P no.* completed abnormally

_P2P*_STATUS** WORD Error code in case of ** block service of P2P no.*

_P2P*_SVCCNT** DWORD ** block normal service frequency of P2P no.*

_P2P*_ERRCNT** DWORD ** block abnormal service frequency of P2P no.*

 Appendix 4 Flag List (XEC)

A4-6

A4.4 PID flag (* = 0 ~ 15, ** = 0 ~ 15)

Reserved variable Data type Contents

_PID_MAN WORD PID output selection(0:auto ,1:manual)

_PID*_MAN BOOL PID output selection(0:auto ,1:manual) - loop**

_PID_PAUSE WORD PID pause (0:STOP/RUN ,1:PAUSE)

_PID*_PAUSE BOOL PID pause (0:STOP/RUN ,1:PAUSE) - loop**

_PID_REV WORD PID operation selection(0:forward ,1:reverse)

_PID*_REV BOOL PID operation selection(0:forward ,1:reverse) - loop**

_PID_AW2D WORD PID Anti Wind-up2 prohibited (0:enable ,1:disable)

_PID*_AW2D BOOL PID Anti Wind-up2 prohibited (0:enable ,1:disable) - loop**

_PID_REM_RUN WORD PID remote (HMI) execution bit (0:STOP ,1:RUN)

_PID*_REM_RUN BOOL PID remote (HMI) execution bit (0:STOP ,1:RUN) - loop**

_PID_P_on_PV WORD PID proportional(P) cal source selection (0:ERR, 1:PV)

_PID*_P_on_PV BOOL PID proportional(P) cal source selection (0:ERR, 1:PV) - loop**

_PID_D_on_ERR WORD PID differential(D) cal source selection (0:PV, 1:ERR)

_PID*_D_on_ERR BOOL differential(D) cal source selection (0:PV, 1:ERR) - loop**

_PID_AT_EN WORD PID auto tuning setting (0:Disable, 1:Enable)

_PID*_AT_EN BOOL PID auto tuning setting (0:Disable, 1:Enable) –loop**

_PID_PWM_EN WORD PID PWM operation enable (0:Disable, 1:Enable)

_PID*_PWM_EN BOOL PID PWM operation enable (0:Disable, 1:Enable) - loop**

_PID_STD WORD PID operation status indication (0:Stop, 1:Run)

_PID*_STD WORD PID operation status indication (0:Stop, 1:Run) – loop 00**

_PID_ALARM BOOL PID P - constant (K_p) - block* loop**

_PID*_ALARM REAL PID I - constant (T_i)[sec] - loop**

_PID_ERROR WORD PID error occurs (0: normal 1: error occurs)

_PID*_ERROR BOOL PID error occurs (0: normal 1: error occurs) – loop 01

_PID*_SV INT PID Set value (SV) - loop**

_PID*_T_s WORD PID operation period (T_s)[0.1msec] - loop**

_PID*_K_p REAL PID P - constant (K_p) - loop**

_PID*_T_i REAL PID I - constant (T_i)[sec] - loop**

_PID*_T_d REAL PID D - constant (T_d)[sec] - loop**

_PID*_d_PV_max WORD PID PV change limit - loop**

_PID*_d_MV_max WORD PID MV change limit - loop**

_PID*_MV_max INT PID MV Max limit - loop**

Appendix 4 Flag List (XEC)

A4-7

Reserved variable Data type Contents

_PID*_MV_min INT PID MV Min limit – loop**

_PID*_MV_man INT PID manual output (MV_man) - loop**

_PID*_PV INT PID present value (PV) - loop**

_PID*_PV_old INT PID previous present value (PV_old) - loop**

_PID*_MV INT PID Manipulated value (MV) - loop**

_PID*_ERR DINT PID control error value - loop**

_PID*_MV_p REAL PID MV P component - loop**

_PID*_Mv_i REAL PID MV I component - loop**

_PID*_MV_d REAL PID MV D component - loop**

_PID*_DB_W WORD PID dead band setting (operation after stabilization) - loop**

_PID*_Td_lag WORD PID derivative function LAG filter - loop**

_PID*_PWM WORD PID PWM contact point setting value - loop**

_PID*_PWM_Prd WORD PID PWM output period - loop**

_PID*_SV_RAMP WORD PID Set value ramp value - loop**

_PID*_PV_Track WORD PID Set value track value - loop**

_PID*_PV_MIN INT PID Present value input Min. limit – loop**

_PID*_PV_MAX INT PID Present value input Min. limit – loop**

_PID*_ALM_CODE WORD PID alarm code – loop**

_PID*_ERR_CODE WORD PID error code - loop**

_PID00_CUR_SV INT PID current Set value (SV) – loop**

_AT_REV WORD AT operation selection (0:Forward, 1:Reverse)

_AT*_REV BOOL AT operation selection (0:Forward, 1:Reverse) - loop**

_AT_PWM_EN WORD AT PWM operation enable (0:Disable, 1:Enable)

_AT*_PWM_EN BOOL AT PWM operation enable (0:Disable, 1:Enable) - loop**

_AT_ERROR WORD AT error occurrence indication (0:normal, 1:error occurrence)

_AT*_ERROR BOOL AT error occurrence indication (0:normal, 1:error occurrence) - loop**

_AT*_SV INT AT Set value (SV) – loop**

_AT*_T_s WORD AT operation period (T_s)[0.1msec] – loop**

_AT*_MV_max INT AT MV Max. limit – loop**

_AT00_MV_min INT AT MV Min. limit – loop**

_AT*_PWM WORD AT PWM contact point setting value – loop**

_AT*_PWM_Prd WORD AT PWM output period – loop **

_AT*_HYS_val WOPD AT hysteresis setting– loop**

_AT*_STATUS WORD AT auto-tuning status indication (prohibited for user to set) – loop**

 Appendix 4 Flag List (XEC)

A4-8

Reserved variable Data type Contents

_AT*_ERR_CODE WORD AT error code - (prohibited for user to set) – loop**

_AT*_K_p REAL AT result P – constant (K_p) – loop**

_AT*_T_i REAL AT result I - constant (T_i)[sec] – loop**

_AT*_T_d REAL AT result D - constant (T_d)[sec] - loop00

_AT*_PV INT AT present value – loop**

_AT*_MV INT AT manipulated value – loop**

A4.5 High Speed Counter flag (* = 0 ~ 7, ** = 0 ~ 7)

Reserved variable Data type Contents

_HSC*_Cnt_En BOOL CH** enable Counter

_HSC*_IntPrs_En BOOL CH** use counter internal preset

_HSC*_DecCnt_En BOOL CH** set decreasing counter

_HSC*_Cmp0_En BOOL CH** enable comparison output 0

_HSC*_Rpu_En BOOL CH** use revolution per unit time

_HSC*_Latch_En BOOL CH** use latch counter

_HSC*_Cmp1_En BOOL CH** enable comparison output

_HSC*_Carry BOOL CH** carry signal

_HSC*_Borrow BOOL CH** borrow signal

_HSC*_CmpOut0 BOOL CH** comparison output 0 signal

_HSC*_CmpOut1 BOOL CH** comparison output 1 signal

_HSC*_CurCnt DINT CH** current count value

_HSC*_CurRpu DINT CH** revolution per unit time

_HSC*_ErrCode DINT CH** error code

_HSC*_CntMode INT CH** counter mode

_HSC*_PlsMode INT CH** pulse input mode

_HSC*_CmpMode0 WORD CH** comparison output 0 type

_HSC*_CmpMode1 WORD CH** comparison output 1 type

_HSC*_IntPrs_Val DINT CH** internal preset setting value

_HSC*_ExtPrs_Val DINT CH** external preset setting value

_HSC*_RingMin_Val DINT CH** ring counter min. setting value

_HSC*_RingMax_Val DINT CH** ring counter max. setting value

_HSC*_CmpMin_Val0 DINT CH** comparison output 0 min. setting value

_HSC*_CmpMax_Val0 DINT CH** comparison output 0 max. setting value

Appendix 4 Flag List (XEC)

A4-9

Reserved variable Data type Contents

_HSC*_CmpMin_Val1 DINT CH** comparison output 1 min. setting value

_HSC*_CmpMax_Val1 DINT CH** comparison output 1 max. setting value

_HSC*_CmpContact0 WORD CH** designate comparison output 0 output contact point

_HSC*_CmpContact1 WORD CH** designate comparison output 1 output contact point

_HSC*_UnitTime WORD CH** unit time setting value

_HSC*_PlsPerRev INT CH** pulse number per revolution

A4.6 Positioning flag (* = 0 ~ 80, ** = 0 ~ 80)

