
Thank you for purchasing LS Variable Frequency Drives!

SAFETY INSTRUCTIONS

To prevent injury and property damage, follow these instructions during the installation and operation of the inverter.

Incorrect operation due to ignoring these instructions may cause harm or damage. The following symbols are used throughout the manual to highlight important information.

The meaning of each symbol in this manual and on your equipment is as follows.

This is the safety alert symbol.

Read and follow instructions carefully to avoid a dangerous situation.

This symbol alerts the user to the presence of "dangerous voltage" inside the product that might cause bodily harm or electric shock.

This manual should be placed in a location where it can be accessed by users.

This manual should be given to the person who actually uses the inverter and is responsible for its maintenance.

• Do not remove the cover while power is applied or the unit is in operation.

Otherwise, electric shock could occur.

- **Do not operate the inverter with the front cover removed.** Otherwise, electric shock can occur due to the exposed terminals and bus bars.
- Do not remove the cover except for periodic inspections or wiring, even if the input power is not applied. Otherwise, electric shock can occur due to accessing capacitor banks.
- Wiring and periodic inspections should be performed at least 10 minutes after disconnecting the input power and after checking the DC link voltage is discharged with a meter (below 30VDC). Otherwise, electric shock could occur.
- Operate the switches with dry hands. Otherwise, electric shock could occur.
- **Do not use the cable when its insulating tube is damaged.** Otherwise, electric shock could occur.
- Do not subject the cables to scratches, excessive stress, heavy loads or pinching.

Otherwise, electric shock could occur.

• Install the inverter on a non-flammable surface. Do not place flammable materials nearby.

Otherwise, fire could occur.

- **Disconnect the input power if the inverter has been damaged.** Otherwise, it could result in a secondary accident and fire.
- Do not touch the inverter after shutting down or disconnecting it. It will remain hot for a couple of minutes.

Otherwise, bodily injuries such as skin-burn or damage could occur.

- Do not apply power to a damaged inverter or to an inverter with parts missing even if the installation is complete.
 Otherwise, electric shock could occur.
- Do not allow lint, paper, wood chips, dust, metallic chips or other foreign material into the drive.
 Otherwise, fire or assident early assure

Otherwise, fire or accident could occur.

OPERATING PRECAUTIONS

(1) Handling and installation

- The LSMV series inverter can be heavy. Lift according to the weight of the product. Use a hoist or crane to move and install the LSMV series inverter if necessary. Failure to do so may result in personal injury or damage to the inverter.
- Do not stack the inverter boxes higher than the number recommended.
- Install the inverter according to instructions specified in this manual.
- Do not open the cover during delivery.
- Do not place heavy items on the inverter.
- Check that the inverter mounting orientation is correct.
- Do not drop the inverter, or subject it to hard impact.
- Verify the ground impedance 100ohm or less for 230 V Class inverters and 10ohm or less for 460V class inverters.
- Take protective measures against ESD (Electrostatic Discharge) before touching the pcb boards during inspection, installation or repair.
 - Ambient $0 \sim 40$ °C (32°F ~ 104°F) temp. Relative 90% Relative Humidity or less (non-condensing) humidity Environment Storage **0** ~ **65** °C °C (32°F ~ 149°F) temp. Protected from corrosive gas, combustible gas, oil mist Location or dust (Pollution Degree 2 Environment) Max. 1,000m (3,300ft) above sea level, Max. 5.9m/sec² Altitude, Vibration (0.6G) or less Atmospheric 70 ~ 106 kPa (20.67 in Hg ~ 31.3 in Hg) pressure
- The inverter is designed for use under the following environmental conditions:

(2) Wiring

- Do not connect power factor correction capacitors, surge suppressors, or RFI filter to the output of the inverter.
- The connection orientation of the motor output cables U, V, W will affect the direction of rotation of the motor. Verify correct wiring before starting inverter.
- Incorrect terminal wiring could result in inverter and/or equipment damage.
- Reversing the polarity (+/-) of the terminals could damage the inverter.
- Only authorized personnel familiar with LS inverter should perform wiring and inspections.

• Always install the inverter before wiring. Otherwise, electric shock or bodily injury can occur.

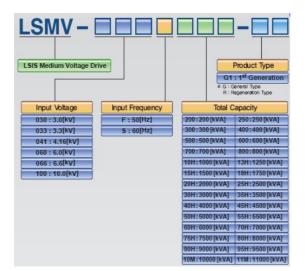
- (3) Trial run
 - Check all parameters during operation. Parameter values might require adjustment depending on the application.
 - Always apply voltage within the permissible range of each terminal as indicated in this manual. Otherwise, inverter damage may result.
- (4) Operation precautions
 - When the Auto restart function is selected, the inverter will restart after a fault has occurred.
 - The Stop key on the keypad can only be used to stop the inverter when keypad control is enabled. Install a separate emergency stop switch if necessary.

- If a fault reset is made with the run command and /or reference signal present, a sudden start will occur. Check that the run command and /or reference signal is turned off in advance of resetting any faults. Otherwise an accident could occur.
- Do not modify the inverter.
- Depending on the motor specifications and user ETH overload settings, the motor may not be protected by electronic thermal function of inverter.
- The operation of the inverter is intended to be controlled by either keypad command or control input signals. Do not use a magnetic contactor or any other device that routinely disconnects the inverter and reconnects the inverter to the input supply power for the purpose of starting and stopping the motor.
- A noise filter may be installed to reduce the effect of electromagnetic interference. Otherwise nearby electronic equipment may be affected.
- In cases with input voltage unbalances, install an AC input reactor.
- Power Factor capacitors and generators may become overheated and damaged due to harmonics created by the inverter.
- Use an insulation-rectified motor or take measures to suppress the micro surge voltage when driving 460V class motor with inverter. A micro surge voltage attributable to wiring constant is generated at motor terminals, and may deteriorate insulation and damage motor.
- Before operating unit and prior to user programming, reset user parameters to default settings.
- The Inverter can be set to operate a motor at high-speeds. Verify the speed capability of motor and machinery prior to operating inverter.
- Holding torque is not produced when using the DC-Brake function. Install separate equipment when holding torque is required.
- (5) Fault prevention precautions
 - If required, provide a safety backup such as an emergency mechanical brake to prevent any hazardous conditions if the inverter fails during operation.
- (6) Maintenance, inspection and parts replacement
 - Do not megger (hi-pot or insulation resistance) test the power or control circuit of the inverter.
 - Refer to Chapter 8 for periodic inspection and parts replacement details.
- (7) Disposal
 - Handle the inverter as an industrial waste when disposing of it.
- (8) General instructions

Many of the diagrams and drawings in this instruction manual show the inverter without a cover. Prior to operating the unit, be sure to restore covers and circuit protection according to specifications.

CHAPTER 1 - BASIC INFORMATION	
1.1 INSPECTION	
1.1 INSPECTION 1.2 BASIC CONFIGURATION	
CHAPTER 2 - SPECIFICATION	
2.1 BASIC SPECIFICATIONS	2-1
2.2 DIMENSIONS	
CHAPTER 3 - INSTALLATION	
3.1 INSTALLATION	
3.1.1 CONTROL CIRCUIT TREMINAL	
3.1.2 ANALOG FREQUENCY TERMINAL	
3.1.3 RS485 COMMUNICAATION TERMINAL	
3.1.4 ANALOG OUTPUT TERMINAL	
3.1.5 INPUT/OUTPUT CURRENT, VOLTAGE TERMINAL	
3.2 WIRING	
3.2.3 CONTROL WIRING CAUTION	
CHAPTER 4 - OPERATION	
4.1 PROGRAMMING KEYPADS	
4.2 OPERATING EXAMPLE	
4.3 VARIOUS FUNCTION SETTING & DESCRIPTION	
CHAPTER 5 - PARAMETER LIST	
5.1 PARAMETER GROUPS	
5.2 PARAMETER LIST	
CHAPTER 6 - PARAMETER DESCRIPTION	
6.1 DRIVE GROUP [DRV]	
6.2 FUNCTION 1 GROUP [FU1]	
6.3 FUNCTION 2 GROUP [FU2]	
6.4 INPUT/OUTPUT GROUP [I/O]	
6.5 CELL GROUP [CEL]	
CHAPTER 7 - TROUBLESHOOTING & MAINTENANCE	XLII
7.1 FAULT DISPLAY	XLII
7.2 FAULT REMEDY	XLIV
7.3 TROUBLE SHOOTING	XLV
7.4 MAINTENANCE	
7.4.1 REGULAR CHECK LIST (ONCE/YEAR)	
7.4.2 MEGGER CHECK (INSULATION RESISTANCE MEASUREMENT)	XLVI
7.4.3 CHECKING SCREWS, BOLTS, AND CONNECTORS	XLVII
7.4.4 TRANSFORMER INSPECTION	XLVII
7.4.5 POWER CELL INSPECTION	XLVIII
7.4.6 AIR FILTER INSPECTION	XLIX
7.4.7 CIRCUIT BOARD INSPECTION	XLIX
7.4.8 COOLING FAN INSPECTION	
7.4.9 PARTS REPLACEMENT	L

Table of Contents


CHAPTER 1 - BASIC INFORMATION

1.1 Inspection

- Remove the inverter from its packing and inspect its exterior for shipping damage. If damage is apparent notify the shipping agent and your LSIS sales representative.
- Remove the cover and inspect the inverter for any apparent damage or foreign objects. Ensure that all mounting hardware and terminal connection hardware is properly seated, securely fastened, and undamaged.
- Check the nameplate on the LSMV inverter. Verify that the inverter unit is the correct horsepower and input voltage for the application.

1.1.1. Inverter model number

The numbering system of the inverter is as shown below.

The numbering inverter of cell unit is as shown below.

F	PCM – 630V	/53A	CELL MODEL NAME
INPUT	630V	3-Phase	INPUT VOLTAGE
OUTPUT	0 ~ Input V 53A	1-Phase 33KVA	OUTPUT CAPACITY & CURRENT
WEIGHT	BBkg		CORNEINT
DATE	63620009 09.11.17 08072800001		CODE & SERIAL NUMBER
LS Industrial	Systems	Made in KOREA	

1.1.2. Installation

To operate the inverter reliably, install the inverter in a proper place with the correct direction and with the proper clearances.

1.1.3. Wiring

Connect the power supply, motor and operation signals (control signals) to the terminal block. Note that incorrect connection may damage the inverter and peripheral devices.

1.2 Basic configuration

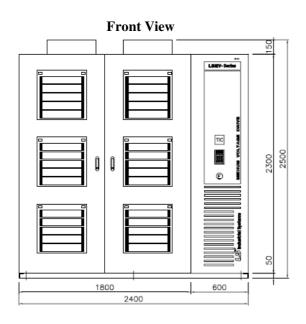
The following devices are required to operate the inverter. Proper peripheral devices must be selected and correct connections made to ensure proper operation. An incorrectly applied or installed inverter can result in system malfunction or reduction in product life as well as component damage. You must read and understand this manual thoroughly before proceeding.

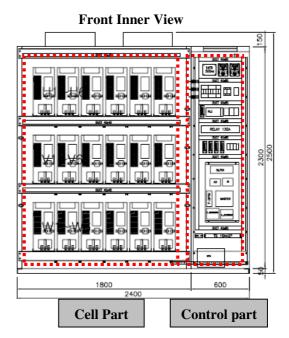
$(\widetilde{\mathbb{Z}})$	AC Source Supply	Use a power source with a voltage within the permissible range of inverter input power rating.
A CONTRACTOR	MCCB or Earth leakage circuit breaker (ELB)	Select circuit breakers or fuses in accordance with applicable national and local codes.
A THEOGRA	Input VCB Panel	Check that the panel meets the specifications of the inverter.
	Installation and wiring	To reliably operate the drive, install the inverter in the proper orientation and with proper clearances. Incorrect terminal wiring could result in the equipment damage.
	To motor	Do not connect power factor capacitors, surge arrestors or radio noise filters to the output side of the inverter.

CHAPTER 2 - SPECIFICATION

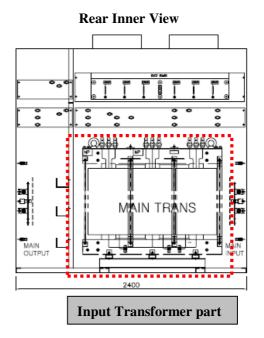
2.1 Basic Specifications

Model Number (LSMV-066F10H-G1)		
	Voltage	3Phaes 3kV/3.3kV/4.16kV/6kV/6.6kV/10kV
Output ratings	Frequency	0-120[Hz]
	Voltage Level	MAX 25Level
In a stin as	Voltage	3Phaes 3kV/3.3kV/4.16kV/6kV/6.6kV/10kV \pm 10%
Input ratings Freque	Frequency	50/60[Hz] ± 5% * ^{Note1)}
	Cascade Stair	2 stair/3 stair/4 stair/5 stair/6 stair/9 stair Serial
Basic structure	Cell input voltage	3Phase 630[V]
	Cell bypass	Basic internal

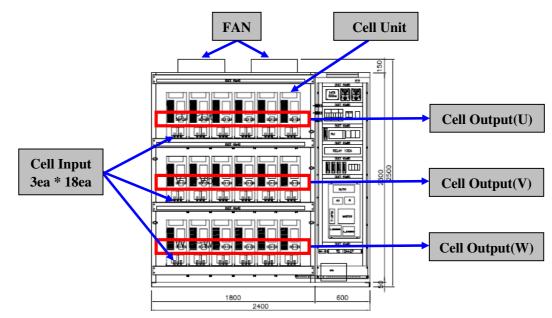

*Note1) Please contact us for any other voltage specification.


Co	oling method	Forced air cooling	
	Control Method	V/F, Sensorless Vector, Slip Compensation	
JL I	Frequency Range	0 – 120[Hz]	
ONTROL	Frequency Accuracy	\pm 0.1%	
NO	Frequency Setting Resolution	0.01[Hz]	
0	Overload Capacity	120% 60Ssec	
	Accel/Decel Time	0.1s ~ 6000s	
Coi	mmunication	RS485 built-in option : DeviceNet, Profibus, Modbus-RTU, Lonworks, Bac-Net	
Ad	ditional Function	Retry/Cell bypass	
Pov	wer factor	More than 95% (20% ~ 100% of Load), Satisfy IEEE 510-1002	
Eff	iciency	More than 97% (Rated Speed and Load)	
Inp	ut current THD	Less than 5%(30% ~ 100% of Load), Satisfy IEEE Std. 519-1992	
Mo	dulation Method	PWM Modulation	
<i>a</i> .		Digital input/output 23[CH]	
Sig	nal input/output	Analog input/output 6[CH]	
	Ambient Temperature	0° C ~ 40° C (32° F ~ 104° F) (Use loads less than 80% at 50 $^{\circ}$ C)	
L	Storage Temperature	0°C ~65°C (32°F ~149°F)	
IME	Ambient Humidity	Less Than 90 % RH Max. (Non-Condensing)	
\bigotimes Altitude – VibrationBelow 1,000m (3,300ft), Below 5.9m/sec ² (0.6g)		Below 1,000m (3,300ft), Below 5.9m/sec ² (0.6g)	
ENVIRONMENT	Protection degree	IP30	
E	Application Site	Pollution degree 2, No Corrosive Gas, Combustible Gas, Oil Mist, or Dust	

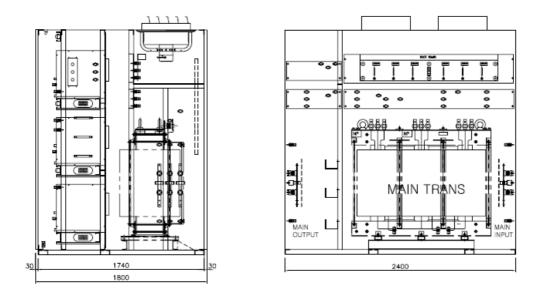
2.2 Dimensions


1) LSMV-066F10H-G1

MVDRIVE Structure Total 3Part (Input Transformer Part, Cell Part, Control Part) (According to MVDRIVE Capability the MVDRIVE structure to being different)



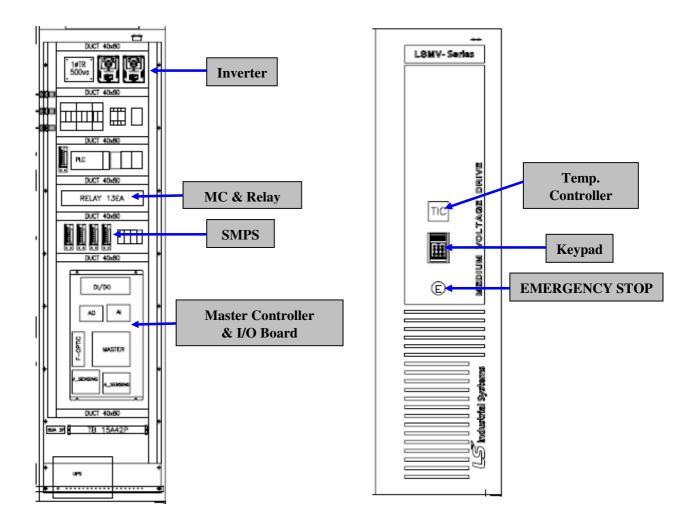
Side Inner View



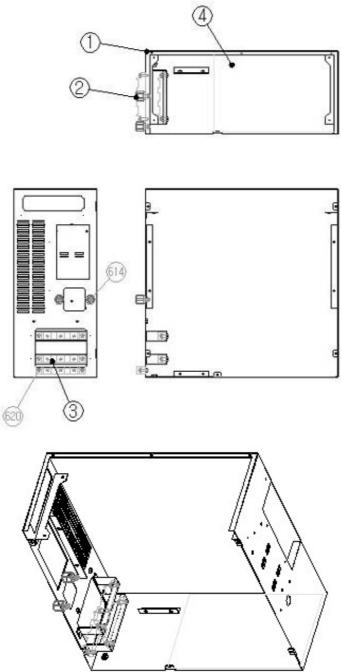
2) CELL PART

A cell panel has 6 cells per phase. The voltage of an output phase is the sum of the voltages of the cells in serial connection. Each cell receives 3-phase power and outputs single-phase power. All the cells are electrically and mechanically identical, therefore, they are interchangeable. Each cell has a control board and independent structure communicating with the master controller via optical cable. A fan is installed to cool down cells and transformer.