Reserved variable Data type Contents

_POS_X_Busy BOOL X axis BUSY

_POS_Y_Busy BOOL Y axis BUSY

_POS_X_Err BOOL X axis error

_POS_Y_Err BOOL Y axis error

_POS_X_Done BOOL X axis position complete

_POS_Y_Done BOOL Y axis position complete

_POS_X_McodeOn BOOL X axis M code on

_POS_Y_McodeOn BOOL Y axis M code on

_POS_X_OriginFix BOOL X axis origin fix

_POS_Y_OriginFix BOOL Y axis origin fix

_POS_X_OutInhibit BOOL X axis output inhibit

_POS_Y_OutInhibit BOOL Y axis output inhibit

_POS_X_Stop BOOL X axis stop

_POS_Y_Stop BOOL Y axis stop

_POS_X_ULimit BOOL X axis upper limit detection

_POS_Y_ULimit BOOL Y axis upper limit detection

_POS_X_LLimit BOOL X axis lower limit detection

_POS_Y_LLimit BOOL Y axis lower limit detection

_POS_X_Estop BOOL X axis emergency stop

_POS_Y_Estop BOOL Y axis emergency stop

_POS_X_Dir BOOL X axis CW/CCW

_POS_Y_Dir BOOL Y axis CW/CCW

_POS_X_Acc BOOL X axis move status (acceleration)

_POS_Y_Acc BOOL Y axis move status (acceleration)

 Appendix 4 Flag List (XEC)

A4-10

Reserved variable Data type Contents

_POS_X_Const BOOL X axis move status (constant)

_POS_Y_Const BOOL Y axis move status (constant)

_POS_X_Dec BOOL X axis move status (deceleration)

_POS_Y_Dec BOOL Y axis move status (deceleration)

_POS_X_Dwell BOOL X axis move status (dwell)

_POS_Y_Dwell BOOL Y axis move status (dwell)

_POS_X_Position BOOL X axis control pattern (Position)

_POS_Y_Position BOOL Y axis control pattern (Position)

_POS_X_Speed BOOL X axis control pattern (Speed)

_POS_Y_Speed BOOL Y axis control pattern (Speed)

_POS_X_LinearInt BOOL X axis control pattern (Linear Int.)

_POS_Y_LinearInt BOOL Y axis control pattern (Linear Int.)

_POS_X_Home BOOL X axis home return

_POS_Y_Home BOOL Y axis home return

_POS_X_PosSync BOOL X axis position sync.

_POS_Y_PosSync BOOL Y axis position sync.

_POS_X_SpdSync BOOL X axis speed sync

_POS_Y_SpdSync BOOL Y axis speed sync

_POS_X_JogLow BOOL X axis JOG low speed

_POS_Y_JogLow BOOL Y axis JOG low speed

_POS_X_JogHigh BOOL X axis JOG high speed

_POS_Y_JogHigh BOOL Y axis JOG high speed

_POS_X_Inching BOOL X axis inching

_POS_Y_Inching BOOL Y axis inching

_POS_X_CurPos DWORD X axis current position

_POS_Y_CurPos DWORD Y axis current position

_POS_X_CurSpd DWORD X axis current speed

_POS_Y_CurSpd DWORD Y axis current speed

_POS_X_CurStep WORD X axis step number

_POS_Y_CurStep WORD Y axis step number

_POS_X_ErrCode WORD X axis error code

_POS_Y_ErrCode WORD Y axis error code

_POS_X_Mcode WORD X axis M code

_POS_Y_Mcode WORD Y axis M code

Appendix 4 Flag List (XEC)

A4-11

Reserved variable Data type Contents

_POS_X_Start BOOL X axis start

_POS_Y_Start BOOL Y axis start

_POS_X_CwJogStart BOOL X axis CW JOG START

_POS_Y_CwJogStart BOOL Y axis CW JOG START

_POS_X_CcwJogStart BOOL X axis CCW JOG START

_POS_Y_CcwJogStart BOOL Y axis CCW JOG START

_POS_X_JogLowHigh BOOL X axis JOG Low Speed/High Speed

_POS_Y_JogLowHigh BOOL Y axis JOG Low Speed/High Speed

_POS_X_BiasSpd DWORD X axis bias speed

_POS_Y_BiasSpd DWORD X axis bias speed

_POS_X_SpdLimit DWORD X axis speed limit

_POS_Y_SpdLimit DWORD Y axis speed limit

_POS_X_AccTime1 WORD X axis acceleration time 1

_POS_Y_AccTime1 WORD Y axis acceleration time 1

_POS_X_DecTime1 WORD X axis deceleration time 1

_POS_Y_DecTime1 WORD Y axis deceleration time 1

_POS_X_AccTime2 WORD X axis acceleration time 2

_POS_Y_AccTime2 WORD Y axis acceleration time 2

_POS_X_DecTime2 WORD X axis deceleration time 2

_POS_Y_DecTime2 WORD Y axis deceleration time 2

_POS_X_AccTime3 WORD X axis acceleration time 3

_POS_Y_AccTime3 WORD Y axis acceleration time 13

_POS_X_DecTime3 WORD X axis deceleration time 3

_POS_Y_DecTime3 WORD Y axis deceleration time 3

_POS_X_AccTime4 WORD X axis acceleration time 4

_POS_Y_AccTime4 WORD Y axis acceleration time 4

_POS_X_DecTime4 WORD X axis deceleration time 4

_POS_Y_DecTime4 WORD Y axis deceleration time 4

_POS_X_SwULimit DWORD X axis S/W upper limit

_POS_Y_SwULimit DWORD Y axis S/W upper limit

_POS_X_SwLLimit DWORD X axis S/W lower limit

_POS_Y_SwLLimit DWORD Y axis S/W lower limit

_POS_X_Backlash WORD X axis backlash compensation

_POS_Y_Backlash WORD Y axis backlash compensation

 Appendix 4 Flag List (XEC)

A4-12

Reserved variable Data type Contents

_POS_X_McodeMode_L BOOL X axis M-Code output mode (Low Bit)

_POS_Y_McodeMode_L BOOL Y axis M-Code output mode (Low Bit)

_POS_X_McodeMode_H BOOL X axis M-Code output mode (High Bit)

_POS_Y_McodeMode_H BOOL Y axis M-Code output mode (High Bit)

_POS_X_LimitDetect BOOL X axis S/W limit detection

_POS_Y_LimitDetect BOOL Y axis S/W limit detection

_POS_X_HomeAddr DWORD X axis Home Address

_POS_Y_HomeAddr DWORD Y axis Home Address

_POS_X_HomeHSpd DWORD X axis Home High Speed

_POS_Y_HomeHSpd DWORD Y axis Home High Speed

_POS_X_HomeLSpd DWORD X axis Home Low Speed

_POS_Y_HomeLSpd DWORD Y axis Home Low Speed

_POS_X_HomeAccTime WORD X axis Homing acceleration time

_POS_Y_HomeAccTime WORD Y axis Homing acceleration time

_POS_X_HomeDccTime WORD X axis Homing deceleration time

_POS_Y_HomeDccTime WORD Y axis Homing deceleration time

_POS_X_HomeDwlTime WORD X axis Homing dwell time

_POS_Y_HomeDwlTime WORD Y axis Homing dwell time

_POS_X_HomeMethod_L BOOL X axis Homing Method (Low Bit)

_POS_Y_HomeMethod_L BOOL Y axis Homing Method (Low Bit)

_POS_X_HomeMethod_H BOOL X axis Homing Method (High Bit)

_POS_Y_HomeMethod_H BOOL Y axis Homing Method (High Bit)

_POS_X_HomeDir BOOL X axis homing direction

_POS_Y_HomeDir BOOL Y axis homing direction

_POS_X_JogHSpd DWORD X axis JOG high speed

_POS_Y_JogHSpd DWORD Y axis JOG high speed

_POS_X_JogLSpd DWORD X axis JOG low speed

_POS_Y_JogLSpd DWORD Y axis JOG low speed

_POS_X_JogAccTime WORD X axis JOG Acceleration Time

_POS_Y_JogAccTime WORD Y axis JOG Acceleration Time

_POS_X_JogDecTime WORD X axis JOG Deceleration Time

_POS_Y_JogDecTime WORD Y axis JOG Deceleration Time

_POS_X_JogInchSpd WORD X axis inching speed

_POS_Y_JogInchSpd WORD Y axis inching speed

Appendix 4 Flag List (XEC)

A4-13

Reserved variable Data type Contents

_POS_X_Position_En BOOL X axis position enable

_POS_Y_Position_En BOOL Y axis position enable

_POS_X_OutLevel BOOL X axis pulse output level

_POS_Y_OutLevel BOOL Y axis pulse output level

_POS_X_Limit_En BOOL X axis upper limit/lower limit enable

_POS_Y_Limit_En BOOL Y axis upper limit/lower limit enable

_POS_X_OutMode BOOL X axis pulse output mode

_POS_Y_OutMode BOOL Y axis pulse output mode

_POS_X_ST*_Addr DWORD X axis step** position

_POS_Y_ST*_Speed DWORD Y axis step** speed

_POS_X_ST*_Dwell WORD X axis step** dwell time

_POS_Y_ST*_Dwell WORD Y axis step** dwell time

_POS_X_ST*_Mcode WORD X axis step** M code number

_POS_Y_ST*_Mcode WORD Y axis step** M code number

_POS_X_ST*_Method BOOL X axis step** method

_POS_Y_ST*_Method BOOL Y axis step** method

_POS_X_ST*_Control BOOL X axis step** control

_POS_Y_ST*_Control BOOL Y axis step** control

_POS_X_ST*_Pattern_L BOOL X axis step** pattern (Low Bit)

_POS_Y_ST*_Pattern_L BOOL Y axis step** pattern (Low Bit)

_POS_X_ST*_Pattern_H BOOL X axis step** pattern (High Bit)