2) TRANS PART

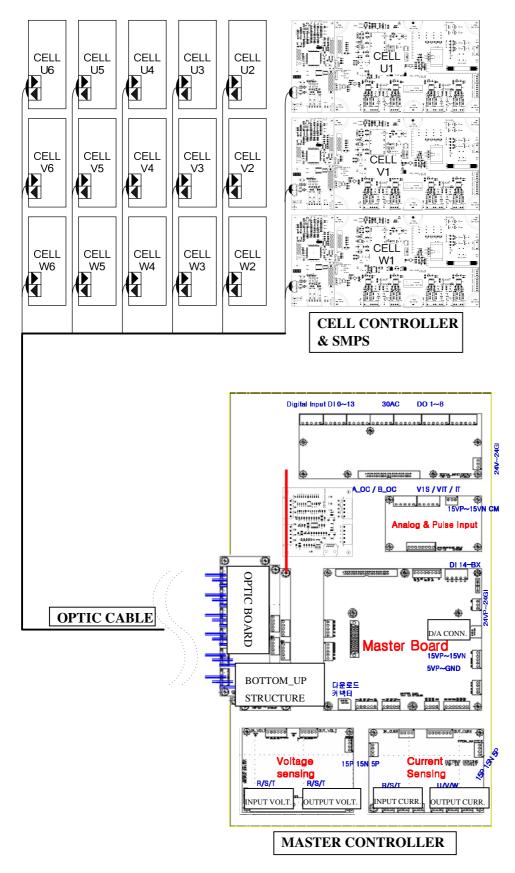

The transformer panel includes a phase shifting transformer and input/output detector. The phase shifting transformer supplies independent and phase shifted power to each cell.

The I/O detector senses the current and voltage input and output and sends the data to the master controller.


3) CONTROL PART

On the front of the control panel are the MV SystemView (option) which shows the system status and a keypad for entering commands and settings. Local/remote operation can be selected. An emergency stop button is provided to power-off the system immediately in abnormal condition.

The control panel comprises the master controller, digital I/O, analog command and output, controller hardware for CAN communication, a transformer, MCCB, MC, and relays. The master controller performs system control and protection, control of the cells in each phase, and operation command.



The above figure shows the cell structure. On the front are I/O terminals and a keypad. On the rear is a DC-link capacitor potential divider resistor. Each cell is built-in with power circuit and an MC to enable bypass in case of the cell failure. An SMPS supplied power to the controller, and a controller for distributed control communicates with the master controller.

5) CONTROLLER STRUCTURE

MASTER CONTROLLER'S STRUCTURE

- MASTER BOARD
- VOLTAGE SENSING BOARD
- CURRENT SENSING BOARD
- ANALOG INPUT BOARD
- ANALOG INPUT BOARD
- DIGITAL I/O BOARD
- OPTIC COMMUNICATION BOARD

CELL CONTROLLER'S STRUCTURE

- CPU BOARD
- SMPS BOARD

2.2.1 MASTER CONTROLLER

A Part of MASTER CONTROLLER

: System Control, Protection, V/F, Sensorless Control, Cell'S Communication, Total System Communication

• MASTER BOARD

The operation part that performs system control and protection, and processing of detected values to maintain system stability and control the motor according to the user command.

• VOLTAGE SENSING BOARD

This board senses the input and output voltages to enable the master controller for voltage operation. The I/O voltages are also used for system protection.

• CURRENT SENSING BOARD

This board senses the input and output currents to enable the master controller for current operation. The I/O currents are also used for motor control operation and system protection.

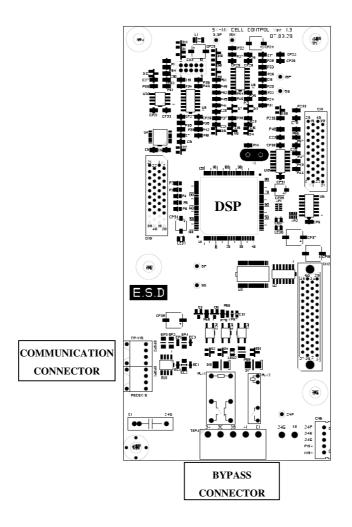
• ANALOG INPUT BOARD

This board provides the frequency commands in voltage or current signals. Frequency command by voltage: $-12V \sim 0 \sim 12V$ Frequency command by current: $4mA \sim 20mA$

• ANALOG INPUT BOARD

This board outputs the values of data memory in voltage or current signals. Voltage signals: 0~10V Current signals: 0mA~20mA

DIGITAL I/O BOARD

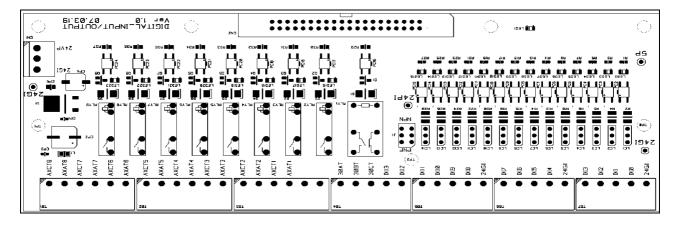

The multi-functional input of this board has 15 terminals, whose functions can be set up as desired. The 8 output terminals can be configured for specific functions, too.

• OPTIC COMMUNICATION BOARD

This board communicates cell status information and commands between the cell and the master board, respectively.

2.2.2 CELL CONTROLLER

The cell controller receives power from the SMPS at 5V, +15V, -15V, and +24V. With the built-in DSP, the cell controller performs control and protective functions through self operation. It also performs PWM, cell protection and communication with the voltage signals from the master controller, in addition to the execution of output voltage control algorithm and cell power factor control to maintain the power factors of the cells at the same level. The cell bypass function supported with MC is provided to isolate a failed cell.

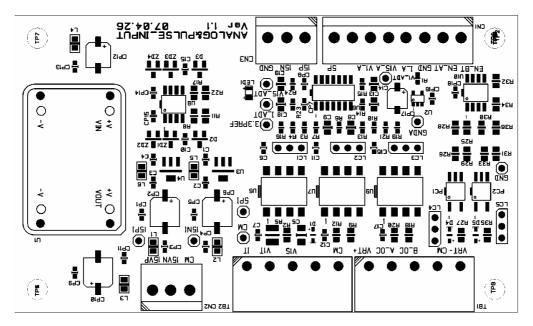


CHAPTER 3 - INSTALLATION

3.1 Installation

3.1.1 Control Circuit Terminal

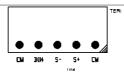
Check to ensure that the control power supply and high voltage fan power supply (6600V) are correct. Check that the environment conditions meet the specifications.


Symbol	Name	Description
M1 M2 M2	Programmable	Defines Programmable Digital Input
M1,M2,M3	Digital Input 1,2,3	(Factory setting : Multi-Step Frequency 1, 2, 3)
FX [M7]	Forward Run Command	Forward Run When Closed and Stopped When Open.
RX [M8]	Reverse Run Command	Reverse Run When Closed and Stopped When Open.
JOG[M6]	Jog Frequency Reference	Runs at Jog Frequency when the Jog Signal is ON. The Direction is set by the FX (or RX) Signal.
Ext Trip1[M5]	External Trip	The failure outside of the system.
RST[M4]	Fault Reset	Used for Fault Reset.
Trans. OHT[M11]	Transformer Over Heat	Detects overheating of the phase shifting transformer. The signal is checked with contact point.
Fan Trip[M12]	Fan Trip	Detects the failure of the cooling fan on top of the panel.
High Voltage[M13]	High Voltage ON	Indicates that the system in applied with high voltage (6600V).
Run Enable[14]	Run Enable	Setting this terminal will enable RUN command only when this is ON state.
24GI	Sequence Common(NPN) 24V Common	Common terminal for NPN contact input and also common for the external 24V supply.
24	Sequence Common(PNP)/Ext. +24Vdc supply	Common 24V terminal for PNP contact input. Can also be used as a 24Vdc external power supply (maximum output : +24V, 50mA)
BX[M15]	Inverter Disable	When the BX Signal is ON the Output of the Inverter is Turned Off. When Motor uses an Electrical Brake to Stop, BX is used to Turn Off the Output Signal. Take caution when BX Signal is OFF (Not Turned Off by Latching) and FX Signal (or RX Signal) is ON. If so, motor continues to Run.

Chapter 3 - INSTALLATION

Symbol	Name	Description
		Energizes when a fault is present.
24.20.20	Escalt Countrast Octavet	(AC250V, 1A; DC30V, 1A)
3A,3C,3B	Fault Contact Output	Fault: 3A-3C Closed (3B-3C Open)
		Normal: 3B-3C Closed (3A-3C Open)
AXAT1		Run Enable Status
AXCT1	READY [Aux 1]	
AXAT2	E D [A 2]	Fan Run Staus
AXCT2	Fan Run [Aux 2]	
AXAT3	NODMAL [Asses 2]	Normal Communication Status.
AXCT3	NORMAL [Aux 3]	
AXAT4		Run Status
AXCT4	RUN [Aux 4]	
AXAT5	Warring [Aux 5]	Protection Operating Warning Status
AXCT5	Warning [Aux 5]	

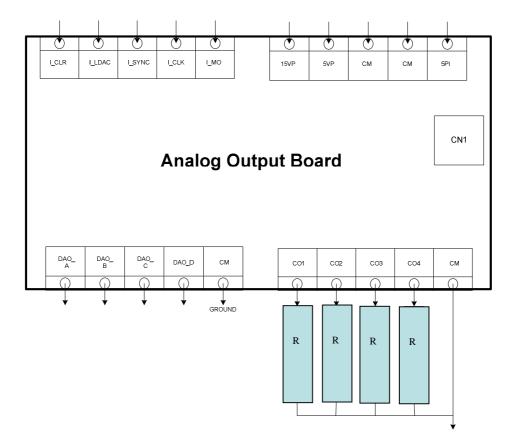
***** Unselected terminals can be selected when necessary.


3.1.2 Analog Frequency Terminal

Symbol	Name	Description
X 7. X 7	Analog Power Source	Power supply for Analog Frequency Setting.
V+, V-	(+12V,-12V)	Maximum Output: +12V, 100mA, -12V, 100mA.
3.7.1	Frequency Reference	Used by a DC 0-12V or -12~ 12 V input to set the frequency
V1	(Voltage)	reference. (Input impedance is 20 k Ω)
т	Frequency Reference	Used by a 4 20m A input to get the frequency reference
1	(Current) Used by a 4-20mA input to set the frequency refer	Used by a 4-20mA input to set the frequency reference.
	Frequency Reference	Used has a males imput to get the frequency reference
EN_AT, EN_BT	(Pulse)	Used by a pulse input to set the frequency reference.
CNIDA	Frequency Reference	Common Torminal for Analog Frequency Deference Signal
GNDA	Common Terminal	Common Terminal for Analog Frequency Reference Signal.

3.1.3 RS485 Communication Terminal

RS485 Communication Connected MV SystemView



Symbol	Name	Description
010	RS485 signal High,	RS485 signal (See RS485 communication in the manual for more
S+ , S -	Low	details.)
СМ	RS485 common	Common Ground. Terminal for RS485 interface.

***** The BX[M15] terminal is on the master board.

OPTION RS485 is used from connection with other control devices such as a PC.

3.1.4 Analog Output Terminal

Symbol	Name	Description
СМ	Analog output Common Terminal	A common terminal for the analog output for indicator.
DAO_A, DAO_B DAO_C, DAO_D	Analog Output Voltage	One of the output frequency, output voltage, or DC voltage is selected and outputted. The output frequency is the default factory setting. The output voltage range is 0~10V.
CO1, CO2 CO3, CO4	Analog Output Current	One of the output frequency, output current, output voltage, or DC current is selected and outputted. The output current range is 0~25mA.

3.1.5 Input/Output Current, Voltage Terminal

: Transformer input current and voltage, and inverter output current and voltage can be checked with this board. No user setting required.

3.2 WIRING

3.2.1 Wiring Precaution

- 1) The internal circuit of the inverter will be damaged if the incoming power is connected and applied to output terminal (U, V, W).
- 2) User ring terminals with insulated caps when wiring the input power and motor wiring.
- 3) Do not leave wire fragments inside of the inverter. Wire fragments can cause faults, breakdowns, and malfunctions.
- 4) For input and output wiring, user wires with sufficient size to rated voltage of High voltage inverter.
- 5) Do not use power factor capacitor, surge killers, or RFI filters on the output side of the inverter. Doing so may damage these components or occur inverter trip.
- 6) Always check whether the LCD and the carge lamp for the power terminal are OFF before wiring terminals. The charge capacitor may hold high-voltage even after the power is connected. User caution to prevent the possibility of personal injury.

3.2.2 Grounding

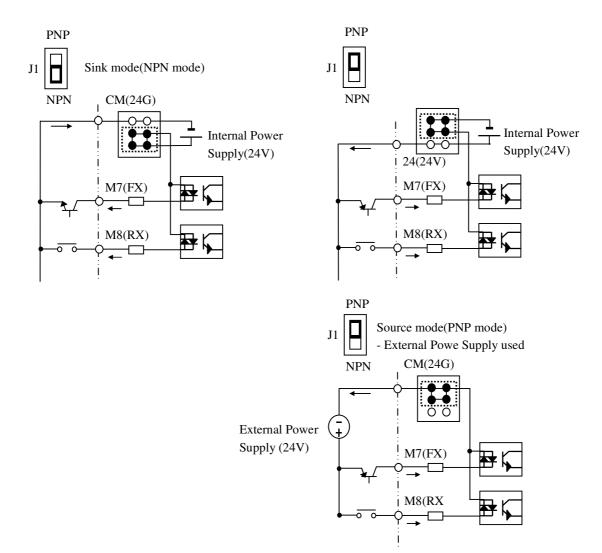
- 1) High voltage inverter is a high switching device, and leakage current may flow. Ground the inverter to avoid electrical shock. User caution to prevent the possibility of personal injury.
- 2) The ground impedance should be less than 10 ohm for high-voltage inverter and motor.
- 3) Connect only to the decicated ground terminal of the high-voltage inverter. Do not use the case or the cassis screw for grounding.
- 4) Grounding wire should be as thick as possible.

3.2.3 Control Wiring Caution

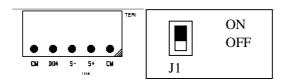
- 1) CM, 5G and 24GI terminals are insulated each other. Do not connect these terminals together or to the ground.
- 2) Use shielded wires or twisted wires for control circuit wiring, and separate these wires from the main power circuits and other high voltage circuit (200V relay sequence circuit).
- 3) It is recommended to use the cables of 0.0804mm² (28 AWG) ~ 1.25mm² (16 AWG) for analog command terminals of control circuit and 0.33mm² (22 AWG) ~ 2.0mm² (14 AWG) for terminal board (programmable digital input/output terminal and fault signal contact point).

3.2.3 Sink mode(NPN mode) / Source mode(PNP mode)

LSMV provides Sink/Source(NPN/PNP) modes for sequence input terminal on the control circuit. The logic of the input terminal is setable to Sink mode(NPN mode) / Source mode(NPN mode) by using the J1 switch. Connection method is shown below.


(1) Sink mode(NPN mode)

- Put J1 swich down to set to Sink mode(NPN mode). CM terminal (24V GND) is common terminal for contact signal input.


- The factory default is Sink mode(NPN mode).

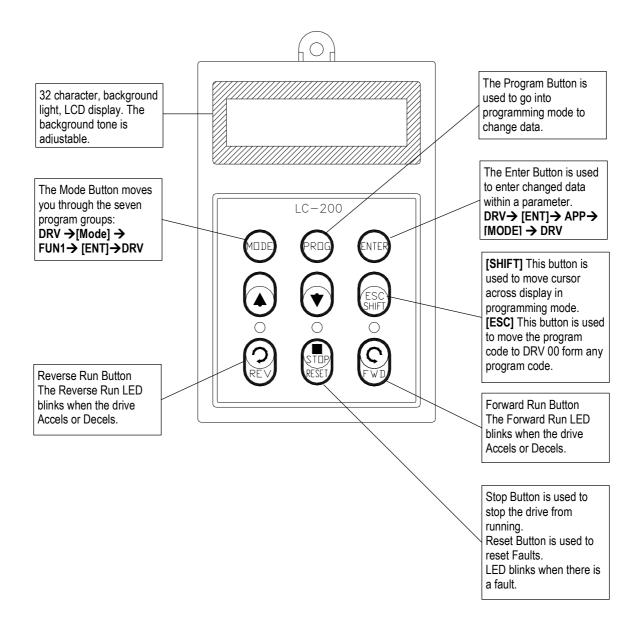
- (2) Source mode(PNP mode) Internal Power Supply used
 Put J1 swich up to set to Source mode(PNP mode). Terminal 24 (24V Power Supply) is common terminal for contact input signal.
- (3) Source mode(PNP mode) External Power Supply used
 - Put J1 swich up to set to Source mode(PNP mode).

- To use external 24V Power Supply, make a sequence between external Power Supply (-) terminal and CM(24V GND) terminal.

3.2.4 RS485 Wiring

Use the S+(RS485signal High) and S-(RS485 signal LOW) terminals in the TER1 terminal block of the master board. To use the termination resistor (120 ohm), set the switch J1 on top of the TER1 terminal block to ON(up).