_POS_Y_ST*_Pattern_H BOOL Y axis step** pattern (High Bit)

_POS_X_ST*_Cordi BOOL X axis step**coordinates

_POS_Y_ST*_Cordi BOOL Y axis step**coordinates

_POS_X_ST*_AccDecN_L BOOL X axis step** AEC/DEC number (Low Bit)

_POS_Y_ST*_AccDecN_L BOOL Y axis step**AEC/DEC number (Low Bit)

_POS_X_ST*_AccDecN_H BOOL X axis step** AEC/DEC number (High Bit)

_POS_Y_ST*_AccDecN_H BOOL Y axis step** AEC/DEC number (High Bit)

_POS_X_ST01_RptStep BOOL X axis step**Repeat Step

_POS_Y_ST01_RptStep BOOL Y axis step**Repeat Step

 Appendix 4 Flag List (XEC)

A4-14

Appendix 5 Flag List (XMC)

A5-1

Appendix 5 Flag List (XMC)
A5.1 System Flag List

This flag indicates the operation, state, and information of motion controller

Variable Type Address Description

_SYS_STATE DWORD %FD0 PLC mode and states

_RUN BOOL %FX0 RUN

_STOP BOOL %FX1 STOP

_ERROR BOOL %FX2 ERROR

_LOCAL_CON BOOL %FX4 Local control

_REMOTE_CON BOOL %FX6 Remote mode ON
_RUN_EDIT_ST BOOL %FX8 Downloading a program at online editing mode

_RUN_EDIT_CHK BOOL %FX9 Processing online editing internally

_RUN_EDIT_DONE BOOL %FX10 Online editing done

_RUN_EDIT_NG BOOL %FX11 Online editing abnormal termination

_CMOD_KEY BOOL %FX12 Change operation mode by the switch

_CMOD_LPADT BOOL %FX13 Change operation mode by the local PADT

_FORCE_IN BOOL %FX16 Force input

_FORCE_OUT BOOL %FX17 Force output

_MON_ON BOOL %FX20 Monitoring mode

_USTOP_ON BOOL %FX21 STOP by STOP Function

_ESTOP_ON BOOL %FX22 STOP by ESTOP Function

_INIT_RUN BOOL %FX24 Executing the initial task

_PB1 BOOL %FX28 Program code 1

_PB2 BOOL %FX29 Program code 2

_CNF_ER DWORD %FD2 System errors(Significant error)

_ANNUM_ER BOOL %FX70 Significant error detection in external device

_BPRM_ER BOOL %FX72 Basic parameter error
_IOPRM_ER BOOL %FX73 IO configuration parameter error
_SPPRM_ER BOOL %FX74 Parameter error in Special module
_CPPRM_ER BOOL %FX75 Local Ethernet parameter error
_PGM_ER BOOL %FX76 Program error
_SWDT_ER BOOL %FX78 CPU abnormal ends
_ENCPRM_ER BOOL %FX85 Encoder parameter error
_AXISPRM_ER BOOL %FX86 Axis parameter error

_GROUPPRM_ER BOOL %FX87 Axis group parameter error

_ECPRM_ER BOOL %FX88 EtherCAT parameter error

 Appendix 5 Flag List (XMC)

A5-2

Variable Type Address Description

_NCPRM_ER BOOL %FX89 NC Parameter Error
_NCPGM_ER BOOL %FX90 NC Program Check Error
_PTASK_CYCLE_ER BOOL %FX91 Main Task Period Error
_CTASK_CYCLE_ER BOOL %FX92 Cycle Task Period Error
_SYSTEM_ER BOOL %FX93 System Error
_TASK_PRM_USAGE_OVER_ER BOOL %FX94 Task Program Occupancy Excess Error
_CNF_WAR DWORD %FD4 System warnings(Minor error)
_RTC_ER BOOL %FX128 Abnormal RTC data
_PTASK_CYCLE_WAR BOOL %FX129 Main Task Period Exceeded Warning
_CTASK_CYCLE_WAR BOOL %FX130 Cycle Task Period Exceeded Warning
_AB_SD_ER BOOL %FX131 Stop from abnormal operation
_MOTION_CONTROL_WAR BOOL %FX132 Motion Control Abnormal Warning
_ANNUM_WAR BOOL %FX134 Minor error detection in external device
_TASK_PRM_USAGE_OVER_WAR BOOL %FX135 Task Program Occupancy Excess Warning
_T20MS BOOL %FX192 20ms CLOCK
_T100MS BOOL %FX193 100ms CLOCK
_T200MS BOOL %FX194 200ms CLOCK
_T1S BOOL %FX195 1s CLOCK
_T2S BOOL %FX196 2s CLOCK
_T10S BOOL %FX197 10s CLOCK
_T20S BOOL %FX198 20s CLOCK
_T60S BOOL %FX199 60s CLOCK
_ON BOOL %FX201 Always ON
_OFF BOOL %FX202 Always OFF
_1ON BOOL %FX203 1 scan ON
_1OFF BOOL %FX204 1 scan OFF
_STOG BOOL %FX205 Every scan Toggle
_ERR BOOL %FX224 Calculation error flag
_ALL_OFF BOOL %FX227 All output OFF
_LER BOOL %FX229 Latch flag for calculation error
_ARY_IDX_ERR BOOL %FX247 Exceeding error from Index range when using array
_ARY_IDX_LER BOOL %FX248 Latch for exceeding error on Index range when using

array
_UDF_STACK_ERR BOOL %FX249 UDF Stack Over Error Flag
_UDF_STACK_LER BOOL %FX250 UDF Stack Over Error Latch Flag
_CPU_TYPE WORD %FW18 CPU type
_CPU_VER WORD %FW19 CPU version
_OS_VER DWORD %FD10 OS version

Appendix 5 Flag List (XMC)

A5-3

Variable Type Address Description

_OS_DATE DWORD %FD11 OS date

_OS_VER_PATCH DWORD %FD12 OS patch version

_RTC_TIME ARRAY[0..7] OF BYTE %FB52 RTC Time

_RTC_DATE DATE %FW30 Current RTC date

_RTC_WEEK UINT %FW31 Current RTC day

_RTC_TOD TIME_OF_DAY %FD16 Current time of RTC(ms unit)
_KEY DWORD %FD17 Current state of the local key switch
_AC_F_CNT UINT %FW36 Short power interruptions count
_FALS_NUM UINT %FW37 FALS Command Usage Area
_SYS_ERR_TYPE WORD %FW38 System Error Detailed Flag
_ENCODER_HW_ERR BOOL %FX608 Encoder Input Handling H/W Setting Error
_BACKPLANE_IF_ERR BOOL %FX609 Backplane Interface Error
_SERIAL_NUM ARRAY[0..19] OF BYTE %FB80 Serial Number
_PTASK_SCAN_MAX UINT %FW512 Main Task Max. Scan Time(Unit:100us)
_PTASK_SCAN_MIN UINT %FW513 Main Task Min. Scan Time(Unit:100us)
_PTASK_SCAN_CUR UINT %FW514 Main Task Current Scan Time(Unit:100us)
_CTASK_SCAN_MAX UINT %FW515 Cycle Task Max. Scan Time(Unit:100us)
_CTASK_SCAN_MIN UINT %FW516 Cycle Task Min. Scan Time(Unit:100us)
_CTASK_SCAN_CUR UINT %FW517 Cycle Task Current Scan Time(Unit:100us)
_PROGRAM_RATIO_MAX UINT %FW518 User Program Maximum Execution Occupancy

(1sec)
_PROGRAM_RATIO_MIN UINT %FW519 User Program Minimum Execution Occupancy (1sec)
_PROGRAM_RATIO_CUR UINT %FW520 User Program Current Execution Occupancy (1sec)
_PTASK_CYCLE_WAR_NUM UINT %FW748 Main Task Period Exceeded Warning Count
_CTASK_CYCLE_WAR_NUM UINT %FW749 Cycle Task Period Exceeded Warning Count
_RTC_WR BOOL %FX20480 User RTC Setting Request
_CHK_ANC_ERR BOOL %FX20482 Request for significant error detection in external

device
_CHK_ANC_WAR BOOL %FX20483 Request for minor error detection in external device
_PTASK_SCAN_WR BOOL %FX20486 Main Task Scan Value Initialization
_CTASK_SCAN_WR BOOL %FX20487 Cycle Task Scan Value Initialization
_INIT_DONE BOOL %FX20496 Completion of initialization task
_ANC_ERR WORD %FW1282 Significant error information in external device
_ANC_WAR WORD %FW1283 Minor error information in external device
_RTC_TIME_USER ARRAY[0..7] OF BYTE %FB2568 User RTC Time

 Appendix 5 Flag List (XMC)

A5-4

A5.2 Motion Flag List

The flag displayed following areas follows. It displays the state and data of the motion controller.

The flag related to axis is displayed as “_AXxx_...”(xx indicates the relevant axis No. : Decimal) and the flag related to axis

group is displayed as “_AGyy_...”(yy indicates the axis group No. : Decimal).

1) Motion Common Flag
Variable Type Address Description

_MC_RUN BOOL %FX65536 MC RUN
_MC_STOP BOOL %FX65537 MC STOP
_MC_TEST BOOL %FX65538 MC TEST
_MC_WARNING BOOL %FX65539 MC Common warning occurrence
_MC_ALARM BOOL %FX65540 MC Common alarm occurrence
_MC_COM_ERR BOOL %FX65541 MC Common error occurrence
_MC_COM_ERR_CODE WORD %FW4097 MC Common error code
_EC_LINKUP_INFO BOOL %FX65600 EtherCAT Link Up/Down Information
_EC_COMM BOOL %FX65601 EtherCAT Communication connection

state
_EC_COMM_ERR BOOL %FX65602 EtherCAT Communication timeout error
_EC_PDO_ERR_CNT UINT %FW4102 EtherCAT PDO error count
_EC_SLAVE_RDY ARRAY[0..63] OF

BOOL
%FX65664

EtherCAT Slave ready

_EC_SDO_BUSY ARRAY[0..63] OF
BOOL

%FX65792
EtherCAT Slave SDO processing busy

_EC_SDO_ERR ARRAY[0..63] OF
BOOL

%FX65920
EtherCAT Slave SDO processing error

_EC_LINE_FAIL ARRAY[0..63] OF
BOOL

%FX66048
EtherCAT Cable disconnection state

_EC_MASTER_STATE BYTE %FB8264 EtherCAT master STATE
_EC_SLAVE_NUM WORD %FW4133 Number of connected EtherCAT Slave
_EC_ERR_INFO1 STRING %FB8272 EtherCAT error information1
_EC_ERR_INFO2 STRING %FB8304 EtherCAT error information2
_EC_TRANSMITTED_OK UDINT %FD2084 EtherCAT Number of frames transmitted
_EC_RECEIVED_OK UDINT %FD2085 EtherCAT Number of frames received
_EC_CRCERR_CNT UDINT %FD2086 EtherCAT Receive CRC error frame
_EC_COLLISION_CNT UDINT %FD2087 EtherCAT Number of collision frames
_EC_CARRIER_SENSE_ERR UDINT %FD2088 EtherCAT Carrier sense error
_EC_LINKOFF_CNT UDINT %FD2089 EtherCAT Number of Link Off
_EC_OVERSIZE_FRAME UDINT %FD2090 EtherCAT Receive oversize frames

Appendix 5 Flag List (XMC)

A5-5

Variable Type Address Description
_EC_UNDERSIZE_FRAME UDINT %FD2091 EtherCAT Receive undersize frames
_EC_JABBER_FRAME UDINT %FD2092 EtherCAT Receive jabber frame
_EC_PDO_CUR_TRANSCYCLE UDINT %FD2093 EtherCAT PDO transfer cycle ns
_EC_PDO_MAX_TRANSCYCLE UDINT %FD2094 EtherCAT Maximum PDO transfer cycle

ns
_EC_PDO_MIN_TRANSCYCLE UDINT %FD2095 EtherCAT Minimum PDO transfer cycle

ns
_EC_PDO_TRANS_JITTER UDINT %FD2096 EtherCAT PDO frame transfer jitter ns
_EC_PDO_ERR_CNT_TOTAL UDINT %FD2097 PDO working counter error number
_EC_LOST_FRAME UDINT %FD2098 EtherCAT Packet Loss
_EC_PDO_ERR_CNT_MAX UDINT %FD2099 EtherCAT PDO Error Count(Max.)
_EC_ERR_INFO3 STRING %FB8424 EtherCAT Error3

Reference) The flags of _AXxx_HOME(Flag used at home return command) and _AXxx_Homing(Operation status of PLC

open standard) indicate the same state.

2) Motion Axis Flag

The address information is the flag memory of axis 01. The address has 2,048bit (32LREAL) offsets per axis.
Variable Type Address Description

_AXxx_RDY BOOL %FX73728 Axis xx ready
_AXxx_WARNING BOOL %FX73729 Axis xx warning occurrence
_AXxx_ALARM BOOL %FX73730 Axis xx alarm occurrence
_AXxx_SV_ON BOOL %FX73731 Axis xx servo On/Off
_AXxx_SV_RDY BOOL %FX73732 Axis xx servo ready
_AXxx_MSTSLV_STS BOOL %FX73733 Axis xx master/slave status
_AXxx_NC BOOL %FX73734 Axis xx NC operation
_AXxx_MST_INFO UINT %FW4609 Axis xx master axis information
_AXxx_AXIS_TYPE UINT %FW4610 Axis xx axis type
_AXxx_LINKED_NODE UINT %FW4611 Axis xx connected node information
_AXxx_LINKED_SLOT UINT %FW4612 Axis xx connected slot information
_AXxx_UNIT UINT %FW4613 Axis xx axis unit
_AXxx_VEL_UNIT UINT %FW4614 Axis xx speed unit
_AXxx_AX_ERR WORD %FW4615 Axis xx error code
_AXxx_SVON_INCMPL BOOL %FX73856 Axis xx servo on incomplete
_AXxx_COMM_WARN BOOL %FX73857 Axis xx communication warning
_AXxx_DEV_WARN BOOL %FX73858 Axis xx deviation warning
_AXxx_SV_ERR BOOL %FX73872 Axis xx servo drive error
_AXxx_HW_POT BOOL %FX73873 Axis xx positive limit detection
_AXxx_HW_NOT BOOL %FX73874 Axis xx negative limit detection
_AXxx_SW_POT BOOL %FX73875 Axis xx S/W positive limit detection

 Appendix 5 Flag List (XMC)

A5-6

Variable Type Address Description
_AXxx_SW_NOT BOOL %FX73876 Axis xx S/W negative limit detection
_AXxx_SV_OFF BOOL %FX73877 Axis xx execution error of operation

command in servo-off state
_AXxx_POS_OVR BOOL %FX73878 Axis xx exceeds the set range of positioning

travel amount
_AXxx_VEL_OVR BOOL %FX73879 Axis xx exceeds the maximum velocity
_AXxx_DEV_ERR BOOL %FX73880 Axis xx deviation alarm
_AXxx_HOME_INCMPL BOOL %FX73881 Axis xx Execution of absolute position

command in undetermined HOME
_AXxx_COMM_ERR BOOL %FX73882 Axis xx communication alarm
_AXxx_BUSY BOOL %FX73888 Axis xx busy state of motion command
_AXxx_PAUSE BOOL %FX73889 Axis xx pause state of motion command

(velocity is zero)
_AXxx_STOP BOOL %FX73890 Axis xx stop state by the stop command
_AXxx_CMD_FAIL BOOL %FX73891 Axis xx abnormal completion of motion

command
_AXxx_CMD_CMPL BOOL %FX73892 Axis xx normal completion of motion

command

Variable Type Address Description

_AXxx_DIR BOOL %FX73893 Axis xx operation direction
_AXxx_JOG BOOL %FX73894 Axis xx JOG operation
_AXxx_HOME BOOL %FX73895 Axis xx Homing operation
_AXxx_POS_CTRL BOOL %FX73896 Axis xx position control operation
_AXxx_VEL_CTRL BOOL %FX73897 Axis xx velocity control operation
_AXxx_TRQ_CTRL BOOL %FX73898 Axis xx torque control operation
_AXxx_LINTP BOOL %FX73899 Axis xx linear interpolation operation
_AXxx_CINTP BOOL %FX73900 Axis xx circular interpolation operation
_AXxx_SYNC BOOL %FX73901 Axis xx synchronous control operation
_AXxx_COORD BOOL %FX73902 Axis xx coordinated operation
_AXxx_POS_CMPL BOOL %FX73920 Axis xx positioning completion
_AXxx_INPOS BOOL %FX73921 Axis xx inposition detection
_AXxx_LATCH_CMPL BOOL %FX73922 Axis xx latch completion
_AXxx_HOME_CMPL BOOL %FX73923 Axis xx homing completion
_AXxx_Disabled BOOL %FX73936 Axis xx Disabled state
_AXxx_Standstill BOOL %FX73937 Axis xx Standstill state
_AXxx_Discrete BOOL %FX73938 Axis xx Discrete state
_AXxx_Continuous BOOL %FX73939 Axis xx Continuous state
_AXxx_Synchronized BOOL %FX73940 Axis xx Synchronized state
_AXxx_Homing BOOL %FX73941 Axis xx Homing state

Appendix 5 Flag List (XMC)