Item	Specification
Transmission type	Bus method, Multi drop Link System
Applicable inverter	LSMV - series
Transmission distance	Within 1200m Max. (700m desired)
Recommendable cable	0.75mm ² (18AWG), Shield Type Twisted-pair Wire


Item	Specification
Installation	S+, S-, CM terminals on the control terminal block
Power supply	Insulated from the inverter power supply

CHAPTER 4 - OPERATION

4.1 Programming Keypads

4.1.1 LCD Keypad

LCD keypad can display up to 32 alphanumeric characters, and various settings can be checked directly from the display. The following is an illustration of the keypad.

1) LCD Keypad Display 2) Run/Stop Source 3) Frequency Setting Source 1) Parameter group 4) Output Current DRV T/K 0.0 A 00 STP 0.0 Q Hz 5) Parameter Code 7) Drive Output Frequency During Run, 6) Operating Status Displays Description 1) Parameter Group Displays the parameter group. There are DRV, FU1, FU2, I/O, CEL groups. 2) Run/Stop Source Displays the source of motor Run and Stop K: Run/Stop using FWD, REV buttons on keypad T: Run/Stop using RS485 0: Run/Stop via option board Displays the source of command frequency setting Source 3) Frequency Setting Source Displays the source of command frequency setting K: Frequency setting using keypad V: Frequency setting using V1 (0 ~12V or -12~ 12V) or V1 + I terminal W: Frequency setting using V1 (0 ~12V or -12~ 12V) or V1 + I terminal
DRVV T/K 0.0 A 00 STP 0.00 Hz5) Parameter Code 0 Operating Status5) Parameter Code7) Drive Output Frequency During Run, Command Frequency During StopDisplaysDescription1) Parameter GroupDisplays the parameter group. There are DRV, FU1, FU2, I/O, CEL groups.2) Run/Stop SourceDisplays the source of motor Run and Stop K: Run/Stop using FWD, REV buttons on keypad T: Run/Stop using control terminal input FX, RX R: Run/Stop using RS485 O: Run/Stop via option board3) Frequency Setting SourceDisplays the source of command frequency setting K: Frequency setting using keypad V: Frequency setting using V1 (0 ~12V or -12~ 12V) or V1 + I terminal
00 STP 0.00 Hz5) Parameter Code7) Drive Output Frequency During Run, Command Frequency During StopDisplaysDescription1) Parameter GroupDisplays the parameter group. There are DRV, FU1, FU2, I/O, CEL groups.2) Run/Stop SourceDisplays the source of motor Run and Stop K: Run/Stop using FWD, REV buttons on keypad T: Run/Stop using control terminal input FX, RX R: Run/Stop using RS485 O: Run/Stop via option board3) Frequency Setting SourceDisplays the source of command frequency setting Wish the source of command frequency setting V: Frequency setting using keypad V: Frequency setting using V1 (0 ~12V or -12~ 12V) or V1 + I terminal
00 STP 0.00 Hz5) Parameter Code7) Drive Output Frequency During Run, Command Frequency During StopDisplaysDescription1) Parameter GroupDisplays the parameter group. There are DRV, FU1, FU2, I/O, CEL groups.2) Run/Stop SourceDisplays the source of motor Run and Stop K: Run/Stop using FWD, REV buttons on keypad T: Run/Stop using control terminal input FX, RX R: Run/Stop using RS485 O: Run/Stop via option board3) Frequency Setting SourceDisplays the source of command frequency setting Wish the source of command frequency setting V: Frequency setting using keypad V: Frequency setting using V1 (0 ~12V or -12~ 12V) or V1 + I terminal
5) Parameter Code7) Drive Output Frequency During Run, Command Frequency During StopDisplaysObserating StatusOescription1) Parameter GroupDisplays the parameter group. There are DRV, FU1, FU2, I/O, CEL groups.2) Run/Stop SourceDisplays the source of motor Run and Stop K: Run/Stop using FWD, REV buttons on keypad T: Run/Stop using control terminal input FX, RX R: Run/Stop using RS485 O: Run/Stop via option board3) Frequency Setting SourceDisplays the source of command frequency setting Usiplays the source of command frequency setting V: Frequency setting using Keypad V: Frequency setting using V1 (0 ~12V or -12~ 12V) or V1 + I terminal
Observation Operating Status Command Frequency During Stop Displays Description 1) Parameter Group Displays the parameter group. There are DRV, FU1, FU2, I/O, CEL groups. 2) Run/Stop Source Displays the source of motor Run and Stop K: Run/Stop using FWD, REV buttons on keypad T: Run/Stop using control terminal input FX, RX R: Run/Stop using RS485 O: Run/Stop via option board 3) Frequency Setting Displays the source of command frequency setting Source K: Frequency setting using keypad V: Frequency setting using V1 (0 ~12V or -12~ 12V) or V1 + I terminal
6) Operating StatusCommand Frequency During StopDisplaysDescription1) Parameter GroupDisplays the parameter group. There are DRV, FU1, FU2, I/O, CEL groups.2) Run/Stop SourceDisplays the source of motor Run and Stop K: Run/Stop using FWD, REV buttons on keypad T: Run/Stop using control terminal input FX, RX R: Run/Stop using RS485 O: Run/Stop via option board3) Frequency Setting SourceDisplays the source of command frequency setting V: Frequency setting using V1 (0 ~12V or -12~ 12V) or V1 + I terminal
1) Parameter GroupDisplays the parameter group. There are DRV, FU1, FU2, I/O, CEL groups.2) Run/Stop SourceDisplays the source of motor Run and Stop K: Run/Stop using FWD, REV buttons on keypad T: Run/Stop using control terminal input FX, RX R: Run/Stop using RS485 O: Run/Stop via option board3) Frequency Setting SourceDisplays the source of command frequency setting W: Frequency setting using keypad V: Frequency setting using V1 (0 ~12V or -12~ 12V) or V1 + I terminal
2) Run/Stop SourceDisplays the source of motor Run and Stop K: Run/Stop using FWD, REV buttons on keypad T: Run/Stop using control terminal input FX, RX R: Run/Stop using RS485 O: Run/Stop via option board3) Frequency Setting SourceDisplays the source of command frequency setting K: Frequency setting using keypad V: Frequency setting using V1 (0 ~12V or -12~ 12V) or V1 + I terminal
K: Run/Stop using FWD, REV buttons on keypad T: Run/Stop using control terminal input FX, RX R: Run/Stop using RS485 O: Run/Stop via option board 3) Frequency Setting Source K: Frequency setting using keypad V: Frequency setting using V1 (0 ~12V or -12~ 12V) or V1 + I terminal
T: Run/Stop using control terminal input FX, RXR: Run/Stop using RS485O: Run/Stop via option board3) Frequency Setting SourceDisplays the source of command frequency setting Using keypad V: Frequency setting using V1 (0 ~12V or -12~ 12V) or V1 + I terminal
R: Run/Stop using RS485 O: Run/Stop via option board 3) Frequency Setting Source Displays the source of command frequency setting K: Frequency setting using keypad V: Frequency setting using V1 (0 ~12V or -12~ 12V) or V1 + I terminal
O: Run/Stop via option board 3) Frequency Setting Displays the source of command frequency setting Source K: Frequency setting using keypad V: Frequency setting using V1 (0 ~12V or -12~ 12V) or V1 + I terminal
3) Frequency Setting SourceDisplays the source of command frequency setting K: Frequency setting using keypad V: Frequency setting using V1 (0 ~12V or -12~ 12V) or V1 + I terminal
SourceK: Frequency setting using keypadV: Frequency setting using V1 (0 ~12V or -12~ 12V) or V1 + I terminal
V: Frequency setting using V1 (0 ~12V or -12 ~ 12V) or V1 + I terminal
W: Frequency setting using $I(-12 \sim 12V)$ terminal
I: Frequency setting using I ($4 \sim 20$ mA) terminal
R: Frequency setting using RS485
U: Up terminal input when Up/Down operation is selected
D : Down terminal input when Up/Down operation is selected
S: Stop status when Up/Down operation is selected
O: Frequency setting via Option board
J: Jog terminal input 1 ~ 15: Step frequency operation (except Jog)
4) Output Current Displays the Output Current during operation.
4) Output CurrentDisplays the Output Current during Operation.5) Parameter CodeDisplays the code of a group. Use the \blacktriangle (Up), \blacktriangledown (Down) key to move through
5) Farameter Code 12 Displays the code of a group. Use the (Op) , $(Down)$ key to move unough $0 \sim 99$ codes.
6) Operating Status Displays the operation information.
STP: Stop Status
FWD : During Forward operation
REV : During Reverse operation
DCB : During DC Braking
LOP: Loss of Reference from Option Board (DPRAM fault)
LOR: Loss of Reference from Option Board (Communication network fault)
LOV: Loss of Analog Frequency Reference (V1: 0~12V, -10~12V)
LOI: Loss of Analog Frequency Reference (I: 4~20mA)
SEN : Sensorless, Vector(Speed,Torque) Mode
CMP: CAN mode(Compare mode)
NOR : Normal Drive Status
FLT : Normal operation of the inverter is impossible due to failure

Command Frequency

during stop.

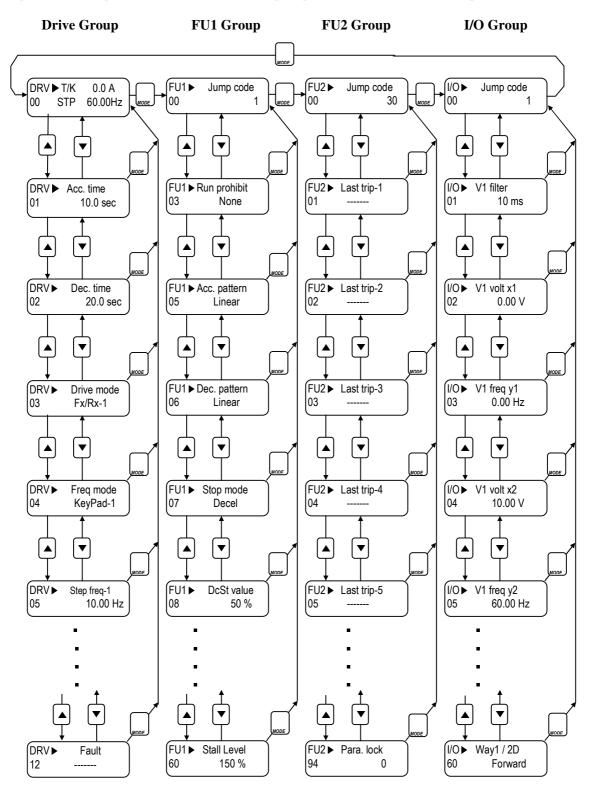
4.1.3 Parameter setting and changing

- 1) Press [MODE] key until the desired parameter group is displayed.
- 2) Press [▲] or [▼] keys to move to the desired parameter code. If you know the desired parameter code, you can set the code number of each parameter group in "Jump code", except DRV group.
- 3) Press **[PROG]** key to go into the programming mode, the cursor starts blinking.
- 4) Press [SHIFT/ESC] key to move the cursor to the desired digit.
- 5) Press $[\blacktriangle]$ or $[\lor]$ keys to change the data.
- 6) Press **[ENT]** key to enter the data. The cursor stops blinking.
- **Note:** Data cannot be changed when 1) the parameter is not adjustable during the inverter is running (see the function list), or 2) Parameter Lock function FU2-94 [Parameter Lock] is activated.
- EX) Changing Accel time from 10 sec to 15 sec

1) LCD keypad

DRV Acc. time 01 10.0 sec	Move to the desired code to change.
DRV ► Acc. time 01 ■ 10.0 sec 01 01 0.0 sec	Press the [PROG] key. A Cursor (■) will appear.
	Use the [SHIFT] key to move the cursor.
DRV► Acc. time 01 15.0 sec	Change the data using $[\blacktriangle], [\lor]$ keys.
DRV► Acc. time 01 15.0 sec	Press the [ENT] key to save the value into memory. The Cursor will disappear.

4.1.4 Parameter groups


The LSMV series inverter has 5 parameter groups separated according to their applications as indicated in the following table.

Parameter Group	LCD Keypad	Description
Drive Group	DRV	Command Frequency, Accel/Decel Time etc.
The second secon		Basic function Parameters
Eurotion 1 Group	FU1	Max. Frequency, Amount of Torque Boost etc.
Function 1 Group	FUI	Parameters related to basic functions
Energian 2 Carrier	EUO	Frequency Jumps, Max/Min Frequency Limit etc.
Function 2 Group	FU2	Basic Application Parameters
In much / Original		Programmable Digital Input/Output Terminal
Input / Output Group	I/O	Setting, Auto Operation etc. Parameters needed for
		Sequence Operation
Cell Group	CEL	Cell status, Communication status Check

Refer to the function descriptions for detailed description of each group.

1) Parameter Navigation (LCD Keypad)

The parameter group moves directly to DRV group by pressing [SHIFT] key in any parameter code.

Note: This figure shows the group and code navigation through LCD display keypad. It can be different from the actual display due to the group addition or code change.

4.2 Operating Example

4.2.1 Easy Start Operation

Easy Start Operation is activated by pressing STOP key on the Keypad for 2~3 seconds and inverter begins operation via Keypad (FWD/REV RUN/STOP). Drive mode is preset to V/F and reference frequency to JOG.

4.2.2 Operation via Control terminal + Keypad

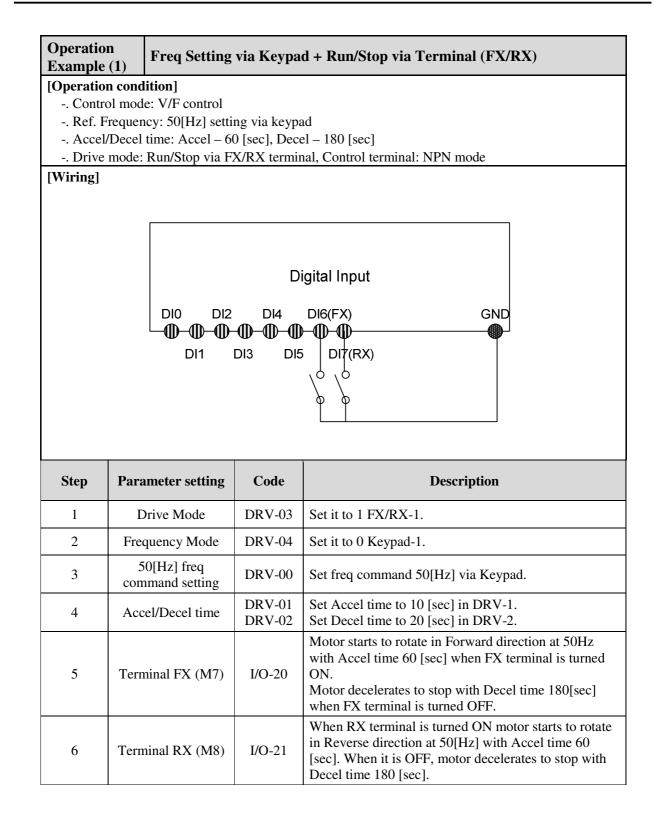
Setting: DRV-03 [Drive Mode (Run/Stop method)] = Fx/Rx-1 DRV-04 [Frequency Mode (Freq. setting method)] = Keypad With above setting, Freq setting via terminal & Run/Stop via Keypad disabled

1) Check the LCD display when Power ON. Otherwise, change the setting correctly as shown above.

DRV 🕨	∙T/K	0.0 A
00	STP	0.00Hz

2) Turn the FX (or RX) terminal ON. Then FWD (or REV) LED will be lit.

DRVI	►T/K	0.0 A
00	FWD	0.00Hz


3) When setting the Ref. Freq to 60 Hz using **PROG/ENT/SHIFT**, ▲ keys, the motor will rotate at 60Hz. FWD (or REV) LED will be flickering during Acceleration/ Deceleration.

4) Turn the FX (or RX) terminal Off. Then Stop LED will be lit.

DRV	►T/K	0.0 A
00	STP	60.00Hz

Note) To enable Run/Stop via keypad & Freq setting via control terminal... Setting: DRV-03 [Drive Mode (Run/Stop method)] = Keypad DRV-04 [Frequency Mode (Freq. setting method)] = V1 or I

4.2.3 Operation via Control Terminal

Setting: DRV-03 [Drive Mode (Run/Stop method)] = 1 (Fx/Rx-1) DRV-04 [Frequency Mode (Freq. setting method)] = 2 (V1)

1) Check the LCD display when Power ON. Otherwise, change the setting correctly as shown above.

DRVI	►T/V	0.0 A
00	STP	0.00Hz

2) Turn the FX (or RX) terminal ON. Then FWD (or REV) LED will be lit.

D	RV 🕨	T/V		0.0) A
0	0	FWD	0	. 00	Hz

3) Set the frequency using V1 (Potentiometer), Output freq (60Hz). Rotating direction (FWD or REV) and output current (5A) will be displayed on the LCD.

DRV	►T/V	5.0 A
00	FWD	60.00Hz

4) Output freq value is decreasing when turning the potentiometer counterclockwise. Inverter output stops at 0.00Hz and motor is stopped.

DRV	►T/V	0.0 A
00	FWD	0.00Hz

5) Turn FX (or RX) terminal OFF.