A5-7

Variable Type Address Description
_AXxx_Stopping BOOL %FX73942 Axis xx Stopping state
_AXxx_ErrorStop BOOL %FX73943 Axis xx ErrorStop state
_AXxx_CMD_TPOS LREAL %FL1156 Axis xx target position
_AXxx_CMD_CPOS LREAL %FL1157 Axis xx command position of current scan
_AXxx_CMD_VEL LREAL %FL1158 Axis xx command velocity
_AXxx_CMD_ACCDEC LREAL %FL1159 Axis xx command acceleration/deceleration
_AXxx_CMD_JERK LREAL %FL1160 Axis xx command jerk
_AXxx_CMD_TRQ LREAL %FL1161 Axis xx command torque
_AXxx_ACT_POS LREAL %FL1162 Axis xx actual current position
_AXxx_ACT_VEL LREAL %FL1163 Axis xx actual current velocity
_AXxx_ACT_TRQ LREAL %FL1164 Axis xx actual current torque
_AXxx_POS_DEV LREAL %FL1165 Axis xx position deviation
_AXxx_DRV_ALARM BOOL %FX74624 Axis xx drive alarm state
_AXxx_DRV_WARNING BOOL %FX74625 Axis xx drive warning state
_AXxx_DRV_SV_ON BOOL %FX74626 Axis xx servo on status
_AXxx_DRV_POT BOOL %FX74627 Axis xx positive limit input
_AXxx_DRV_NOT BOOL %FX74628 Axis xx negative limit input
_AXxx_DRV_HOME BOOL %FX74629 Axis xx home input
_AXxx_DRV_LATCH1 BOOL %FX74630 Axis xx LATCH1 input
_AXxx_DRV_LATCH2 BOOL %FX74631 Axis xx LATCH2 input
_AXxx_DRV_PARAMBUSY BOOL %FX74632 Axis xx read/write operations of the SDO

parameter
_AXxx_DRV_IN DWORD %FD2333 Axis xx drive inputs
_AXxx_DRV_ERR WORD %FW4668 Axis xx drive error code
_AXxx_CMDBUF_FULL BOOL %FX73951 Axis xx Buffered Command Buffer Full
_AXxx_CMDBUF_QUEUED UINT %FW4622 Axis xx Buffered Command Queued Count
_AXxx_CMDBUF_FREE UINT %FW4623 Axis xx Buffered command execution count

Reference) The flags of _AXxx_HOME(Flag used at home return command) and _AXxx_Homing(Operation status of PLC

open standard) indicate the same state.

3) Motion Axis Group Flag

The address information is the flag memory of axis 01. The address has 5,120bit (80LREAL) offsets per axis.
Variable Type Address Description

_AGxx_RDY BOOL %FX212992 Axis group xx ready
_AGxx_WARNING BOOL %FX212993 Axis group xx warning occurrence
_AGxx_ALARM BOOL %FX212994 Axis group xx alarm occurrence
_AGxx_SV_ON BOOL %FX212995 Axis group xx servo On/Off
_AGxx_SV_RDY BOOL %FX212996 Axis group xx servo ready
_AGxx_ERR WORD %FW13313 Axis group xx error code

 Appendix 5 Flag List (XMC)

A5-8

Variable Type Address Description
_AGxx_BUSY BOOL %FX213024 Axis group xx busy state of motion command
_AGxx_PAUSE BOOL %FX213025 Axis group xx pause state of motion command

(velocity is zero)
_AGxx_STOP BOOL %FX213026 Axis group xx stop state by the stop command
_AGxx_CMD_FAIL BOOL %FX213027 Axis group xx command error exit status
_AGxx_CMD_CMPL BOOL %FX213028 Axis group xx command execution complete
_AGxx_LINTP BOOL %FX213029 Axis group xx linear interpolation operation
_AGxx_CINTP BOOL %FX213030 Axis group xx circular interpolation operation
_AGxx_HOME BOOL %FX213031 Axis group xx homing operation
_AGxx_SYNC BOOL %FX213032 Axis group xx synchronization operation
_AGxx_TLINTP BOOL %FX213033 Axis group xx coordinated time operation
_AGxx_CDMOVE BOOL %FX213034 Axis group xx coordinated direct operation
_AGxx_CCINTP BOOL %FX213035 Axis group xx coordinated circular interpolation

operation
_AGxx_POS_CMPL BOOL %FX213056 Axis group xx positioning completion
_AGxx_Disabled BOOL %FX213072 Axis group xx Disabled state
_AGxx_Standby BOOL %FX213073 Axis group xx Standby state
_AGxx_Moving BOOL %FX213074 Axis group xx Moving state
_AGxx_Homing BOOL %FX213075 Axis group xx Homing state
_AGxx_Stopping BOOL %FX213076 Axis group xx Stopping state
_AGxx_ErrorStop BOOL %FX213077 Axis group xx ErrorStop state
_AGxx_CMD_TPOS ARRAY[0..9] OF LREAL %FL3330 Axis group xx target position
_AGxx_CMD_CPOS ARRAY[0..9] OF LREAL %FL3340 Axis group xx command position of current scan
_AGxx_CMD_VEL LREAL %FL3350 Axis group xx target velocity
_AGxx_CMD_ACCDEC LREAL %FL3351 Axis group xx command acc./dec.
_AGxx_CMD_JERK LREAL %FL3352 Axis group xx command jerk
_AGxx_ACT_POS ARRAY[0..9] OF LREAL %FL3353 Axis group xx actual current position
_AGxx_ACT_VEL LREAL %FL3363 Axis group xx actual current velocity
_AGxx_CFG_AX_NUM UINT %FW13456 Axis group xx number of axes
_AGxx_CMDBUF_FULL BOOL %FX213087 Axis group xx Buffered Command Buffer Full
_AGxx_CMDBUF_QUEUED UINT %FW13318 Axis group xx Buffered Command Queued Count
_AGxx_CMDBUF_FREE UINT %FW13319 Axis group xx Buffered command execution count
_AGxx_CFG_A1 UINT %FW13458 Axis group xx axis number of composition axis1
_AGxx_CFG_A2 UINT %FW13459 Axis group xx axis number of composition axis2
_AGxx_CFG_A3 UINT %FW13460 Axis group xx axis number of composition axis3
_AGxx_CFG_A4 UINT %FW13461 Axis group xx axis number of composition axis4
_AGxx_CFG_A5 UINT %FW13462 Axis group xx axis number of composition axis5
_AGxx_CFG_A6 UINT %FW13463 Axis group xx axis number of composition axis6
_AGxx_CFG_A7 UINT %FW13464 Axis group xx axis number of composition axis7
_AGxx_CFG_A8 UINT %FW13465 Axis group xx axis number of composition axis8

Appendix 5 Flag List (XMC)

A5-9

4) Slave Flag
Variable Type Address Description

_SLVxx_EC_STATE SINT %FB47104 EtherCAT Slave xx STATE
_SLVxx_LINK_STATUS BYTE %FB47105 EtherCAT Slave xx link information
_SLVxx_ERROR WORD %FW23553 EtherCAT Slave xx error
_SLVxx_VENDOR_ID DWORD %FD11777 EtherCAT Slave xx Vendor ID
_SLVxx_PRODUCT_CODE DWORD %FD11778 EtherCAT Slave xx Product Code
_SLVxx_REVISION_NUMBER DWORD %FD11779 EtherCAT Slave xx Revision Number
_SLVxx_ALStatus WORD %FW23563 EtherCAT slave xx AL state
_SLVxx_ALStatusCode WORD %FW23564 EtherCAT Slave xx AL error code
_SLVxx_DLStatus WORD %FW23565 EtherCAT Slave xx link state
_SLVxx_LinkLostCount DWORD %FD11783 A Port link disconnection count

_SLVxx_InValidFrameCounterA
BYTE %FB47136 EtherCAT Slave xx A port abnormal

frame counter

_SLVxx_RxErrorCounterA
BYTE %FB47137 EtherCAT Slave xx A port physical layer

error number

_SLVxx_InValidFrameCounterB
BYTE %FB47138 EtherCAT Slave xx B port abnormal

frame counter

_SLVxx_RxErrorCounterB
BYTE %FB47139 EtherCAT Slave xx B port physical layer

error number

_SLVxx_InValidFrameCounterC
BYTE %FB47140 EtherCAT Slave xx C port abnormal

frame counter

_SLVxx_RxErrorCounterC
BYTE %FB47141 EtherCAT Slave xx C port physical layer

error number

Variable Type Address Description
_AGxx_CFG_A9 UINT %FW13466 Axis group xx axis number of composition axis9
_AGxx_CFG_A10 UINT %FW13467 Axis group xx axis number of composition axis10
_AGxx_MTCP_Px LREAL %FL3367 Axis group xx X axis position(MCS)
_AGxx_MTCP_Py LREAL %FL3368 Axis group xx Y axis position(MCS)
_AGxx_MTCP_Pz LREAL %FL3369 Axis group xx Z axis position(MCS)
_AGxx_MTCP_A LREAL %FL3370 Axis group xx X axis rotation(MCS)
_AGxx_MTCP_B LREAL %FL3371 Axis group xx X axis rotation(MCS)
_AGxx_MTCP_C LREAL %FL3372 Axis group xx Z axis rotation(MCS)
_AGxx_PTCP_Px LREAL %FL3373 Axis group xx X axis position(PCS)
_AGxx_PTCP_Py LREAL %FL3374 Axis group xx Y axis position(PCS)
_AGxx_PTCP_Pz LREAL %FL3375 Axis group xx Z axis position(PCS)
_AGxx_PTCP_A LREAL %FL3376 Axis group xx X axis rotation(PCS)
_AGxx_PTCP_B LREAL %FL3377 Axis group xx Y axis rotation(PCS)
_AGxx_PTCP_C LREAL %FL3378 Axis group xx Z axis rotation(PCS)

 Appendix 5 Flag List (XMC)

A5-10

_SLVxx_InValidFrameCounterD
BYTE %FB47142 EtherCAT Slave xx D port abnormal

frame counter

_SLVxx_RxErrorCounterD
BYTE %FB47143 EtherCAT Slave xx D port physical layer

error number
_SLVxx_ForwardedRXErrCounter DWORD %FD11786 Number of abnormal frames delivered

5) NC Channel Flag

It displays the state of NC channel. NC channel flag is displayed as “_NCyy_...”

(yy indicates the NC channel No.(Decimal))
Variable Type Address Description

_NCyy_Ready BOOL %FX524288 NC Ch. yy NC ready
_NCyy_Warning BOOL %FX524289 NC Ch. yy warning occurrence
_NCyy_Alarm BOOL %FX524290 NC Ch. yy alarm occurrence
_NCyy_ResetStatus BOOL %FX524291 NC Ch. yy reset state
_NCyy_CycStartBegin BOOL %FX524292 NC Ch. yy cycle start begin information
_NCyy_CycStartFinish BOOL %FX524293 NC Ch. yy cycle start finish information
_NCyy_TargetQtyCmpl BOOL %FX524294 NC Ch. yy target quantity reached signal
_NCyy_PrgmNormalCmpl BOOL %FX524295 NC Ch. yy normal completion of program

execution
_NCyy_PwrFailInAuto BOOL %FX524296 NC Ch. yy power failure in automatic operation
_NCyy_ErrorCode WORD %FW32770 NC Ch. yy error code
_NCyy_IPR_HeartBeat UDINT %FD16386 NC Ch. yy IPR HeartBeat
_NCyy_IPR_Run BOOL %FX524384 NC Ch. yy IPR operation state (0:stop,

1:running)
_NCyy_IPR_WaitEoM BOOL %FX524400 NC Ch. yy waiting end of motion state (0: not

waiting, 1:waiting)
_NCyy_IPR_EndOfMot UINT %FW32776 NC Ch. yy end of motion
_NCyy_IPR_AfBufSts UINT %FW32777 NC Ch. yy AutoFIFO buffer state (0: empty,

another: buffer usage)
_NCyy_IPR_ErrorCode UINT %FW32778 NC Ch. yy IPR error code
_NCyy_PA_ErrorCode UINT %FW32779 NC Ch. yy program access error code
_NCyy_IPR_AlarmSts ARRAY[0..4] OF DWORD %FD16390 NC Ch. yy IPR alarm information
_NCyy_CycleStart BOOL %FX524672 NC Ch. yy cycle start state
_NCyy_FeedHold BOOL %FX524673 NC Ch. yy feed hold state
_NCyy_AutoOperation BOOL %FX524674 NC Ch. yy automatic operation state
_NCyy_RetraceMove BOOL %FX524675 NC Ch. yy retrace move state
_NCyy_RapidTrvsOpr BOOL %FX524736 NC Ch. yy rapid traverse operation
_NCyy_CuttingFeedOpr BOOL %FX524737 NC Ch. yy cutting feed operation

Appendix 5 Flag List (XMC)

A5-11

_NCyy_ConstSurfSpeed BOOL %FX524738 NC Ch. yy constant surf speed

_NCyy_TargetVelocity LREAL %FL8200 NC Ch. yy target velocity (F command value)
_NCyy_CmdVelocity LREAL %FL8201 NC Ch. yy command velocity

_NCyy_TVelOfSpindle LREAL %FL8203 NC Ch. yy spindle target velocity (S command
value)

_NCyy_CVelOfSpindle LREAL %FL8204 NC Ch. yy spindle command velocity

_NCyy_FeedOverride LREAL %FL8206
NC Ch. yy feed override

_NCyy_RapidOverride LREAL %FL8207 NC Ch. yy rapid override

Variable Type Address Description
_NCyy_SpindleOverride LREAL %FL8208 NC Ch. yy spindle override
_NCyy_SpindleStop BOOL %FX525376 NC Ch. yy spindle stop state
_NCyy_SpindleCW BOOL %FX525377 NC Ch. yy spindle CW operation
_NCyy_SpindleCCW BOOL %FX525378 NC Ch. yy spindle CCW operation
_NCyy_SpindleOrient BOOL %FX525379 NC Ch. yy spindle orientation operation
_NCyy_SpindleCVelAgr BOOL %FX525380 NC Ch. yy spindle command velocity reached signal
_NCyy_SpindleZeroVel BOOL %FX525381 NC Ch. yy spindle zero velocity reached signal
_NCyy_SpindlePosCtrl BOOL %FX525382 NC Ch. yy spindle position control signal
_NCyy_SpindleSSCtrl BOOL %FX525383 NC Ch. yy master axis SS control signal
_NCyy _MainSpindle UDINT %FW32840 NC Ch. yy main spindle axis number
_NCyy_DwellCount UDINT %FD16422 NC Ch. yy dwell count
_NCyy_ErrorBlockNum UDINT %FD16423 NC Ch. yy error block number
_NCyy_BlockCmdType UINT %FW32848 NC Ch. yy command type of current block
_NCyy_CurrentToolNum UINT %FW32856 NC Ch. yy current tool number
_NCyy_ToolRadiusComp UINT %FW32857 NC Ch. yy offset number of current tool radius

compensation
_NCyy_ToolLengthComp UINT %FW32858 NC Ch. yy offset number of current tool length

compensation
_NCyy_McodeStrobe BOOL %FX526080 NC Ch. yy M code output strobe signal
_NCyy_McodeDistCmpl BOOL %FX526081 NC Ch. yy M code distribution complete signal
_NCyy_McodeM00 BOOL %FX526082 NC Ch. yy special M code output signal(M00)
_NCyy_McodeM01 BOOL %FX526083 NC Ch. yy special M code output signal(M01)
_NCyy_McodeM02 BOOL %FX526084 NC Ch. yy special M code output signal(M02)
_NCyy_McodeM30 BOOL %FX526085 NC Ch. yy special M code output signal(M30)
_NCyy_McodeData UDINT %FD16441 NC Ch. yy M code data output
_NCyy_ScodeStrobe BOOL %FX526144 NC Ch. yy S code output strobe signal
_NCyy_ScodeDistCmpl BOOL %FX526145 NC Ch. yy S code distribution complete signal

 Appendix 5 Flag List (XMC)

A5-12

_NCyy_ScodeData UDINT %FD16443 NC Ch. yy S code data output
_NCyy_TcodeStrobe BOOL %FX526208 NC Ch. yy T code output strobe signal

_NCyy_TcodeDistCmpl BOOL %FX526209 NC Ch. yy T code distribution complete signal
_NCyy_TcodeData UDINT %FD16445 NC Ch. yy T code data output
_NCyy_CycleTime REAL %FD16446 NC Ch. yy machining cycle time

_NCyy_TotalRunTime REAL %FD16447 NC Ch. yy total machining cycle time
_NCyy_PartCount UDINT %FD16448 NC Ch. yy machining quantity
_NCyy_PartCountByM99 UDINT %FD16449 NC Ch. yy M99 machining quantity at repeat machining
_NCyy_MainProgram STRING %FB65800 NC Ch. yy main program name
_NCyy_CurrentProgram STRING %FB65832 NC Ch. yy current running program name
_NCyy_MainBlkNum UDINT %FD16466 NC Ch. yy block number of main program
_NCyy_CurrentBlkNum UDINT %FD16468 NC Ch. yy block number of current running program

Variable Type Address Description
_NCyy_ModalG_OneShot REAL %FD16476 NC Ch. yy G code modal value group 0 - One shot
_NCyy_ModalG_Motion REAL %FD16477 NC Ch. yy G code modal value group 1 - Motion
_NCyy_ModalG_CmdMode REAL %FD16479 NC Ch. yy G code modal value group 3 - Command

mode (ABS or INC)
_NCyy_ModalG_Mirror REAL %FD16480 NC Ch. yy G code modal value group 4 - Mirror
_NCyy_ModalG_Feed REAL %FD16481 NC Ch. yy G code modal value group 5 - Feed mode
_NCyy_ModalG_Unit REAL %FD16482 NC Ch. yy G code modal value group 6 - Unit
_NCyy_ModalG_TRComp REAL %FD16483 NC Ch. yy G code modal value group 7 - Tool radius

compensation
_NCyy_ModalG_Stroke REAL %FD16485 NC Ch. yy G code modal value group 9 - Stroke check
_NCyy _ModalG_Scale REAL %FD16487 NC Ch. yy G code modal value group 11 - Scale
_NCyy _ModalG_Macro REAL %FD16488 NC Ch. yy G code modal value group 12 - Macro
_NCyy_ModalG_TLComp REAL %FD16489 NC Ch. yy G code modal value group 13 - Tool length

compensation
_NCyy_ModalG_WpCoord REAL %FD16490 NC Ch. yy G code modal value group 14 - Workpiece

coordinate system
_NCyy_ModalG_CutMode REAL %FD16491 NC Ch. yy G code modal value group 15 - CutMode
_NCyy_ModalG_Plane REAL %FD16492 NC Ch. yy G code modal value group 16 - Circular plane
_NCyy_ModalG_RPolar REAL %FD16496 NC Ch. yy G code modal value group 20 - Reverse polar

coordinate interpolation
_NCyy_ModalG_CylIntp REAL %FD16498 NC Ch. yy G code modal value group 22 - Cylindrical

interpolation

Appendix 5 Flag List (XMC)

A5-13

6) NC Channel Flag

It displays the state of axis configured on the NC channel. NC channel/axis flag is displayed as “_NCyy_X...”, “NCyy_Y…”

(yy indicates the NC channel No.(Decimal) and X,Y,Z,A,B,C,U,V,W is the assigned axis)