DRV	►T/V	0.0 A
00	STP	0.00Hz

Operation Analog Voltage Input (V1) + Operation via Terminal (FX/RX) Example (2) [Operation condition] -. Control mode: V/F control -. Reference Frequency: 50[Hz] analog input via V1 (Potentiometer) -. Accel/Decel time: Accel – 60 [sec], Decel – 180 [sec] -. Drive mode: Run/Stop via FX/RX terminal, Control terminal: NPN mode [Wiring] **Digital Input** Analog Input DI4 DI6(FX) GND DIO DI2 V1 GND -0-0-0-0-0-0-0-0 ⊪ DI1 DI3 DI5 DI7(RX) Valiable VDC 0~12[V] Step **Parameter setting** Code Description DRV-3 1 Drive Mode Set it to 1 Fx/Rx-1. 2 Frequency Mode DRV-4 Set it to 2 V1 Analog input. 50[Hz] freq 3 DRV-0 Set freq command 50[Hz] via V1 (potentiometer). command setting DRV-1 Set Accel time to 60 [sec] in DRV-1. 4 Accel/Decel time DRV-2 Set Decel time to 180 [sec] in DRV-2. Motor starts to rotate in Forward direction at 50Hz with Accel time 60 [sec] when FX terminal is turned 5 Terminal FX (M7) I/O-20 ON. Motor decelerates to stop with Decel time 180[sec] when FX terminal is turned OFF. When RX terminal is turned ON motor starts to rotate in Reverse direction at 50[Hz] with Accel time 60 I/O-21 6 Terminal RX (M8) [sec]. When it is OFF, motor decelerates to stop with Decel time 180 [sec].

4.2.4 Operation via Keypad

- Setting: DRV-03 [Drive Mode (Run/Stop method)] = 0 (Keypad) DRV-04 [Frequency Mode (Freq. setting method)] = 0 (Keypad-1)
- 1) Check the LCD display when Power ON. Otherwise, change the setting as shown above.

DRV ► K/K 0.0 A 00 STP 0.00Hz

2) Set the Ref. Freq to 60 Hz using **PROG/ENT/SHIFT**, **A** keys. Set freq is displayed during stop.

DRV	►K/K	0.0 A	ł
00	STP	60.00Hz	2

3) When pressing **FWD/REV** key, motor starts running and output freq and output current are displayed.

DRVI	►K/K	5.0 A
00	FWD	60.00Hz

4) Press **STOP/RESET** key. Then motor decelerates to stop. Set freq 60Hz is displayed.

DRV	►K/K	0.0 A
00	STP	60.00Hz

4.3 Various function setting & Description

4.3.1 Basic function parameter setting

It is the basic function setting. All settings are factory defaults unless users make change. It is recommended to use factory setting value unless the parameter change is necessary.

1) Common parameter setting

The following table shows common parameter setting that should be checked before use regardless of control mode.

Parameter Name	Code	Description
Line Frequency.	FU1-20	Sets a freq of the inverter input power source.
Max Frequency	FU1-21	Sets the Inverter max Frequency.
Base Frequency	FU1-22	Sets the Motor Base Frequency.
Starting Frequency	FU1-23	Sets the Inverter Start Frequency.
Motor Rated Voltage	FU1-31	Sets the Motor Rated Voltage.
Motor Rated Current	FU2-34	Sets the Motor Rated Current.
Motor No Load Current	FU2-35	Sets the Motor No Load Current.
Drive Mode	DRV-03	Operation via Keypad, Fx/Rx-1, Fx/Rx-2 and Int 485 setting.
Frequency Mode	DRV-04	Frequency reference source setting parameter
Accel/Decel time setting	DRV-01, DRV-02	Accel/Decel time setting

2) V/F control

FU2-60 [Control mode] is set to 0 "V/F" as factory setting. Operation via V/F control is activated after the above common parameter setting is done and the followings are set.

Parameter Name	Code	Description
Starting freq.	FU1-23	Set frequency to start the motor.
Torque boost value	FU2-47 FU2-48	Set Torque boost value

3) Slip compensation

Operation is done via Slip compensation if FU2-40 is set to 'Slip compen'. This control keeps motor speed constant regardless of load change.

4) Sensorless vector control

Set FU2-40 to "Sensorless" to enable Sensorless vector control. It is strongly recommended to perform **Auto-tuning** before starting Sensorless control in order to maximize performance.

Parameter Name	Code	Description
Control method selection	FU2-40	Select Sensorless.
Starting freq	FU1-23	Starting freq of the motor.
Auto tuning	FU1-42	Set motor value.

5) Auto-tuning of motor constant

This parameter enables auto-tuning of the motor constants. If FU2-61 is set to Yes and press the enter key, **Rs**, **Lsigma** values begin tuning with the motor stopped. Refer to motor nameplate for the rest of other parameters.

Parameter Name	Code	Description
Auto-tuning	FU2-42	No, Yes

Note) Motor no-load current and slip freq should be set correctly for safe and better performance. Be sure to check these values and set them properly. Refer to Chapter 5, FU2-40~66 for more.

4.3.2 Advanced function setting

LSMV inverter features advanced function parameters to maximize efficiency and performance of the motor. It is recommended to use the factory setting unless parameter value change is inevitable.

1) V/F control

Parameter Name	Code	Description
V/F Pattern	FU1-40	Use it according to load characteristics. If User V/F is selected, user can select the optimum output V/F characteristic for the application and load characteristics in [FU1-41]~[FU1-48].
Dwell operation	FU2-10 FU2-11	Used to output torque in an intended direction. Inverter stops acceleration for the preset [FU2-10] Dwell time while running at Dwell frequency [FU2-11] and starts acceleration at commanded frequency. Setting [FU2-08] Dwell time to 0 disable the Dwell operation.
Jump Frequency	FU2-12 FU2-13~18	When it is desired to avoid resonance attributable to the natural frequency of a mechanical system, these parameters allow resonant frequencies to be jumped. Up to three areas can be set, with the jump frequencies set to either the top or bottom point of each area. To enable the function, set [FU2-10] to 'Yes' and set the value in [FU2-11]~[FU2-16].
Accel/Decel pattern S-curve	FU1-02, 03 FU1-04, 05	This pattern has an effect on the prevention of cargo collapse on conveyor etc and reduction in an acceleration/ deceleration shock.

2) Sensorless vector control

Related parameters for starting in **Sensorless vector control** when FU2-40 [Control Mode Selection] is set to Sensorless.

Parameter Name	Code	Description
When starting	FU1-08	Pre-excitation time setting

3) Parameters to monitor motor and inverter status

Parameter Name	Code	Description
Output current/ motor speed	DRV-08~09	Displays output current and motor rpm.
DC link voltage	DRV-10	Displays DC link voltage.
User display selection (watt)	FU2-81	Either output voltage or power selected in FU2-81 is displayed in DRV-11.
Fault display	DRV-12	Displays the current inverter fault.

4) Parameter initialize

Parameter Name	Code	Description
Software version	FU2-82	Displays the inverter software version.
	FU2-91	[FU2-91], [FU2-92]: Copying parameters from other
Parameter	FU2-92	inverter
Read/Write/Initialize/	FU2-93	[FU2-93]: Initializing parameters to factory setting values
Lock	FU2-94	[FU2-94]: Parameter write disabled
	FU2-95	[FU2-95]: Parameter save

5) Protection & Trip level setting

Parameter Name	Code	Description
	FU1-53	Protection of the motor from overheating without the use
Electronic thermal	FU1-54	of external thermal relay. Refer to parameter descriptions
	FU1-55	for more detail.
	FU1-57	
	FU1-58	Warning alarm outputs and displays the trip message
Overload alarm & trip	FU1-59	when overcurrent above the threshold value keeps on.
	FU1-60	when overcurrent above the threshold value keeps on.
	FU1-61	
		Set the output current level at which the output freq will
Stall provention	FU1-64	be adjusted to prevent the motor from stopping due to
Stall prevention		over-current etc. It activates during accel/ constant
		speed/decel to prevent the motor stall.

6) Starting / Accel/ Decel / Stopping pattern setting

Parameter Name	Code	Description
Accel/Decel pattern	FU1-02 FU1-03	2 types of Accel/Decel pattern: 'S-curve', 'U-curve' settable according to application and load characteristic. If 'S-curve' is selected, the desired value of [FU1-4], [FU1- 5] is settable.
Starting/Stopping method	FU1-06 FU1-09	4 types of stopping method 'Decel', 'DC-brake', 'Free- run', 'Flux Brake' selectable. If 'DC-brake' is selected, the desired value of [FU1-21, 22], [FU1-24]~ [FU1-27] is settable. See function description of chapter 5 for more details.
Frequency Limit selection	FU1-24 FU1-25 FU1-26	Limits the active frequency. Inverter operates at the freq range between upper freq limit [FU1-35] and bottom freq limit [FU1-34] and higher/ lower freq value is entered, it is automatically replaced by limit value. Setting range: [FU1-30] Maximum freq to [FU1-32] starting freq.

7) Operation-starting method

Parameter Name	Code	Description
Speed Search Selection	FU2-06 FU2-21	Speed search function is available during Accel, trip, instant power failure, restart after fault reset and Speed search at auto restart. See parameter description for more details.
DC excitation	FU2-06 FU2-07 FU2-08	DC motor starting method After DC excitation This function is available big starting torque load

4.3.3 Application function setting

1) Jog and Multi-speed operation

Parameter Name	Code	Description
Multi function input terminal setting	I/O-14 ~28	If I/O-14 ~28 are set to Speed-H, Speed-M, Speed-L, multi- speed operation up to speed 17 is available.
Filter time constant for input terminal	I/O-31	Effective for eliminating noise in the freq. Setting circuit
Speed reference value	DRV-05 ~07 I/O-58 ~ I/O-69	Speed reference value for each step setting
Accel/Decel time setting for each step	I/O-70 ~ 83	Accel/Decel time for each step setting
Jog freq.	I/O-57	Jog freq for jog operation setting

Speed-X	Speed-H	Speed-M	Speed-L	JOG	Speed Command	Parameter value
0	0	0	0	0	Speed 0	DRV-00
0	Х	Х	Χ	1	Jog freq.	I/O-57
0	0	0	1	0	Speed –1	DRV-05
0	0	1	0	0	Speed –2	DRV-06
••	••	••	••	••	••	••
••	••	••	••	••	••	••
1	1	0	1	0	Speed –13	I/O-67
1	1	1	0	0	Speed –14	I/O-68
1	1	1	1	0	Speed –15	I/O-69

CHAPTER 5 - PARAMETER LIST

5.1 Parameter groups

The parameters of LSMV Series are divided into 5 function groups in accordance with the application. Their names, principal contents and LCD keypad displays are shown below.

Name of Group	LCD Keypad Display	Description
Drive Group	DRV ►T/K 0.0 A	Target Frequency and Accel/ Decel Time, etc.
[DRV]	00 STP 0.00Hz	Basic parameters
Function1 Group	FU1 ► Jump code	Maximum Frequency and Protection, etc
[FU1]	00 1	Parameters regarding basic functions
Function2 Group	FU2 ► Jump code	Frequency Jump and Frequency Limit, etc
[FU2]	00 40	Parameters regarding application functions
Input/Output Group [I/O]	I/O ► Jump code 00 1	Programmable Digital terminal Define and Analog Command, etc Parameters necessary for sequence configuration
Cell Group [CEL]	CEL ► Jump code 00 1	Cell status and communication check functions

5.2 Parameter list

	Comm.		[DRV Group] LCD Keypad		Factory	Adj.	
CODE	Addr	Description	Display	Setting Range	Factory Default	During Run	Page
DRV-00 (1)	9100	Motor run : Output Frequency during Motor stop : Reference Frequency	Cmd. freq	0 to Maximum Freq. [Hz]	0 [Hz]	0	6-12
DRV-01	9101	Acceleration Time	Acc. time	0 to 6000 [sec]	60 [sec]	0	6-1
DRV-02	9102	Deceleration Time	Dec. time	0 to 6000 [sec]	180 [sec]	0	6-1
DRV-03	9103	Drive Mode (Run/Stop Method)	Drive mode	Keypad Fx/Rx-1 Fx/Rx-2 Int. 485	Keypad	х	6-2
DRV-04	9104	Frequency Mode (Frequency setting method)	Freq mode	Keypad-1 Keypad-2 V1 I V1+I Pulse Int. 485	Keypad-1	х	6-3
DRV-05	9105	Step Frequency 1	Step freq-1	0 to Marine Error	10 [Hz]	0	
DRV-06	9106	Step Frequency 2	Step freq-2	0 to Maximum Freq [Hz]	20 [Hz]	0	6-3
DRV-07	9107	Step Frequency 3	Step freq-3		30 [Hz]	0	
DRV-08	9108	Output Current	Current	* [A]	* [A]	*	6-4
DRV-09	9109	Motor Speed	Speed	* [rpm]	* [rpm]	*	6-4
DRV-10	910A	DC link Voltage	DC link Vtg	* [V]	* [V]	*	6-4
DRV-11	910B	User Display Selection	User disp		Output voltage [V]	*	6-4
DRV-12	910C	Current Trip Display	Fault	*	*	*	6-4
DRV-16	910D	High voltage selection	High Vol Sel	Hard Wear Soft Wear	Hard Wear	Х	
DRV-17	910E	High Voltage Input selection (1)	High Vol ON	No Yes	No	Х	
DRV-70	910F	R_Phase Voltage	Rph_InputVtg				
DRV-71	9110	S_Phase Voltage	Sph_InputVtg				
DRV-72	9112	T_Phase Voltage	Tph_InputVtg				
DRV-80	9113	Input_Phase Voltage	InputVoltage				
DRV-81	9114	Input Current	InputCurrent				
DRV-91 (2)	915B	Drive mode 2	Drive mode2	Keypad Fx/Rx-1 Fx//Rx-2	Fx/Rx-1	Х	6-35
DRV-92	915C	Frequency mode 2	Freq mode2	Keypad-1 Keypad-2 V1 I V1+I Pulse	Keypad-1	х	6-35

* The gray-highlighted codes are hidden parameters and will appear when the related functions are to be set. (1) Only displayed when DRV-16 is set to [Soft Wear].

(2) IO-13 via terminal used when Loc/Rem is set.

CODE	Comm. Addr	Description	FUI GROUP LCD Keypad Display	Setting Range	Factory Default	Adj. During Run	Page
FU1-00	9200	Jump to Desired Code #	Jump code	1 to 99	1	О	6-6
				None			
FU1-01	9201	Run Prevention	Run prev	Forwd prev	None	х	6-6
				Reverse prev			
				Linear			
FU1-02	9202	Acceleration Pattern	Acc. Pattern	S-curve	Linear	х	6-6
				U-curve	_		
				Linear			
FU1-03	9203	Deceleration Pattern	Dec. Pattern	attern S-curve Linear X	х	6-6	
				U-curve			
FU1-04	9204	Start Curve for S-Curve Accel/Decel Pattern	Start Curve	0 to 100 [%]	50 [%]	Х	6-6
FU1-05	9205	End Curve for S-Curve Accel/Decel Pattern	End Curve	0 to 100 [%]	50 [%]	х	0-0
		Accel/Decci Fatterii		Accel			
FU1-06	9214	Start Mode	Start mode	Dc-start	Accel	х	6-7
(1)	/=1.	Suithide	Start mode	Flying-start			0,
FU1-07	9115	Starting DC Injection	DcSt time	0.1 to 60 [sec]	1.0 [sec]	X	
		Braking Time Starting DC Injection					6-7
FU1-08	9116	Braking Value	DcSt value	0 to 150 [%]	33 [%]	Х	
FIIIIIIIIIIIII		Stop Mode		Decel	_		
FU1-09 (2)	9217		Stop mode	Dc-brake	Free-run	х	6-8
. ,				Free-run			
FU1-10	9218	DC Injection Braking On-delay Time	DcBlk time	0 to 60 [sec]	0.1 [sec]	X	
FU1-11	9219	DC Injection Braking Frequency	DcBr freq	0.1 to 60 [Hz]	5 [Hz]	Х	6-9
FU1-12	921A	DC Injection Braking Time	DcBr time	0 to 60 [sec]	1.0 [sec]	Х	0-9
FU1-13	921B	DC Injection Braking Value	DcBr value	0 to 200 [%]	50 [%]	x	
FU1-20	921D	Power Source Freq	Line Freq	40 to 120 [Hz]	60 [Hz]	X	6-10
FU1-21	921E	Maximum Frequency	Max freq	40 to 120 [Hz]	60 [Hz]	X	6-10
FU1-22 FU1-23	921F 9220	Base Frequency Starting Frequency	Base freq Start freq	30 to 120 [Hz] 0.1 to 10 [Hz]	60 [Hz] 0.5 [Hz]	X X	6-10 6-10
FU1-24 (3)	9220	Frequency Limit selection	Freq limit	No	- No	X	6-11
FU1-25	9222	Low Limit Frequency	F-limit Lo	Yes 0 to FU1-26	0.5 [Hz]	0	
FU1-26	9222	High Limit Frequency	F-limit Hi	FU1-21 to FU1-25	60 [Hz]	x	6-11
FU1-40 (4)	9228	Volts/Hz Pattern	V/F pattern	Linear Square User V/F	Linear	x	6-11
FU1-41	9229	User V/F – Frequency 1	User freq 1	0 to FU1-30	15 [Hz]	X	() -
FU1-42	922A	User V/F – Voltage 1	User volt 1	0 to 100 [%]	25 [%]	X	6-12

[FU1 GROUP]

CODE	Comm. Addr	Description	LCD Keypad Display	Setting Range	Factory Default	Adj. During Run	Page
FU1-43	922B	User V/F – Frequency 2	User freq 2	0 to FU1-30	30 [Hz]	Х	
FU1-44	922C	User V/F – Voltage 2	User volt 2	0 to 100 [%]	50 [%]	Х	
FU1-45	922D	User V/F – Frequency 3	User freq 3	0 to FU1-30	45 [Hz]	Х	
FU1-46	922E	User V/F – Voltage 3	User volt 3	0 to 100 [%]	75 [%]	Х	
FU1-47	922F	User V/F – Frequency 4	User freq 4	0 to FU1-30	60 [Hz]	Х	
FU1-48	9230	User V/F – Voltage 4	User volt 4	0 to 100 [%]	100[%]	Х	
FU1-50	9231	Input voltage adjustment	VACt	73 to 115.0 [%]	100.0 [%]	Х	
FU1-53	923C	Electronic Thermal Selection	ETH select	No Yes	Yes	0	6-12
FU1-54	923D	Electronic Thermal Level for 1 Minute	ETH 1min	FU1-55 to 200 [%]	150 [%]	0	6-12
FU1-55	923E	Electronic Thermal Level for Continuous	ETH cont	50 to FU1-54 (Maximum 200%))	120 [%]	0	6-12
FU1-56	923F	Characteristic Selection (Motor Type)	Motor type	Self-cool Forced-cool	Self-cool	0	6-12
FU1-57	9240	Overload Warning Level	OL level	30 to 110 [%]	110 [%]	0	6-13
FU1-58	9241	Overload Warning Time	OL time	0 to 30 [sec]	10 [sec]	0	6-13
FU1-59	9242	Overload Trip Selection	OLT select	No Yes	No	О	6-14
FU1-60	9243	Overload Trip Level	OLT level	30 to 150 [%]	120[%]	0	6-14
FU1-61	9244	Overload Trip Delay Time	OLT time	0 to 60 [sec]	60 [sec]	0	6-14
FU1-62	9245	Input/Output Phase Loss Protection	Trip select	00 to 11 (Bit Set)	00	0	6-14
FU1-64	9247	Stall Prevention Level	Stall level	30 to 150 [%]	100[%]	х	6-14
FU1-70	9248	Accel/Decel Change Frequency	Acc/Dec ch F	0 to FU1-30	0 [Hz]	Х	6-15
FU1-71	9249	Reference Frequency for	A aa/Daa fraa	Max freq	Max frag	х	6 16
FUI-/I	9249	Accel and Decel	Acc/Dec freq	Delta freq	Max freq	Λ	6-16
FU1-72	924A	Accel/Decel Time Scale	Time scale	0.01 sec 0.1 sec 1 sec	1 sec	0	6-16
FU1-81		Integrated Power Value	KilloWattHour	0~9999kWh	*	Х	
FU1-82		Power Value adjustment	Power Set	0.1 ~ 400 %	100.0%		
FU1-83		Inverter Temp	Cell Temp.	0 – 1	0	Х	

* The gray-highlighted codes are hidden parameters and will appear when the related functions are to be set.

(1) Only displayed when FU1-06 is set to [DC-start].(2) Only displayed when FU1-09 is set to [DC-break].

(3) FU1-41~48 Only displayed when FU1-40 is set to [User V/F].

(4) Only displayed when FU1-51 is set to [Manual].

CODE	Comm. Addr	Description	LCD Keypad Display	Setting Range	Factory Default	Adj. During Run	Page
FU2-00	9300	Jump to desired code #	Jump code	1 to 99	40	0	6-17
FU2-01	9301	Last trip 1	Last trip-1	By pressing [PROG]	None	*	6-17
FU2-02	9302	Last trip 2	Last trip-2	and $[\blacktriangle]$ key, the frequency, current,	None	*	6-17
FU2-03	9303	Last trip 3	Last trip-3	and operational status	None	*	6-17
FU2-04	9304	Last trip 4	Last trip-4	at the time of fault can	None	*	6-17
FU2-05	9305	Last trip 5	Last trip-5	be seen.	None	*	6-17
FU2-06	9306	Erase trips	Erase trips	No Yes	No	0	6-17
FU2-10	9307	Dwell Frequency	Dwell time	0 to 10 [sec]	0 [sec]	Х	6-17
FU2-11	9308	Dwell Frequency	Dwell freq	FU1-21 to FU1-23	5 [Hz]	Х	6-17
FU2-12	930A	Frequency Jump Selection	Jump freq	No Yes	No	Х	6-17
FU2-13	930B	Jump Frequency 1 Low	jump lo 1	0 to FU2-12	10 [Hz]	0	
FU2-14	930C	Jump Frequency 1 High	jump Hi 1	FU2-11 to FU1-30	15 [Hz]	О	
FU2-15	930D	Jump Frequency 2 Low	jump lo 2	0 to FU2-14	20 [Hz]	0	6-17
FU2-16	930E	Jump Frequency 2 High	jump Hi 2	FU2-13 to FU1-30	25 [Hz]	0	
FU2-17	930F	Jump Frequency 3 Low	jump lo 3	0 to FU2-16	30 [Hz]	0	
FU2-18	9310	Jump Frequency 3 High	jump Hi 3	FU2-15 to FU1-30	35 [Hz]	0	
FU2-21	9314	Flying start percent	Flying Perc	30 ~ 160	50%	Х	
FU2-25	9319	Restart after Fault Reset	Reset start	No Yes	NO	Х	6-19
FU2-26 (1)	9319	Number of Auto Retry	Retry number	0 to 10	1	0	6-19
FU2-27	931A	Delay Time Before Auto Retry	Retry delay	0 to 60 [sec]	1 [sec]	0	6-19
FU2-31	9328	Rated Motor Voltage	Motor Volt	0 to 6600	6600	Х	6-19
102 51	7520	* A motor rating same as in	nverter capacity is a	utomatically set. If dif	fferent, set th	e correct	value.
FU2-32	9329	Number of Motor Poles	Pole number	2 to 12	4	Х	6-19
FU2-33	932A	Rated Motor Slip	Rated-Slip	0 to 10 [Hz]	2 [Hz]	Х	
FU2-34	932B	Rated Motor Current (RMS)	Rated-Curr	1 to 300 [A]	100 [A]	Х	
FU2-35	932C	No Load Motor Current (RMS)	Noload-Curr	1 to 300 [A]	30 [A]	Х	6-19
FU2-38	932F	Gain for Motor Speed Display	RPM factor	1 to 1000 [%]	100 [%]	О	
				V/F			
FU2-40	933C	Control Mode Selection	Control mode	Slip compen	V/F	х	6-20
102-70			Control mode		1/1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	. = -
				Sensorless			
FU2-41 (2)	933C	Sensorless Mode	Sensor mode	Sensorless	Sensorless	Х	6-20
EU0.40	933D	Auto Travina C. 1. di	A	(No)	NT -	v	6-22
FU2-42	7550	Auto Tuning Selection	Auto tuning	(Yes)	No	Х	0-22

[FU2 GROUP]

CODE	Comm. Addr	Description	LCD Keypad Display	Setting Range	Factory Default	Adj. During Run	Page
FU2-43	933E	Stator Resistance of Motor	%Rs	-	1.90%	Х	
FU2-44	933F	Leakage Inductance of Motor	%Lsigma	-	12.00%	Х	6-22
FU2-44	* Autom	atically set corresponding to	motor rating. If dif	ferent, check the mot	or rating setti	ng.	
FU2-45	9341	P Gain for Sensorless Control	SL P-gain	0 to 32767	600	Х	6-22
FU2-46	9342	I Gain for Sensorless Control	SL I-gain	0 to 32767	4	Х	6-22
FU2-47	9344	Torque Boost in Forward Direction	Fwd boost	0 to 5 [%]	1.0 [%]	Х	
FU2-48	9345	Torque Boost in Reverse Direction	Rev boost	0 to 5 [%]	1.0 [%]	Х	
FU2-80	9350	Power On display	PowerOn disp	0 to 12	0	0	6-23
	9351			Voltage			6-23
FU2-81	9551	User Display Selection	User disp	Watt	Voltage	0	0-23
FU2-82	9352	Software Version	LS-MV S/W Version	Ver X.XX	Ver 1.0	*	6-23
FU2-83	9353	Last Trip Time	LastTripTime	X:XX:XX:XX:XX:X		Х	
FU2-84	9354	Power On Time	On-time	X:XX:XX:XX:XX:X		Х	6-23
FU2-85	9355	Run-time	Run-time	X:XX:XX:XX:XX:X		Х	
EU2 01	935B			No	N	V	6-24
FU2-91	955B	Read Parameter	Para. Read	Yes	No	During RunXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0-24
EU2 02	935C	W.'. D		No	N	V	6-24
FU2-92	935C	Write Parameter	Para. Write	Yes	No	Х	0-24
FU2-93	935D	Initialize Parameters	Para. init	No All Groups DRV FU1 FU2 I/O CEL	No	х	6-25
FU2-94	935E	Parameter Write Protection	Para. Lock	0 to 9999	0	0	6-25
FU2-95	935F	Parameter Save	Para. save	No Yes	No	Х	6-25

* The gray-highlighted codes are hidden parameters and will appear when the related functions are to be set. (1) Only FU2-26~27 displayed when FU2-25 is set to [YES].

(2) Only FU2-41 displayed when FU2-40 is set to [Sensorless].

CODE	Comm. Addr	Description	LCD Keypad Display	Setting Range	Factory Default	Adj. During Run	Page
I/O-00	9400	Jump to desired code #	Jump code	1 to 99 (LCD Keypad Only)	1	0	6-25
I/O-01 (1)	9401	Filtering Time Constant for V1 Signal Input	V1 filter	0 to 9999 [msec]	10 [msec]	0	
I/O-02	9402	V1 Input Minimum Voltage	V1 volt x1	0 to 12[V]	0 [V]	0	
I/O-03	9403	Frequency Corresponding to V1 Input Minimum Voltage	V1 freq y1	0 to FU1-21 [Hz] 0 to 100.00 [**]	0 [Hz]	0	6-25
I/O-04	9404	V1 Input Minimum Voltage	V1 volt x2	0 to 12[V]	10 [V]	0	
I/O-05	9405	V1 Input Maximum Voltage	V1 freq y2	0 to FU1-21 [Hz] 0 to 100.00 [**]	60 [Hz]	О	
I/O-06	9406	Filtering Time Constant for I Signal Input	I filter	0 to 9999 [msec]	10 [msec]	0	
I/O-07	9407	I Input Minimum Current	I curr x1	0 to 20 [mA]	4 [mA]	0	
I/O-08	9408	Frequency Corresponding to I Input Minimum Current	I freq y1	0 to FU1-21 [Hz] 0 to 100.00 [**]	0 [Hz]	0	
I/O-09	9409	Filtering Time Constant for I Signal Input	I curr x2	0 to 20 [mA]	20 [mA]	0	6-26
I/O-10	940A	Frequency Corresponding to I Input Maximum Current	I freq y2	0 to FU1-21 [Hz]	60 [Hz]	0	
		i input initialitium current		0 to 100.00 [**]			
		Cuitaria for Analog Insut		None			
I/O-11	9411	Criteria for Analog Input Signal Loss	Wire broken	half of x1	None	0	
				below x1			
		Operating selection of L		None			6-27
I/O-12	9412	Operating selection at Loss	Lost command	FreeRun	None	0	0 27
		of Freq. Reference	[Stop			
I/O-13	9413	Waiting Time after Loss of Freq. Reference	Time out	0.1 to 120 [sec]	1.0 [sec]	О	

[I/O GROUP]

CODE	Comm. Addr	Description	LCD Keypad Display	Setting Range	Factory Default	Adj. During Run	Page
I/O-14	9414	Programmable Digital Input Terminal 'M1' Define	M0 define	FX RX RST JOG BX Speed-L Speed-M Speed-H Speed-X XCEL-L XCEL-M Up Down 3-Wire Analog hold Ana.Change XCEL stop LOC/REM Door-Open Trans.OHW Trans.OHT Motor OHT Fan Trip Ext Trip1 Ext Trip1 Ext Trip2 High Voltage Run Enable Control LV None	RST	Ο	6-28
I/O-15	9415	Programmable Digital Input Terminal 'M2' Define	M1 define	Same as I/O-14	Ext Trip1	О	
I/O-16	9416	Programmable Digital Input Terminal 'M3' Define	M2 define	Same as I/O-14	FX	О	
I/O-17	9417	Programmable Digital Input Terminal 'M4' Define	M3 define	Same as I/O-14	RX	0	
I/O-18	9418	Programmable Digital Input Terminal 'M5' Define	M4 define	Same as I/O-14	Trans.OHT	0	
I/O-19	9419	Programmable Digital Input Terminal 'M6' Define	M5 define	Same as I/O-14	Fan Trip	О	
I/O-20	941A	Programmable Digital Input Terminal 'M7' Define	M6 define	Same as I/O-14	High Voltage	О	6-28
I/O-21	941B	Programmable Digital Input Terminal 'M8' Define	M7 define	Same as I/O-14	Run Enable	0	0-20

CODE	Comm. Addr	Description	LCD Keypad Display	Setting Range	Factory Default	Adj. During Run	Page
I/O-22		Programmable Digital Input Terminal 'M9' Define	M8 define	Same as I/O-14	Control LV	0	
I/O-23		Programmable Digital Input Terminal 'M10' Define	M9 define	Same as I/O-14	None	0	
I/O-24		Programmable Digital Input Terminal 'M11' Define	M10 define	Same as I/O-14	None	0	
I/O-25		Programmable Digital Input Terminal 'M12' Define	M11 define	Same as I/O-14	None	0	
I/O-26		Programmable Digital Input Terminal 'M13' Define	M12 define	Same as I/O-14	None	0	
I/O-27		Programmable Digital Input Terminal 'M14' Define	M13 define	Same as I/O-14	None	0	
I/O-28		Programmable Digital Input Terminal 'M15' Define	M14 define	Same as I/O-14	BX	0	
I/O-29	941C	Terminal Input Status	In status	00000000000 /1111111111	00000000000	*	
I/O-30		Terminal Input Status	In status_H	0000/ 1111	0000	*	
I/O-31	941D	Filtering Time Constant for Programmable Digital Input Terminals	Ti Filt Num	2 to 1000 [msec]	15	0	
I/O-32		Terminal Input Hardwear selection	In No/Nc Set	00000000000/ 1111111111	0000000000		
I/O-33		Terminal Input Hardwear selection	H No/Nc Set	0000/ 1111	0000		
I/O-34		Input CheckTime	In CheckTime	1 – 1000 [ms]	1ms		
I/O-35	944A	Frequency Detection Level	FDT freq	0 to FU1-30 [Hz]	30 [Hz]	0	
I/O-36	944B	Frequency Detection Bandwidth	FDT band	0 to FU1-30 [Hz]	10 [Hz]	0	

CODE	Comm. Addr	Description	LCD Keypad Display	Setting Range	Factory Default	Adj. During Run	Page
I/O-37	944C	Programmable Digital Output Terminal Define (Aux terminal)	Aux mode1	None FDT-1 FDT-2 FDT-3 FDT-4 FDT-5 OL IOL Stall OV LV OH Lost Command Run Stop Steady Speed Search Ready Warning FAN RUN NORMAL OCT Cell ByPass RUN_MV	Ready	Ο	6-30
I/O-38	944D	Programmable Digital Output Terminal Define	Aux mode2	Same as I/O-37	FAN RUN	О	
I/O-39	944E	Programmable Digital Output Terminal Define	Aux mode3	Same as I/O-37	RUN	0	
I/O-40	944F	Programmable Digital Output Terminal Define	Aux mode4	Same as I/O-37	Warning	0	
I/O-41		Programmable Digital Output Terminal Define	Aux mode5	Same as I/O-37	None	0	
I/O-42		Programmable Digital Output Terminal Define	Aux mode6	Same as I/O-37	None	0	
I/O-43		Programmable Digital Output Terminal Define	Aux mode7	Same as I/O-37	None	0	
I/O-44		Programmable Digital Output Terminal Define	Aux mode8	Same as I/O-37	None	0	
I/O-45	9451	Terminal Output Status	Out status	00000000/11111111	00000000	*	
I/O-46	9450	Fault Output Relay Setting (3A, 3B, 3C)	Relay mode	00 to 11 [bit]	10 [bit]	0	6-34

CODE	Comm. Addr	Description	LCD Keypad Display	Setting Range	Factory Default	Adj. During Run	Page	
I/O-47	9452	Waiting time after Fault Output Relay On	Relay On	0 to 9999[sec]	0.0[sec]	х	()1	
I/O-48	9453	Waiting time after Fault Output Relay Off	Relay Off	0 to 9999[sec]	0.0[sec]	х	X 6-34	
I/O-49		Analog output A	SDA A read	NONE FREQUENCY CURRENTR VOLTAGE DC_LINK_VTAGE	NONE	0		
I/O-50		Analog output A shift Perc.	SDA A shift	50% ~ 150%	100%	0		
I/O-51		Analog output B	SDA B read	NONE FREQUENCY CURRENTR VOLTAGE DC_LINK_VTAGE	NONE	0		
I/O-52		Analog output B shift Perc.	SDA B shift	50% ~ 150%	100%	0		
I/O-53		Analog output C	SDA 1 read	None InputCurr R InputCurr S InputVolt R InputVolt S InputVolt T OutputCurr U OutputCurr V OutputCurr W OutputCurr W OutputVolt U OutputVolt V OutputVolt W	None	0		
I/O-54		Analog output C shift	SDA 1 shift	0~19	10			
I/O-55		Analog output D	SDA 2 read	Same as IO-53	None			
I/O-56		Analog output D shift	SDA 2 shift	0~19	10			
I/O-57	941E	Jog Frequency Setting	Jog freq	0 to FU1-21	10 [Hz]	0	6-35	
I/O-58	941F	Step Frequency 4	Step freq-4	0 to FU1-21	40 [Hz]	0		
I/O-59	9420	Step Frequency 5	Step freq-5	0 to FU1-21	50 [Hz]	0		
I/O-60	9421	Step Frequency 6	Step freq-6	0 to FU1-21	40 [Hz] O			
I/O-61	9422	Step Frequency 7	Step freq-7	0 to FU1-21	30 [Hz] O			
I/O-62	9423	Step Frequency 8	Step freq-8	0 to FU1-21	20 [Hz] O			
I/O-63	9424	Step Frequency 9	Step freq-9	0 to FU1-21	10 [Hz] O			
I/O-64	9425	Step Frequency 10	Step freq-10	0 to FU1-21	20 [Hz] O			
I/O-65	9426	Step Frequency 11	Step freq-11	0 to FU1-21	30 [Hz]	0		
I/O-66	9427	Step Frequency 12	Step freq-12	0 to FU1-21	40 [Hz] O			
I/O-67	9428	Step Frequency 13	Step freq-13	0 to FU1-21	50 [Hz]			
I/O-68	9429	Step Frequency 14	Step freq-14	0 to FU1-21	40 [Hz]	0		
I/O-69	942A	Step Frequency 15	Step freq-15	0 to FU1-21	30 [Hz]	0		
I/O-70	9432	Acceleration Time 1 (for Step speed)	Acc time-1	0 to 6000 [sec]	60 [sec]	О	6-36	