_NCyy _ModalG_Skip REAL %FD16499 NC Ch. yy G code modal value group 23 - Skip
_NCyy_ModalFeed LREAL %FL8254 NC Ch. yy modal feed
_NCyy_ModalScode UDINT %FD16510 NC Ch. yy modal S code
_NCyy_ModalSpindleM UDINT %FD16511 NC Ch. yy modal spindle M code
_NCyy_ModelMcode UDINT %FD16512 NC Ch. yy Modal M Code
_NCyy_ModelHcode UDINT %FD16513 NC Ch. yy Modal H Code
_NCyy_ModalWorkCoord UDINT %FD16514 NC Ch. yy Modal Workpiece Coordinate

Variable Type Address Description
_NC01X_Ready BOOL %FX532480 NC Ch. 01 axis X ready
_NC01X_Warning BOOL %FX532481 NC Ch. 01 axis X warning occurrence
_NC01X_Alarm BOOL %FX532482 NC Ch. 01 axis X alarm occurrence
_NC01X_ServoOn BOOL %FX532483 NC Ch. 01 axis X servo On/Off
_NC01X_ServoReady BOOL %FX532484 NC Ch. 01 axis X servo ready
_NC01X_ServoAlarm BOOL %FX532485 NC Ch. 01 axis X servo alarm occurrence
_NC01X_OprRdy BOOL %FX532544 NC Ch. 01 axis X operation ready
_NC01X_FeedMode BOOL %FX532552 NC Ch. 01 axis X axis feed mode (0: linear axis, 1:

rotation axis)
_NC01X_LinkedAxNum UINT %FW33285 NC Ch. 01 axis X actual axis number of IPR axis
_NC01X_Busy BOOL %FX532608 NC Ch. 01 axis X busy state

Variable Type Address Description
_NC01X_Direction BOOL %FX532609 NC Ch. 01 axis X operation direction
_NC01X_ForwardRun BOOL %FX532610 NC Ch. 01 axis X running to positive direction
_NC01X_ReverseRun BOOL %FX532611 NC Ch. 01 axis X running to negative direction
_NC01X_RapidTraverse BOOL %FX532612 NC Ch. 01 axis X rapid traverse operation
_NC01X_CuttingFeed BOOL %FX532613 NC Ch. 01 axis X cutting feed operation
_NC01X_Homing BOOL %FX532614 NC Ch. 01 axis X homing operation
_NC01X_SpindleRun BOOL %FX532615 NC Ch. 01 axis X spindle operation
_NC01X_PosCmpl BOOL %FX532672 NC Ch. 01 axis X positioning completion
_NC01X_Inposition BOOL %FX532673 NC Ch. 01 axis X in-position detection
_NC01X_HomeCmpl BOOL %FX532675 NC Ch. 01 axis X homing completion
_NC01X_Mirror BOOL %FX532736 NC Ch. 01 axis X mirror signal
_NC01X_CmdPosInWC LREAL %FL8325 NC Ch. 01 axis X command position in workpiece

coordinate system
_NC01X_CmdPosInRC LREAL %FL8326 NC Ch. 01 axis X command position in relative

coordinate system
_NC01X_ActualVel LREAL %FL8327 NC Ch. 01 axis X actual current velocity

 Appendix 5 Flag List (XMC)

A5-14

7) SD Memory Flag
Variable Type Address Description

_SD_Attach BOOL %KX8256 SD attachment state
_SD_Rdy BOOL %KX8257 SD memory ready
_SD_Err BOOL %KX8258 SD memory error
_SD_Init BOOL %KX8259 SD memory initializing state
_SD_Closing BOOL %KX8260 SD memory closing state
_SD_FATErr BOOL %KX8261 File System Error
_SD_AutoLogAct BOOL %KX8262 Act Auto-logging
_SD_Busy BOOL %KX8263 SD memory busy state
_SD_SpaceWarn BOOL %KX8264 SD memory insufficient state
_SD_Detach BOOL %KX8265 SD memory detachment state
_SD_VolTot UDINT %KD259 SD memory storage capacity(GB)
_SD_VolAvail UDINT %KD260 Available storage capacity(KB)
_SD_Ecode WORD %KW522 SD memory error code
_SD_FmtInfo WORD %KW523 SD memory format information
_SD_FmtRun BOOL %KX8368 SD memory format operation state
_SD_FmtDone BOOL %KX8369 SD memory format complete state
_SD_FmtErr BOOL %KX8370 SD memory format fail state
_SD_FmtEcode WORD %KW524 SD memory format error code
_SD_FmtProgress WORD %KW525 SD memory format progress ratio(%)

_NC01X_RemDistance LREAL %FL8329 NC Ch. 01 axis X remaining distance
_NC01X_PosDeviation LREAL %FL8330 NC Ch. 01 axis X servo position deviation (tracking error)
_NC01X_WcOffset LREAL %FL8334 NC Ch. 01 axis X offset value of workpiece coordinate

system
_NC01X_WcBasicOffset LREAL %FL8335 NC Ch. 01 axis X basic offset value of workpiece

coordinate system
_NC01X_WcShiftOffset LREAL %FL8336 NC Ch. 01 axis X shift offset value of workpiece

coordinate system
_NC01X_LocalWcOffset LREAL %FL8337 NC Ch. 01 axis X offset value of local workpiece

coordinate system
_NC01X_CmdPosInMC LREAL %FL8339 NC Ch. 01 axis X command position in machine

coordinate system
_NC01X_ActualPosInMC LREAL %FL8341 NC Ch. 01 axis X actual current position in machine

coordinate system

_NC01X_SkipPosInMC LREAL %FL8342
NC Ch. 01 axis X skip position in machine coordinate
system

_NC01X_AxErr WORD %FW33372 NC Ch. 01 axis X error code
_NC01X_DrvErr WORD %FW33373 NC Ch. 01 axis X drive error code

Appendix 5 Flag List (XMC)

A5-15

Variable Type Address Description
_SD_AttachCnt WORD %KW526 SD memory attachment count
_SD_DetachCnt WORD %KW527 SD memory detachment count
_SD_AddfuncAct BOOL %KX8640 SD additional function operation state
_SD_AddfuncErr BOOL %KX8641 SD additional function error state
_SD_AddfuncDone BOOL %KX8642 SD additional function complete state
_SD_CmpResult BOOL %KX8643 SD result of comparison
_SD_AddfuncKind WORD %KW541 SD type of additional function
_SD_AddfuncEcode WORD %KW542 SD additional function error code

8) Data Log Flag
Variable Type Address Description

_DL00_Enable BOOL %KX8224 Group 00 datalog enable state
_DL00_Rdy BOOL %KX8960 Group 00 datalog ready
_DL00_Act BOOL %KX8961 Group 00 datalog operation state
_DL00_Err BOOL %KX8962 Group 00 datalog error state
_DL00_Stoping BOOL %KX8963 Group 00 datalog stoping state
_DL00_Finish BOOL %KX8964 Group 00 datalog finish state
_DL00_Trig BOOL %KX8965 Group 00 trigger occurrence state
_DL00_TrigDone BOOL %KX8966 Group 00 trigger complete state
_DL00_Evt BOOL %KX8967 Group 00 event occurrence state
_DL00_Ovf BOOL %KX8968 Group 00 buffer overflow state
_DL00_Ecode WORD %KW561 Group 00 datalog error code
_DL00_FileIdx WORD %KW562 Group 00 datalog file index number
_DL00_FileRollcnt WORD %KW563 Group 00 overwrite count
_DL00_FileSize UDINT %KD282 Group 00 file size(Byte)
_DL00_DataRow UDINT %KD283 Group 00 data row number
_DL00_RemainBuf UDINT %KD284 Group 00 remaining buffer size(Byte)
_DL00_WaitingData UDINT %KD285 Group 00 waiting data size(Byte)
_DL00_OvfCnt WORD %KW572 Group 00 buffer overflow count
_DL00_TrigCnt WORD %KW573 Group 00 trigger occurrence count
_DL00_TrigOvlap WORD %KW574 Group 00 trigger overlap count
_DL00_EvtgCnt WORD %KW575 Group 00 event occurrence count

9) Encoder Flag
Variable Type Address Description

_ENC1_POS LREAL %KL0 Encoder1 input position
_ENC2_POS LREAL %KL1 Encoder2 input position
_ENC1_UNIT UINT %KW8 Encoder1 unit (0:pulse, 1:mm, 2:inch, 3:degree)
_ENC2_UNIT UINT %KW9 Encoder2 unit (0:pulse, 1:mm, 2:inch, 3:degree)

 Appendix 5 Flag List (XMC)

A5-16

Variable Type Address Description
_ENC1_VEL LREAL %KL3 Encoder1 Speed
_ENC2_VEL LREAL %KL4 Encoder2 Speed
_ENC1_POS_LATCH LREAL %KL5 Encoder1 input position latch value
_ENC2_POS_LATCH LREAL %KL6 Encoder2 input position latch value

10) P2P Flag
Variable Type Address Description

_P2Pn_NDRxx BOOL

XG5000 Global/
Direct Variable
P2P

P2P parameter n / xx block service normal completion

_P2Pn_ERRxx BOOL
P2P parameter n / xx block service abnormal
completion

_P2Pn_STATUSxx WORD
P2P parameter n / xx error code of block service
abnormal completion

_P2Pn_SVCCNTxx DWORD
P2P parameter n / xx number of block service normal
completion

_P2Pn_ERRCNTxx DWORD
P2P parameter n / xx number of block service
abnormal completion

Warranty and Environmental Policy

1

Warranty

1. Warranty Period

 The product you purchased will be guaranteed for 18 months from the date of manufacturing.