CODE	Comm. Addr	Description	LCD Keypad Display	Setting Range	Factory Default	Adj. During Run	Page
I/O-71	9433	Deceleration Time 1 (for Step speed)	Dec time-1	0 to 6000 [sec]	180 [sec]	0	
I/O-72	9434	Acceleration Time 1 (for Step speed)	Acc time-2	0 to 6000 [sec]	90 [sec]	0	
I/O-73	9435	Deceleration Time 2 Dec time-2 0 to 6000 [sec]		270 [sec]	0		
I/O-74	9436	Acceleration Time 3	Acc time-3	0 to 6000 [sec]	120 [sec]	0	
I/O-75	9437	Deceleration Time 3	Dec time-3	0 to 6000 [sec]	360 [sec]	0	
I/O-76	9438	Acceleration Time 4	Acc time-4	0 to 6000 [sec]	150 [sec]	0	
I/O-77	9439	Deceleration Time 4	Dec time-4	0 to 6000 [sec]	450 [sec]	0	
I/O-78	943A	Acceleration Time 5	Acc time-5	0 to 6000 [sec]	120 [sec]	0	
I/O-79	943B	Deceleration Time 5	Dec time-5	0 to 6000 [sec]	360 [sec]	0	
I/O-80	943C	Acceleration Time 6	Acc time-6	0 to 6000 [sec]	90 [sec]	0	
I/O-81	943D	Deceleration Time 6	Dec time-6	0 to 6000 [sec]	270 [sec]	0	
I/O-82	943E	Acceleration Time 7	Acc time-7	0 to 6000 [sec]	60 [sec]	0	
I/O-83	943F	Deceleration Time 7	Dec time-7	0 to 6000 [sec]	180 [sec]	0	
I/O-84	940B	Pulse input method	P pulse set	(A+B) (A)	(A) X		
I/O-85	940C	Pulse input filter	P filter	0 to 9999 [msec]	10 [msec]	0	
I/O-86	940D	Pulse input Minimum frequency	P pulse x1	0 to I/O-88[Hz]	0 [kHz] O		
I/O-87	940E	Frequency corresponding to I/O-13 Pulse input Maximum frequency	P freq y1	0 to FU1-21 [Hz]	0 [Hz]	О	
I/O-88	940F	Frequency corresponding to I/O-15	P pulse x2	I/O-86 to 100 [kHz]	10 [kHz]	0	
I/O-89	9410	Pulse input Minimum frequency	P freq y2	0 to FU1-21 [Hz]	60 [Hz]	0	
I/O-90	945A	Inverter Number	Inv No.	1 to 250	1	0	
				1200 bps			
				2400 bps			
I/O-91	945B	Baud Rate Selection	Baud rate	4800 bps	38400 bps	0	6-38
				9600 bps			
				19200 bps			
				38400 bps			
				None			
I/O-92	945C	Operating method	COM Lost Cmd	FreeRun	None	О	
		at loss of freq. reference		Stop			6-38
I/O-93	945D	Waiting time after loss of freq. reference	COM Time Out	0.1 to 120 [sec]	1.0 [sec] O		
I/O-94	945E	Communication Response Delay time	Delay Time	2 to 1000 [msec]	5 [msec]	0	6-38
I/O-98		UPS off delay time set	UPS_OFF_Dly	0-9000[sec]	60sec	0	

Chapter 5 – PARAMETER LIST

CODE	Comm. Addr	Description	LCD Keypad Display	Setting Range	Factory Default	Adj. During H Run	Page
		ghlighted codes are hidden is set to either V1, I or V1+	-	**			

CODE	Comm. Addr	Description	LCD Keypad Display	Setting Range	Factory Default	Adj. During Run	Page
CEL-00	9700	Jump Code	Jump code	1 – 99	1	0	
CEL-01	9701	CAN Mode Selection	Can mode Display Only Compare mode		Х		
CEL-02	9702	Total Stair	Total Stair	Display Only	6	Х	
CEL-03	9703	Max Stair	Max Stair Display Only		6	Х	
CEL-04	9704	U Phase Status	U CAN Status	Display Only	00111111	Х	
CEL-05	9705	V Phase Status	V CAN Status	Display Only	00111111	Х	
CEL-06	9706	W Phase Status	W CAN Status	Display Only	00111111	Х	
CEL-07	9707	U Phase Protection Status	U ProtStatus	Display Only	00000000	Х	
CEL-08	9708	V Phase Protection Status	V ProtStatus	Display Only	00000000	Х	
CEL-09	9709	W Phase Protection Status	W ProtStatus	Display Only	00000000	Х	
CEL-10	970A	CELL Setting	Go Setting	No Yes	No	Х	
CEL-11	970B	U Phase Bypass	BPU 87654321	0000000/11111111	00000000	Х	
CEL-12	970C	V Phase Bypass	BPV 87654321	0000000/11111111	00000000	Х	
CEL-13	970D	W Phase Bypass	BPW 87654321	0000000/11111111	00000000	Х	
CEL-16	970E	U Phase Bypass Status	U Bypass St	00000000/11111111	Display Only	Х	
CEL-17	960F	V Phase Bypass Status	V Bypass St	00000000/11111111	Display Only	Х	
CEL-18	9711	W Phase Bypass Status	W Bypass St	00000000/11111111	Display Only	Х	
CEL-21	9716	U Phase upstair Status	U_Uper_Stair	- Display Only	0000	Х	
CEL-22	9717	U Phase downstair Status	U_Lowe_Stair	- Display Only	0000	Х	
CEL-23	9718	V Phase upstair Status	V_Uper_Stair	- Display Only	0000	Х	
CEL-24	9719	V Phase downstair Status	V_Lowe_Stair	- Display Only	0000	Х	
CEL-25	971A	W Phase upstair Status	W_Uper_Stair	- Display Only	0000	Х	
CEL-26	971B	W Phase downstair Status	W_Lowe_Stair	- Display Only	0000	Х	
CEL-30	971C	Bypass mode selection	BypassMode	No ManualBypass Auto-Bypass	No	Х	
CEL-35		Bypass Restoration	All Back	No Yes	No	Х	

[CEL GROUP]

CHAPTER 6 - PARAMETER DESCRIPTION

6.1 Drive group [DRV]

DRV-00: Command Frequency/ Output Current (LCD)

DRV▶ Cmd. Freq 00 0.00 Hz	00	0.00
Factory Default: 0.0		0.00

1) Digital frequency setting

- When DRV-04 [Frequency Mode] is set to 0 (Keypad-1) or 1 (Keypad-2), command freq is settable less than FU1-21 [Maximum Frequency].

2) Monitoring function setting

- Command frequency displayed during stop.

- Output current/frequency displayed during run. Analog/digital frequency command source setting: DRV-04 [Frequency Mode]

When DRV-04 [Frequency Mode] is set to V1, V1S, I, V1+I or Pulse, frequency command is set via I/O-01~13, I/O-84~89 [Analog Frequency command]. Refer to I/O-01~13, I/O-84~89 for detail description.

When DRV-09 [Speed Unit Selection] is set to Rpm, Hz display is changed to Rpm.

DRV-04 [Frequency Mode] setting guide

DRV -04	Name	Programming Description
		1. In DRV-00, press the [PROG] key.
Key		2. Set the desired freq.
Pad-1	nud	3. Press the [ENT] key to write the new
	nma	value into memory.
	command	1. In DRV-00, press the [PROG] key.
		2. Press the $[\hat{U}(Up)]$ or $[\stackrel{\circ}{\downarrow}(Down)]$ key to
Vari	Digital freq.	set the desired freq. Speed is reflected to
Key Pad-2	gita	the inverter real time upon pressing the
Pau-2	Di	UP/DOWN keys.
		3. Press the [ENT] key to write the new
		value into memory.

DRV -04	Name	Programming Description
V1	Analog freq. command	Voltage analog input (0 to 12V) to Control terminal "V1". See the description of I/O-01~05.
Ι	Analog fre	Current analog input (4 to 20mA) to Control terminal "I". See the description of I/O-06~10.
V1+I		0-10V/4-20mA Analog input Control terminal "V1","I". See the description of I/O-01~10.
Pulse	Pulse command	(0~5V) Pulse signal is applied to the Pulse terminal of the analog input board. See the I/O-84~89.

DRV -00	Digital command Frequency / Output current				
	DRV-04	Frequency mode			
Related	DRV-09	Rpm mode			
Function		Max frequency			
Function	FU2-40	Control mode			
	I/O-1~13	Analog command Frequency			

DRV-01, 02: Accel/Decel Time 0

DRV Acc. time 01 20.0 sec	01	20.0
Factory Default: 20.0	sec	20.0
DRV► Dec. time 02 30.0 sec	02	30.0
Factory Default: 30.0	sec	30.0

The inverter targets FU2-73 when accelerating or decelerating. When FU2-73 is set to "Maximum Frequency", the acceleration time is the time taken by the motor to reach FU1-30 from 0 Hz. The deceleration time is the time taken by the motor to reach 0 Hz from FU1-30 [Maximum Frequency]. When FU2-73 is set to "Delta Frequency", the acceleration and deceleration time is the time taken to reach a target frequency (instead the maximum frequency) from a specific frequency. The acceleration and deceleration time can be changed to a preset time via Programmable digital inputs. By setting M1~M8 to 'XCEL-L', 'XCEL-M', 'XCEL-H' respectively, the 1~7 Accel and Decel time set in I/O-50 to I/O-63 are applied by the binary inputs of the M1~M8.

Note: Set the Accel time more than 0.5 sec for smooth acceleration. Setting it too short may deteriorate the starting performance.

Code	LCD display	Name	XCEL -H	XCEL -M	XCEL -L	Default
DRV-01	Acc time	Acc time 0	0	0	0	20 sec
DRV-02	Dec time	Dec time 0	0	0	0	30 sec
I/O-50	ACC-1	Acc time 1	0	0	1	20 sec
I/O-51	DEC-1	Dec time 1	0	0	1	20 sec
I/O-52	ACC-2	Acc time 2	0	1	0	30 sec
I/O-53	DEC-2	Dec time 2	0	1	0	30 sec
I/O-54	ACC-3	Acc time 3	0	1	1	40 sec
I/O-55	DEC-3	Dec time 3	0	1	1	40 sec
I/O-56	ACC-4	Acc time 4	1	0	0	50 sec
I/O-57	DEC-4	Dec time 4	1	0	0	50 sec
I/O-58	ACC-5	Acc time 5	1	0	1	40 sec
I/O-59	DEC-5	Dec time 5	1	0	1	40 sec
I/O-60	ACC-6	Acc time 6	1	1	0	30 sec
I/O-61	DEC-6	Dec time 6	1	1	0	30 sec
I/O-62	ACC-7	Acc time 7	1	1	1	20 sec
I/O-63	DEC-7	Dec time 7	1	1	1	20 sec

FU2-71 [Accel/Decel Reference frequency]

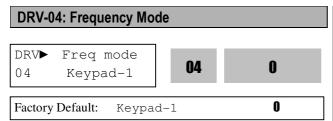
Reference Frequency for Accel and Decel

FU1 -71	Description
Max freq.	The Accel/Decel time is the time that takes to reach the maximum frequency from 0 Hz. (Factory setting)
Delta Freq.	The Accel/Decel time is the time that takes to reach a target frequency from any frequency.

FU2-72 [Accel/Decel time scale]

Set the Accel/Decel time unit.

FU1 -72	Description			
0.01 sec	Minimum 0 sec settable			
0.01 sec	Maximum 60 sec settable			
0.1 sec	Minimum 0 sec settable			
0.1 sec	Maximum 600 sec settable			
	Minimum 0 sec settable			
1 sec	Maximum 6000 sec settable			
	(Factory setting)			


DRV Drive mode 03 Fx/Rx-1	03	1
Factory Default: Fx/Rx-	-1	1

Select the source of run/stop command.

DRV-03: Drive Mode (Run/Stop Method)

Setting Range	Description
Keypad	Run/Stop control by Keypad.
	Run/Stop control by Control
Fx/Rx-1	Terminals FX, RX. (Method 1)
Γλ/Κλ-1	FX: Forward Run/Stop
	RX: Reverse Run/Stop
	Run/Stop control by Control
Fx/Rx-2	Terminals FX, RX. (Method 2)
Γλ/Κλ-2	FX: Run/Stop command
	RX: Forward/Reverse selection
Int. 485	Run/Stop control by RS485.
IIIt. 465	(MV SystemView)

Note : Refer to option board user manual for Run/Stop command by option board.

If the DRV-04 [Frequency Mode] is set to V1, I, V1+I, see the description of I/O-01~13, I/O-84~89 [Analog Voltage/Current input signal adjustment].

Setting Range	Description
Keypad-1	Frequency is set at DRV-00. The frequency is changed by pressing PROG key and entered by pressing ENT key. The inverter does not output the changed frequency until the ENT key is pressed.
Keypad-2	Frequency is set at DRV-00. Press PROG key and then by pressing the ▲, ▼ key, the inverter immediately outputs the changed frequency. Pressing the ENT key saves the changed frequency.
V1	Apply the frequency reference (0-12V) to the "V1" control terminal. Refer to the I/O-01 to I/O-05 for scaling the signal.
I	Apply the frequency reference (4~20mA) to the "I" control terminal. Refer to the I/O-06 to I/O-10 for scaling the signal.
V1+I	Apply the frequency reference (0~12V, 4~20mA) to the "V1","I" control terminals. The 'V1' signal overrides the 'I' signal. See I/O-01~10.
PULSE	Set the freq command using "A_0C, B_0C" terminals. Range: 0V~5V Pulse. See I/O-84~89.
Int. 485	Set the freq command using RS485 communication. See I/O-90~93.

DRV -04	Description		
	DRV-00	Digital Command frequency.	
Related	FU2-40	Control Mode	
Function	I/O-01~13	Analog Command frequency.	
	I/O-84~89		

DRV-05 ~ DRV-07: Step Frequence	cy 1 ~ 3
DRV► Step freq-1 05 10.00 Hz 05	10.00
Factory Default: 10.00 Hz	10.00
DRV► Step freq-2 06 20.00 Hz 06	20.00
Factory Default: 20.00 Hz	20.00
DRV► Step freq-3 07 30.00 Hz 07	30.00
Factory Default: 30.00 Hz	30.00

The inverter outputs preset frequencies set in these codes according to the Programmable Digital Input terminals configured as 'Speed-L', 'Speed-M', 'Speed-H' and 'Speed-X'. The output frequencies are decided by the binary combination of M0~M14. See I/O-14~28 description for Step Freq 4~7.

Binary Input Combination			Output	Stor	
Speed- L	Speed- M	Speed- H	Output Frequency	Step Speed	
0	0	0	DRV-00	Speed 0	
0	0	1	DRV-05	Speed 1	
0	1	0	DRV-06	Speed 2	
0	1	1	DRV-07	Speed 3	

Note: Speed 0 is the set value in DRV-04.

DRV-04 data	DRV-00, 0 speed	Freq command source	
KeyPad-1	Digital command freq	Keypad	
KeyPad-2	KeyPad-2 Digital command freq		
V1 Analog command freq		Terminal	
I Analog command freq		Terminal	
V1+I	Analog command freq	Terminal	
Pulse Pulse command freq		Terminal	
Int. 485 Comm. command freq		Terminal	

DRV -04	Description	
Related	I/O-14~28	Input Terminal Selection.
Function	I/O-31	Input Terminal Filter Value

DRV-08: Output Current DRV► Current 08 0.0 A Factory Default: 0.0 A

This code displays the output current of the inverter in RMS.

DRV-09: Motor RPM

DRV► 09	Speed Orpm		09	0
Factory	Default:	Orpm		0

This code displays the motor speed in RPM while the motor is running.

Use the following equation to scale the mechanical speed using FU2-38 [Gain for Motor Speed display] if you want to change the motor speed display to rotation speed (r/min) or mechanical speed (m/min). Motor speed = 120 * (F/P) * FU2-47

Where, F= Output Frequency and P= the Number of Motor Poles

DRV-10: DC Link Voltage

DRV►	DC	link	vtg	
10	-		V	

Factory Default: ---- V

This code displays the DC link voltage inside the Cell.

10

DRV-11: User Display Selection				
DRV User disp 11 0.0 V	11	0.0		
Factory Default: 0.0 V		0.0		

This code displays the parameter selected in FU2-81 [User Display].

FU2 -81	Function Name	Description
Voltage	Output Voltage	Displayed output voltage
Watt	Output Power	Displayed output Power

RV-12: Current Trip Display				
RV►	Fault	10	nOn	

12	None	12	nOn
Factory Default:	None		nOn

This code displays the current fault (trip) status of the inverter. Use the **PROG**, \blacktriangle and \lor key before pressing the **RESET** key to check the fault content(s), output frequency, output current, and whether the inverter was accelerating, decelerating, or in constant speed at the time of the fault occurred. Press the **ENT** key to exit. The fault content will be stored in FU2-01 to FU2-05 when the **RESET** key is pressed.

[Fault Contents]

Fault (Trip)	LCD Keypad display	
Over-Current 1	Over Current1	
Cell Over-Voltage	DC_Link OVT	
External Trip Input	Ext. Trip1(2)	
Emergency Stop	BX	
Input Low-Voltage	Input. LVT	
Input Over-Voltage	Input. OVT	
Ground Fault	Ground Fault	
Over-Heat Cell	Over Heat	
Electronic Thermal Trip	E-Thermal	
Over-Load Trip	Over Load	
CAN communication Error	CAN Error	
FAN Error	FAN Error	
Output Over Current	Output OCT	
Output Phase Open	OutPhase Open	
Input Phase Open	InPhase Open	
Inverter Over Load	Inv. OLT	
Motor OverHeat	Motor OverHeat	
Trans OverHeat	Trans OverHeat	
Cell Fault	Cell Fault	
Panel Open	Door Open	

DRV -12	Description	
	FU2-1~5	Trips History
Related Function	FU2-06	Erase Trips History
	FU2-83	Last Trip Time

Note: Only the highest-level fault will be displayed when multiple faults occur. The rest of faults can be monitored in FU2-01~05 [Fault history]. Cycle the power when the fault is cleared.

Up to 5 faults can be saved in FU2-01~05 [Fault history]. The lowest hierarchy fault such as "Last trip 5" is the latest. After pressing [PROG] key, press $[\hat{T}(\text{Up})], [[], [Own)]$ key to check the operation information at the time of the fault (Output freq.,

current, Accel/Decel/Constant Run) and fault type. Press the [ENT] key to escape. FU2-06 [Erase fault history] clears the faults information. However, FU2-83 [Last Trip Time] is automatically reset when a trip occurs.

Code	Display	Description
FU2-01	Last trip-1	Fault history 1
FU2-02	Last trip-2	Fault history 2
FU2-03	Last trip-3	Fault history 3
FU2-04	Last trip-4	Fault history 4
FU2-05	Last trip-5	Fault history 5

FU2-83 [Last Trip Time] shows the total time elapsed after the last trip occurs so it is possible to know the actual trip time by recounting.

DRV-16: High Voltage on Display			
DRV▶H 16	High Vol Sel Hard Wear		Hard Wear

Factory Default: Hard Wear

DRV -16	Description	
Related Function	DRV-17	High voltage on selection

- Selection between whether the high voltage power supply (or no-supply) signal shall be received with hardware or software.
- When there is no signal for whether high voltage power is to be supplied or not, the inverter cannot be operated,

DRV-17: High Voltage on Display			
DRV High Vol ON 17 NO	17	NO	
Factory Default : NO			

DRV-17	Description	
YES	Set up by user when high voltage	
115	power supply is applied	
NO	When high voltage power supply is	
NO	not applied (default)	

- DRV-16 High Vol Sel has to be set to Software to display DRV-17.
- The user has to make this setting manually, not altered by automatically. Select 'Yes' when power is applied.
- It 'Yes' is selected when power is not applied, errors such as Input LVT, Can Error, etc., will occur.

DRV-70: R-Phase Voltage			
DRV▶Rph_InputVtg 70 V	70		
Factory Default : V			

DRV-71: S-Phase Voltage		
DRV►Sph_InputVtg 71 V	71	
Factory Default : V		

DRV-72: T-Phase Voltage		
DRV▶Tph_InputVtg 72 V	72	
Factory Default : V		

DRV-80: Input Voltage RMS Value			
DRV► 80	InputVoltage	80	

Factory Default : ---- V

DRV-82: Out Voltage		
DRV Out Voltage 82 V	82	
Factory Default :	V	

DRV-83: Inverter Output Current RMS Value	V1+I	Analog Command
DRV► Out Current 83 A 83	 This function relates to LOC/REM setting in the function definition of the IO-14 ~ 28 terminal block functions for further details. 	
Factory Default : A		
DRV-91: Drive Mode 2		

Fx/Rx-1

6.2 Function 1 Group [FU1]

FU1-00: Jump to Desired Code

1

FU1►	Jump	code
~ ~	1	

00 1

Factory Default:

Jumping directly to any parameter code can be accomplished by entering the desired code number. This code is available only with LCD keypad.

FU1-01: Run Prevention

- FU1► Run prev. 01 None
- 01

1

0

0

Factory Default: None

This function prevents reverse operation of the motor. This function may be used for loads that rotate only in one direction such as fans and pumps.

Setting	Description
None	Forward &Reverse run available. (Factory default)
Fwd Prev	Forward run prohibited.
Rev Prev	Reverse run prohibited.

FU1-02: Acceleration Pattern FU1-03: Deceleration Pattern

FU1▶Acc. pattern 02 Linear	02	0
Factory Default: Linea.	r	0
FU1⊳Dec.pattern 03 Linear	03	0
Factory Default: Linea	r	0

KeyPad-1

KeyPad-1	KeyPad Command
KeyPad-2	KeyPad Command
V1	Analog Command
PULSE	Analog Command
Ι	Analog Command

DRV Drive mode2

Factory Default : Fx/Rx-1

Fx/Rx-1

I/O-14 ~ 28

Terminal

Terminal

DRV-92: Frequency Mode 2

Freq mode2

Factory Default : KeyPad-1

KeyPad-1

I/O-14 ~ 28

91

DRV

-91

Related

Function

DRV

-91

Fx/Rx-1

Fx/Rx-2

DRV►

DRV

-16 Related

Function

DRV

-91

92

further details.

91

Description

Description

- This function relates to LOC/REM setting in the

function definition of the IO-14 ~ 28 terminal block. Refer to the IO-14 ~ 28 terminal block functions for

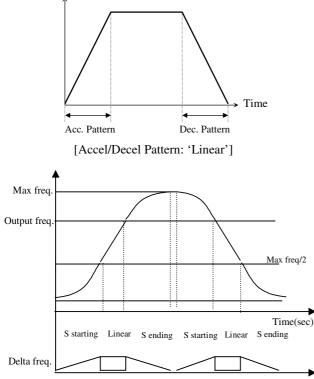
92

Description

Description

LOC/REM

LOC/REM


6-6

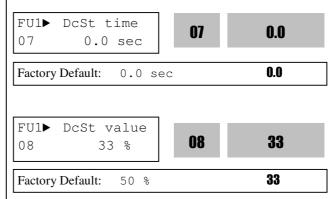
Different combinations of acceleration and deceleration patterns can be selected according to the application.

Setting Range	Description
Linear	A general pattern for constant torque
	applications. (Factory default)
	This pattern allows the motor to
	accelerate and decelerate smoothly. The
	actual acceleration and deceleration
	time takes longer- about 40% than the
S-curve	time set in DRV-01 and DRV-02.
	This setting prevents shock during
	acceleration and deceleration, and
	prevents objects from swinging on
	conveyors or other moving equipment.
	This pattern provides more efficient
U-curve	control of acceleration and deceleration
	in typical winding machine applications.

Note: Setting value in DRV-01 and DRV-02 is ignored.



[Accel/Decel Pattern: 'S-curve']


Actual accel time = Preset accel time+ Preset accel time *Starting curve ratio/2 + Preset accel time * Ending curve ratio /2

Actual decel time = Preset decel time + Preset decel

time * Starting Curve ratio/2 + Preset decel time * Ending curve ratio/2

FU1-06: Start Mode FU1-07: Starting DC Magnetizing Time FU1-08: Starting DC Magnetizing Value

Inverter holds the starting frequency for Starting DC Magnetizing Time. It outputs DC voltage to the motor for FU1-07 [Starting DC Magnetizing Time] with the FU1-08 [Starting DC Magnetizing Value] before accelerating.

Select the starting method of the inverter.

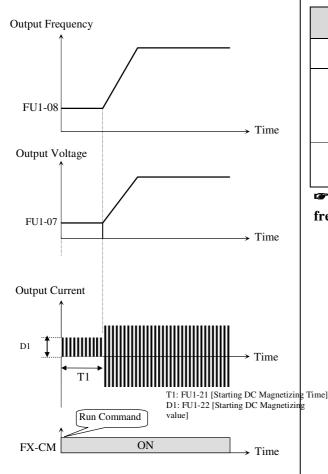
FU1-06 set data	Function description
Accel	Acceleration to start
Accel	(Factory default)
Dc-start	Inverter starts acceleration after
De-start	magnetizing DC current.
Flying-	Inverter starts RUN while a motor is
start	rotating.

 The direction of Motor rotation and the command should be set equal to optimum use of Flying-start function.
 However, this function is effective with less than 50% to rated rpm when direction of motor rotation and

reference command is opposite.

- 2) DC-start is disabled when FU1-07 or 08 is set to "0".
- 3) DC-start is deactivated in Sensorless mode.

4) It is possible to occur No Motor Trip in case that there


is output phase loss when DC-start is operated

Inverter starts acceleration after FU1-07 [Starting DC

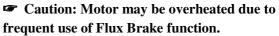
Magnetizing Time] while FU1-08 [Starting DC

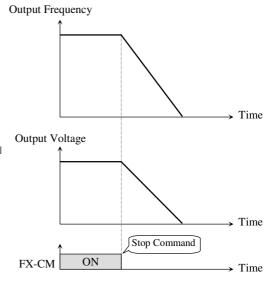
Magnetizing Voltage] is operated.

Code	LCD Display	Default	Setting
FU1-07	DcSt time	1 [sec]	0.1 ~ 60 [sec]
FU1-08	DcSt value	33 [%]	0~150[%]

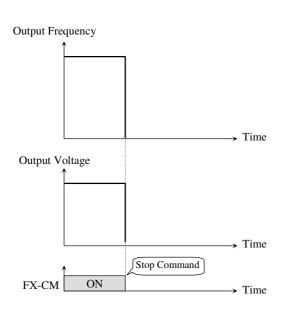
[DC-start Operation]

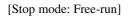
FU1-08 [Starting DC Magnetizing Value] is the DC Current amount applied to the motor and is set as percent of FU2-34[Motor Rated Current].


Note: Do not set FU1-08 [Starting DC Magnetizing Value] higher than Inverter Rated Current. Otherwise, Motor Overheating or Overload Trip may occur.


FU1-09: Stop Mode	
-------------------	--

FU1► 09	Stop m Dece		09	Decel
Factory	Default:	Decel		Decel

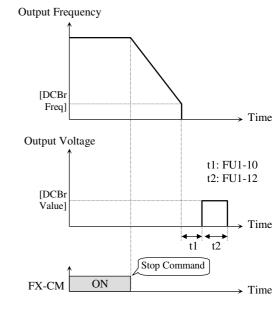

Sets the stopping method for the inverter.


Setting Range	Description
Decel	Inverter stops by the deceleration pattern.
Dc-brake	Inverter stops with DC injection braking. Inverter outputs DC voltage when the frequency reached the DC injection braking frequency during decelerating.
Free-run (Coast to stop)	Inverter cuts off its output immediately when the stop signal is commanded.

[Stop Mode: 'Decel']

FU1-10: DC Injection Braking Hold Time FU1-11: DC Injection Braking Frequency FU1-12: DC Injection Braking Time FU1-13: DC Injection Braking Value

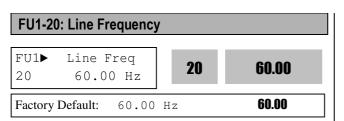
FU1► DcBlk time 10 0.10 sec 10	0.10
Factory Default: 0.10 sec	0.10
FU1▶ DcBr freq 11 0.50 Hz 11	0.5
Factory Default: 0.50 Hz	0.5
FU1► DcBr time 12 1.0 sec 12	1.0
Factory Default: 1.0 sec	1.0
FU1► DcBr value 13 50 %	50
Factory Default: 50 %	50


By introducing a DC voltage to the motor windings this function stops the motor immediately. Selecting 'DC-Brake' in FU1-23 activates FU1-10 through FU1-13. When FU1-23 [Stop mode] is set to "DC Brake", inverter decelerates until FU1-11 [DC Injection Braking Frequency] and begins DC Braking at this frequency.

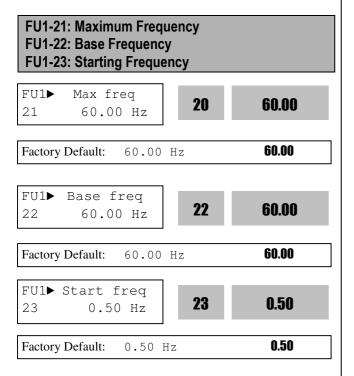
FU1-10 [DC Injection Braking Hold Time] is the inverter output blocking time before DC injection braking.

FU1-11 [DC Injection Braking Frequency] is the frequency at which the inverter starts to output DC voltage during deceleration.

FU1-12 [DC Injection Braking Time] is the time the DC current is applied to the motor.

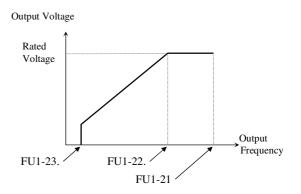

FU1-13 [DC Injection Braking Value] is the DC voltage applied to the motor and is based on FU2-34 [Rated Current of Motor].

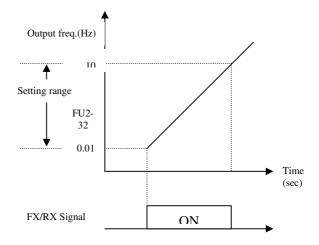
[DC Injection Braking Operation]


Note: Do not set the FU1-13 higher than Inverter rated current. Otherwise, it may lead to motor overheat or overload trip.

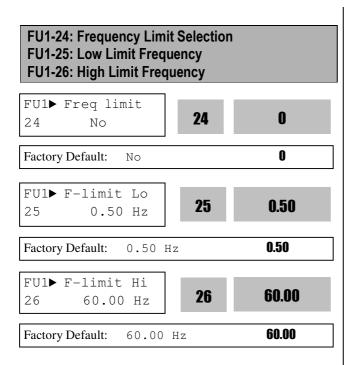
Note: Do not set FU1-11 [DC Braking Frequency] too high than its range (between 0~5Hz). Otherwise, it may deteriorate its performance.

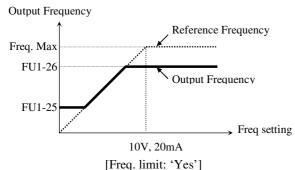
It sets input power frequency. Set 50 or 60Hz in FU1-20 [Line Frequency].


Caution: If line frequency is changed, related frequencies such as Max frequency, Base frequency are automatically changed. To set the related frequencies different to line, user should set the codes manually.

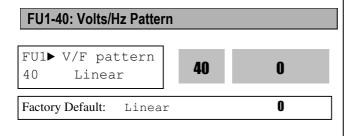

FU1-21 [Maximum Frequency] is the maximum output frequency of the inverter. Make sure this maximum frequency does not exceed the rated speed of the motor.

FU1-22 [Base Frequency] is the frequency where the inverter outputs its rated voltage. In case of using a 50Hz motor, set this to 50Hz.


FU1-23 [Starting Frequency] is the frequency where the inverter starts to output its voltage. <u>If it is set to</u> <u>5Hz</u>, motor starts running from 5 Hz.


 Caution: Note that Overheat trip or torque shortage may occur if FU1-22 is set different to motor rated frequency.

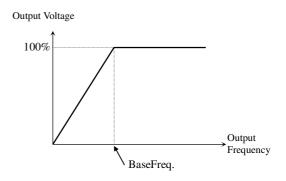
Note: Motor starts running at 5Hz when FU2-23 is set to 5Hz.



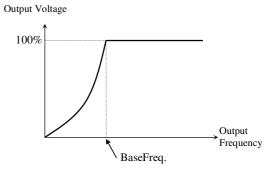
FU1-24 selects the limits the inverter operating frequency. If FU1-24 is set to 'Yes', inverter operates within the upper and lower limit setting. The inverter operates at the upper or the lower limit when the frequency reference is outside the frequency limit range.

Note: if freq set value is below freq low limit, inverter operates at the low limit.

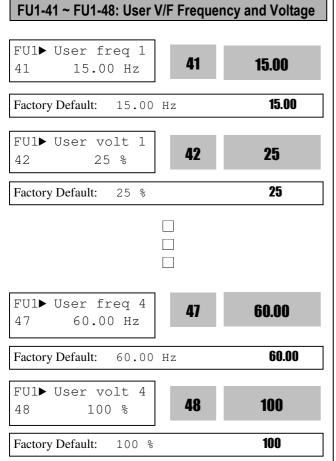
Note: Normal Accel/Decel is performed for the range below low limit during Accel/Decel.

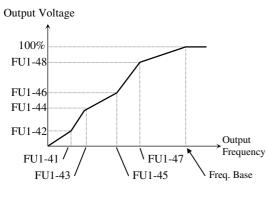


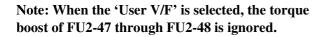
This is the pattern of voltage/frequency ratio. Select the proper V/F pattern according to the load. The motor torque is dependent on this V/F pattern.


[Linear] pattern is used where constant torque is required. This pattern maintains a linear volts/frequency ratio from zero to base frequency. This pattern is appropriate for constant torque applications. The performance will be improved with the help of FU2-47~48 [Torque boost].

[Square] pattern is used where variable torque is required. This pattern maintains squared volts/hertz ratio. This pattern is appropriate for fans, pumps, etc.


[User V/F] pattern is used for special applications. Users can adjust the volts/frequency ratio according to the application. This is accomplished by setting the voltage and frequency, respectively, at four points between starting frequency and base frequency. The four points of voltage and frequency are set in FU1-41 through FU1-48.


[V/F Pattern: 'Linear']

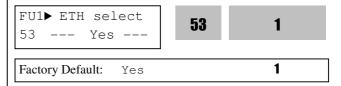

[V/F Pattern: 'Square']

These functions are available only when 'User V/F' is selected in FU1-40 [V/F pattern]. Users can make the custom V/F pattern by setting four points between FU1-23 [Starting Frequency] and FU1-22 [Base Frequency].