2. Scope of Warranty
 Any trouble or defect occurring for the above-mentioned period will be partially replaced or repaired. However, please note the

following cases will be excluded from the scope of warranty.

(1) Any trouble attributable to unreasonable condition, environment or handling otherwise specified in the manual,
(2) Any trouble attributable to others’ products,
(3) If the product is modified or repaired in any other place not designated by the company,
(4) Due to unintended purposes
(5) Owing to the reasons unexpected at the level of the contemporary science and technology when delivered.
(6) Not attributable to the company; for instance, natural disasters or fire

3. Since the above warranty is limited to PLC unit only, make sure to use the product considering the safety for system configuration

or applications.

Environmental Policy

LS ELECTRIC Co., Ltd supports and observes the environmental policy as below.

Environmental Management

LS ELECTRIC considers the environmental
preservation as the preferential management
subject and every staff of LS ELECTRIC use
the reasonable endeavors for the pleasurably
environmental preservation of the earth.

About Disposal

LS ELECTRIC’ PLC unit is designed to protect
the environment. For the disposal, separate
aluminum, iron and synthetic resin (cover) from
the product as they are reusable.

Warranty and Environment Policy

2

www.lselectric.co.kr

■ Overseas Subsidiaries
• LS ELECTRIC Japan Co., Ltd. (Tokyo, Japan)

Tel: 81-3-6268-8241 E-Mail: jschuna@lselectric.biz

• LS ELECTRIC (Dalian) Co., Ltd. (Dalian, China)
Tel: 86-411-8730-6495 E-Mail: jiheo@lselectric.com.cn

• LS ELECTRIC (Wuxi) Co., Ltd. (Wuxi, China)
Tel: 86-510-6851-6666 E-Mail: sblee@lselectric.co.kr

• LS ELECTRIC Shanghai Office (China)
Tel: 86-21-5237-9977 E-Mail: tsjun@lselectric.com.cn

• LS ELECTRIC Vietnam Co., Ltd.
Tel: 84-93-631-4099 E-Mail: jhchoi4@lselectric.biz (Hanoi)

Tel: 84-28-3823-7890 E-Mail: sjbaik@lselectric.biz (Hochiminh)

• LS ELECTRIC Middle East FZE (Dubai, U.A.E.)
Tel: 971-4-886-5360 E-Mail: salesme@lselectric.biz

• LS ELECTRIC Europe B.V. (Hoofddorf, Netherlands)
Tel: 31-20-654-1424 E-Mail: europartner@lselectric.biz

• LS ELECTRIC America Inc. (Chicago, USA)
Tel: 1-800-891-2941 E-Mail: sales.us@lselectricamerica.com

■ Headquarter
LS-ro 127(Hogye-dong) Dongan-gu, Anyang-si, Gyeonggi-Do, 14119,

Korea

■ Seoul Office
LS Yongsan Tower, 92, Hangang-daero, Yongsan-gu, Seoul, 04386,

Korea

Tel: 82-2-2034-4033, 4888, 4703 Fax: 82-2-2034-4588

E-mail: automation@lselectric.co.kr

■ Factory
56, Samseong 4-gil, Mokcheon-eup, Dongnam-gu, Cheonan-si,

Chungcheongnam-do, 31226, Korea

©2007. LS ELECTRIC Co., Ltd. All Rights Reserved.

2020.05

	Table of Contents
	Chapter 1. Introduction
	1.1 Overview

	Chapter 2. Software Structure
	2.1 Introduction
	2.2 Project

	Chapter 3. Common Elements
	3.1 Overview
	3.2 Expression
	3.1.1 Identifiers
	3.1.2 Data Expression

	3.2 Data Type
	3.2.1 Basic Data Type
	3.2.2 Data Type Hierarchy Chart
	3.2.3 Initial Value
	3.2.4 Data Type Structure

	3.3 Variable
	3.3.1 Variable Expression
	3.3.2 Variable Declaration
	3.3.3 Reserved Variable
	3.3.4 Reserved Word

	3.4 Program Type
	3.4.1 Function
	3.4.2 Function Block
	3.4.3 Program

	3.5 Function Selection
	3.5.1 Internally Determined Function
	3.5.2 Function Selection Rules

	Chapter 4. SFC (Sequential Function Chart)
	4.1 Introduction
	4.2 SFC Structure
	4.2.1 Step
	4.2.2 Transition
	4.2.3 Action
	4.2.4 Action Qualifier

	4.3 Extension regulation
	4.3.1 Serial connection
	4.3.2 Selection branch
	4.3.3 Parallel branch (simultaneous branch)
	4.3.4 Jump

	Chapter 5. LD (Ladder Diagram)
	5.1 Introduction
	5.2 Bus
	5.3 Link
	5.4 Contact
	5.5 Coil
	5.6 Calling of Function and Function Block

	Chapter 6. Function and Function Block
	6.1 Functions
	6.1.1 Type Conversion Function
	6.1.2 Numerical operation function
	6.1.3 Bit array function
	6.1.4 Selection function
	6.1.5 Data exchange function
	6.1.6 Comparison function
	6.1.7 Character string function
	6.1.8 Date and time of day function
	6.1.9 System control function
	6.1.10 File function
	6.1.11 Data manipulation function
	6.1.12 Stack operation function

	6.2 MK (MASTER-K) function
	6.3 Array operation function
	6.4 Basic function block
	6.4.1 Bistable function block
	6.4.2 - detection function block
	6.4.3 Counter
	6.4.4 Timer
	6.4.5 File function block
	6.4.6 Other function block
	6.4.7 Communication function block
	6.4.8 Special function block
	6.4.9 Motion control function block
	6.4.10 Positioning function block (APM)
	6.4.11 Positioning function block (XPM)

	6.5 Expanded function
	6.6 Motion Function Block

	Chapter 7. Basic Functions
	Chapter 8. Application Functions
	Chapter 9. Basic Function Blocks
	Chapter 10. Application Function Blocks
	Chapter 11. Communication and Special Function Blocks
	Chapter 12. Expanded Functions
	Chapter 13. Process Control Library
	Chapter 14. ST (Structured Text)
	14.1 General
	14.2 Comments
	14.3 Expression
	14.3.2 - Operator
	14.3.3 * Operator
	14.3.4 / Operator
	14.3.5 MOD operation
	14.3.6 ** Operator
	14.3.7 AND or & Operator
	14.3.8 OR operator
	14.3.9 XOR operator
	14.3.10 Operator
	14.3.11 <> operator
	14.3.12 > operator
	14.3.13 < operator
	14.3.14 >= operator
	14.3.15 <= operator
	14.3.16 NOT operator
	14.3.17 - operator
	14.4 Statements
	14.4.4 IF
	14.4.5 CASE
	14.4.6 FOR
	14.4.7 WHILE
	14.4.8 REPEAT
	14.4.9 EXIT
	14.5 Function and Function Block
	14.5.1 How to use
	14.5.2 Example

	Chapter 15. Safety Function Blocks
	Chapter 16 Motion Function Blocks
	Chapter 17. IL (Instruction List)
	17.1. summary
	17.2. Current Result: CR)
	17.3. Expression
	17.4. Label
	17.5. Modifier
	17.6. Basic operator
	17.6.1. LD
	17.6.2. ST
	17.6.3. SET
	17.6.4. RST (Reset)
	17.6.5. AND
	17.6.6. OR
	17.6.7. XOR
	17.6.8. ADD
	17.6.9. SUB
	17.6.10. MUL
	17.6.11. DIV
	17.6.12. GT
	17.6.13. GE
	17.6.14. EQ
	17.6.15. NE
	17.6.16. LE
	17.6.17. LT
	17.6.18. JMP
	17.6.19. CAL
	17.6.20. RET
	17.6.21. SCAL
	17.6.22.)

	17.7. Non-executable statements (comments)
	17.8. Function and function block
	17.8.1. Function
	17.8.2. Function block
	17.8.3. Stereotyped form
	17.8.4. Nonformatted form
	17.8.5. Example

	Appendix 1 Numerical System and Data Structure
	Appendix 2 Flag List (XGI)
	Appendix 3. Flag list (XGR)
	Appendix 3.1 User Flag
	Appendix 3.2 System Error Representative Flag
	Appendix 3.3 System Error Detail Flag
	Appendix 3.4 System Warning Representative Flag
	Appendix 3.5 System Warning Detail Flag
	Appendix 3.6 System Operation Status Information Flag
	Appendix 3.7 Redundant Operation Mode Information Flag
	Appendix3.8 Operation Result Information Flag
	Appendix 3.9 Operation mode Key Status Flag
	Appendix 3.10 Link Flag (L) List
	Appendix 3.11 Communication Flag (P2P) List
	Appendix 3.12 Reserved Word

	Appendix 4 Flag List (XEC)
	Appendix 5 Flag List (XMC)