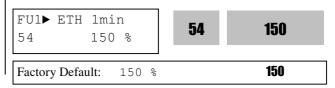
[User V/F]

Chapter 6 – PARAMETER DESCRIPTION

FU1-50:	AC Input Volta	ige	
FU1►AC 50	InputVolt 100.0 %	50	73.0~1150
Factory D	Default: 100.	 0 V	100.0

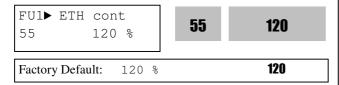

FU1-50 [input voltage setting] is required because inverter input voltage much different from the standard input, e.g., 6600[V], 3300[V] can influence inverter performance significantly.

The setting value will be the criteria of the low voltage failure decision of the inverter. Therefore, use this setting only when the voltage fluctuation exceeds the tolerance or differs from the standard input.

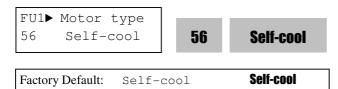

Note: when changing the FU1-50 setting value, the changed value will be applied as soon as entered using the button on the loader.

FU1-53: Electronic Thermal (Motor i²t) Selection FU1-54: Electronic Thermal Level for 1 Minute FU1-55: Electronic Thermal Level for Continuous FU1-56: Electronic Thermal Characteristic (Motor type) selection

These functions protect the motor from overheating without using external thermal relay. Inverter calculates the temperature rise in a motor based on several parameters and determines whether or not the motor is overheated from load current. Inverter will turn off its output and display a trip message when the electronic thermal feature is activated.

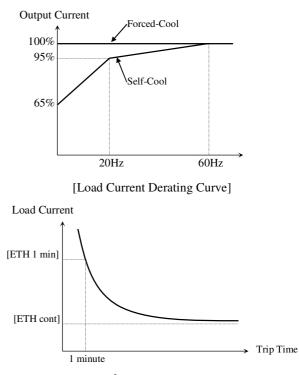


This function activates the ETH parameters by setting 'Yes'. ETH level is set as the percentage of FU2-34 [Motor rated current].



This is the reference current when the inverter determines the motor has overheated. For example, it trips in one minute when 150% of rated motor current in FU2-34 flows for one minute.

Note: The set value is the percentage of FU2-34 [Rated Motor Current].

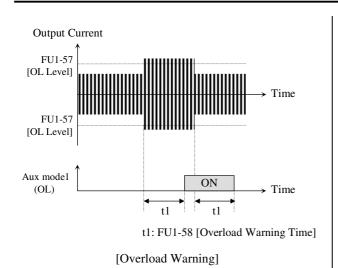

This is the current at which the motor can run continuously. Generally, this value is set to '100%', which means the motor rated current set in FU2-34. This value must be set less than FU1-54 [ETH 1min]. Note: The set value is the percentage of FU2-34 [Rated Motor Current].

To make the ETH function (Motor i^2t) work correctly, the motor cooling method must be selected correctly according to the motor.

[Self-cool] is a motor that has a cooling fan connected directly to the shaft of the motor. Cooling effects of a self-cooled motor decrease when a motor is running at low speeds. The Motor is easily heated at low speed, compared to the motor at high speed with the same current. The motor current is derated as the motor speed decreases as shown below.

[Forced-cool] is a motor that uses a separate motor to power a cooling fan. As the motor speed changes, the cooling effect does not change. FU1-55 [Electronic thermal level for continuous] set value is applied regardless of operating frequency.

[Motor i²t Characteristic Curve]


Note: Despite the motor current changing frequently due to load fluctuation or acceleration and deceleration, the inverter calculates the i²t and accumulates the value to protect the motor. FU1-57: Overload Warning Level

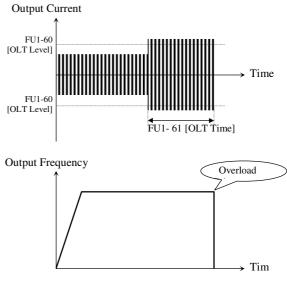
	U	1-57.	Overioau	warning	Level
F	U	1-58:	Overload	Warning	Time

FU1► OL level 57 110 %	57	110
Factory Default: 110 %		110
FU1► OL time 58 10.0 sec	58	10.0
Factory Default: 10.0 s	sec	10.0

The inverter generates an alarm signal when the output current has reached the FU1-57 [Overload Warning Level] for the FU1-58 [Overload Warning Time]. The alarm signal persists for the FU1-58 even if the current has become the level below the FU1-57. Programmable Digital Output Terminal is used as the alarm signal output. To output the alarm signal, set I/O-37 [Aux mode1] to 'OL'.

Note: FU1-64 is set as the percentage of FU2-34 [Rated Motor Current].

FU1-59: Overload Trip Selection FU1-60: Overload Trip Level FU1-61: Overload Trip Delay Time


FU1▶ OLT select 59 No	59	0
Factory Default: No		0
FU1▶ OLT level 60 120 %	60	120
Factory Default: 120 %		120
FU1▶ OLT time 61 60.0 sec	61	60.0
Factory Default: 60.0 s	sec	60.0

Inverter cuts off its output and displays fault message when the output current persists over the FU1-60 [Overload Trip Level] for the time of FU1-61 [Overload Trip Delay Time]. This function protects the inverter and motor from abnormal load conditions.

Note: The set value is the percentage of FU2-23 [Rated Motor Current].

Note: Activated only when Heatsink temperature exceeds its preset level.

Chapter 6 – PARAMETER DESCRIPTION

[Overload Trip Operation]

FU1-62: Input/Output Phase Loss Protection (Bit Set)

FU1► Trip select 62 00	62	00
Factory Default: 00		00

This function is used to cut the inverter output off in case of phase loss in either input power or inverter output.

1st bit: Output phase loss protection Enable/Disable

- 0: Disabled at Output phase loss protection.
- 1: Enabled at Output phase loss protection.
- Inverter output is shut down and stopped.
- 2nd bit: Input phase loss protection Enable/Disable
 0: Input phase loss protection disabled.
 - 1: Input phase loss protection enabled. Inverter output is shut down and stopped.

FU1-64: Stall Prevention Level

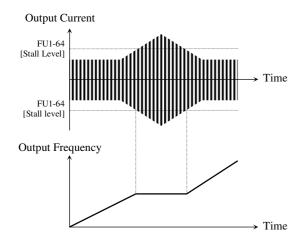
FU1▶ Stall level 64 100 %	64	100
Factory Default: 100 %	1	100

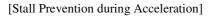
This function is used to prevent the motor from stalling by reducing the inverter output frequency until the motor current decreases below the stall prevention level. This function can be selected for each mode of acceleration, steady speed, and

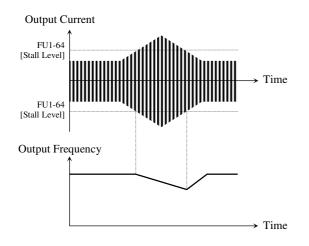
deceleration via bit combination.

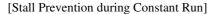
Note: FU1-64 is set as the percentage of FU2-34 [Rated Motor Current].

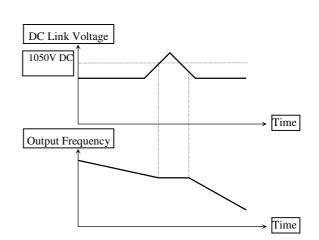
Note: Do not set the FU1-64 higher than inverter rated current.


Note : Stall level will be automatically reduced if inverter is operated at the frequency higher than base frequency.


Note: Accel time may get longer due to stall prevention during Accel.


Note: Inverter starts deceleration when Stop command is applied while motor stall state persists.

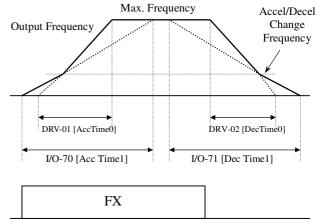

Note: Output frequency may oscillates due to stall prevention during constant run.


Note: Decel time may get longer due to stall prevention during Decel.

[Stall Prevention during Deceleration]

FU1-70: Accel/Decel Change Frequency

FU1►Acc/Dec ch F 70 0.00 Hz	70	0.00


Factory Default: 0.00 Hz

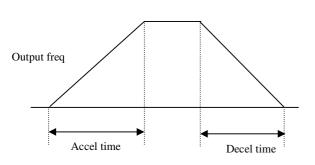
This function is used to change Accel/Decel ramp at a certain frequency.

0.00

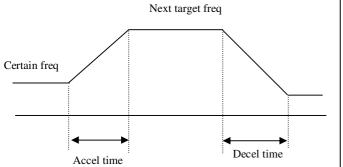
Note: If Accel/Decel change frequency is set and 'XCEL-L', XCEL-M', and XCEL-H' defined in Programmable digital terminals are ON, Multi Accel/Decel operation has the priority.

Note: normal Accel/Decel will be performed when the Accel/Decel switching frequency is zero, i.e, zero Accel/Decel time is applied.

[Accel/Decel Change Operation]


FU1-71: Reference Frequency for Accel/Decel FU1>Acc/Dec freq

71 Max	
Factory Default: Max	 Max


This is the reference frequency for acceleration and deceleration. If a decided Accel/Decel time from a frequency to a target frequency is required, set this value to 'Delta freq'.

Setting Range	Description
Max freq	The Accel/Decel time is the time that takes to reach the maximum frequency from 0 Hz.
Delta freq	The Accel/Decel time is the time that takes to reach a target frequency from any frequency.

Max freq

[FU1-71: Max. Freq]

[FU1-71: Delta Freq]

FU1-74: Accel/Decel Time Scale				
FU1► Time scale 71 1 sec	71	1		
Factory Default: 1 sec	2	1		

This is used to change the time scale.

Setting Range	Description
0.01 sec	The Accel/Decel time is changed by 10 msec. The maximum setting range is 60 seconds.
0.1 sec	The Accel/Decel time is changed by 100 msec. The maximum setting range is 600 seconds.
1 sec	The Accel/Decel time is changed by 1 sec. The maximum setting range is 6000 seconds.

FU1-81: KiloWattHour

FU1▶ F	CiloWattHour
81	kWh

Factory Default: kWh

Note: The displayed value of "Watt" is approximate value.

81

kWh

FU1-82: Power Set

FU1► 82	Power Set 100%	82	100
Factory	Default: 100		100

Note: since the integrated energy is expressed by the integral of instantaneous electric energy, it is recommended to correct the electric energy.

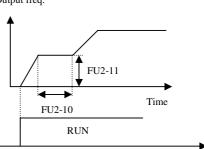
FU1-83: Cell Temp

FU1⊳Cell Temp 83 0	83	0
Factory Default: 0		0

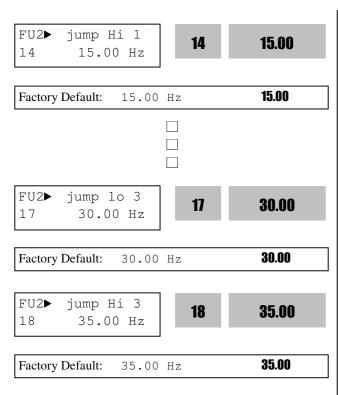
Note: of the 3-phase cells of each layer, the highest cell temperature is displayed.

6.3 Function 2 Group [FU2] FU-05 from the memory. However, FU2-83 [Last Trip Time] cannot be reset. FU2-00: Jump to desired code # FU2-10: Dwell Time FU2► Jump code FU2-11: Dwell Frequency 00 1 FU2▶ Dwell time Factory Default: 1 1 10 10 0.0 sec Jumping directly to any parameter code can be accomplished by entering the desired code number. 0.0 Factory Default: 0.0 sec This code is available only with LCD keypad. FU2▶ Dwell freq 11 11 5.00 Hz FU2-01: Last trip 1 FU2-02: Last trip 2 Factory Default: 5.00 Hz FU2-03: Last trip 3 FU2-04: Last trip 4 not available. FU2-05: Last trip 5 FU2-06: Erase Trips Note: Do not set the Dwell frequency above FU2▶ Last trip-1 operation fault. 01 None 01 None Note: this function is disabled in Sensorless control. None Factory Default: None Output freq. FU2-11 FU2▶ Last trip-5 05 None 05 None Time FU2-10 RUN None Factory Default: None

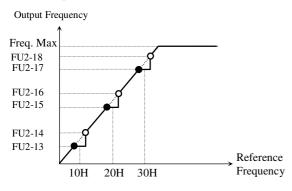
This code displays up to five previous fault (trip) status of the inverter. Use the **PROG**, \blacktriangle and \checkmark key before pressing the **RESET** key to check the fault content(s) such as output frequency, output current, and whether the inverter was accelerating, decelerating, or in constant speed at the time of the fault occurred. Press the **ENT** key to exit. FU2-83 [Last Trip Time] is the time elapsed after last trip occurs. User can count the last trip time from this value.

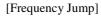


This function erases all fault histories of FU2-01 to


0.0 5.00 5.00

Note: If the dwell time is set at '0', this function is


frequency command. Otherwise, it may lead to



FU2-12 ~ FU2-18: Frequency Jump FU2► Jump freq 0 12 12 --- No ---0 Factory Default: No FU2► jump lo 1 13 10.00 10.00 Hz 13 10.00 Factory Default: 10.00 Hz

To prevent undesirable resonance and vibration on the structure of the machine, this function locks out the potential resonance frequency from occurring. Three different jump frequency ranges may be set. This avoidance of frequencies does not occur during accelerating or decelerating. It only occurs during continuous operation.

Note: When the reference frequency is set between the jump frequency low/high limit, it follows the low limit frequency, marked by "•". Note: If jump range 1 and range 2 are overlapped, lower freq. will become a low limit. Note: Jump freq. is ignored during Accel/Decel.

Chapter 6 – PARAMETER DESCRIPTION

FU2-21:	Flying Percent		
FU2⊳Fly 21	ving Perc 50%	21	50
Factory De	efault: 50%		50

To use the motor during free-run before it stops, use the speed search function. The flying start percentage is the % value of the current during the speed search to the rated current [FU2-34] of the motor.

Note: if the % value is set up too small while under a large load, the speed search function may not be successful.

Note: no operation is carried out while in a failure condition.

FU2-25: Restart After Fault Reset

FU2▶Reset	start	05	Na
25 N	o	29	NO

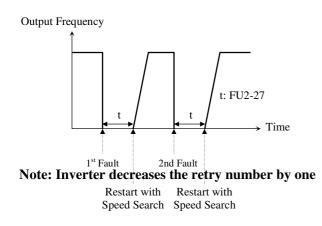
Factory Default: No

No

When this is set to No, if the inverter is tripped and released, turn the terminal block OFF and then ON to start operation, even the terminal block is in operable state.

- When set to Yes, if a trip occurs to the inverter which has been operated with the terminal block, the trip will be reset after 3 seconds from the trip, automatically. When the problem is corrected and the terminal block is in operable condition, the inverter operation commands will be created according to the number of the FU2-26 retry with the retry delay time of the FU2-27.
- If the inverter fails, it isolates the output power resulting in the motor free-run. Restarting in this condition may cause trip. In the LS-MV, the Flying Start is applied automatically as the restart method (not user settable)
- ▶ When the BypassMode of the CEL-30 is set to ManualBypass or Auto-Bypass, the restart is performed bypassing the cell in failure which

requires bypass. If the ByPassMode is set to No, the trip caused byCell Fault or Can Error cannot be restarted.


Operation status diagram

If the Reset Start of the FU2-25 is set to Yes, restart will be decided by the operation command status after solving the problem, regardless of operation by keypad or terminal block.

FU2-26: Number of Auto Retry FU2-27: Delay Time Before Auto Retry FU2▶Retry number 1 26 26 1 Factory Default: 0 N FU2▶Retry delay 1.0 27 27 1.0 sec Factory Default: 1.0 sec 1.0

This function is used to allow the inverter to reset itself for a selected number of times after FU2-27 elapses when inverter is tripped. If trip more than FU2-26 occur, inverter shuts down the output and displays a trip message. If the trip persists after FU2-27, number of trip is increased and Auto restart function is disabled. For example, FU2-26 [Retry number] is 1 with FU2-27 [Retry delay] set to 10 sec, if trip persists over 10 seconds and then is reset (cleared), Auto restart is not performed. Inverter may be tripped out in Motor Free-run status when this function is issued. To avoid it, use the speed search function.

Disabled when a low voltage (LV) trip, inverter disable (BX) or Arm short occurs.

as a fault occurs. If trip does not occur after restarting for 30 seconds, the inverter increases the retry number by one and maximum number is limited by the value set in FU2-26.

Op. Com	Past Status	Time of failur e	Failur e Reset	Current op. com. status	Restart status
	In on			FWD	RUN
Key	In op.			STOP	STOP
pad	In stan			FWD	RUN
	In stop	-	Fault Mode	STOP	STOP
	In on	Fault	Mode	On	RUN
ТВ	In op.			Off	STOP
IB			On	RUN	
	In stop			Off	STOP

FU2-31: Motor Volt

CAUTION

Particular atte/! on must be directed to this function as motor restarts automatically after the fault is reset. Otherwise, it may result in personal damage.

FU2-32: Number of Motor Pole FU2-33: Rated Motor Slip FU2-34: Rated Motor Current FU2-35: No Load Motor Current

If users do not set these values, inverter will use factory default values.

FU2⊳Motor Volt 31 6600[V]	31	6600
Factory Default: 6600	[V]	4
FU2▶ Pole number 32 4	32	4
Factory Default: 4		4

This is used to display the motor speed. If you set this value to 2, inverter will display 3600 rpm instead of 1800rpm at 60Hz output frequency. (See motor nameplate) When motor pole number is more than 4, select an inverter one rating higher than that of the motor because motor rated current is large.

This is used in 'Slip Compensation' control. If you set this value incorrectly, motor may stall during slip compensation control. (See motor nameplate)

This is very importance parameter that must be set correctly. This value is referenced in many of other inverter parameters. (See motor nameplate)

FU2 Noload	-Curr DA	35	30
Factory Default:	30 A		30

If this value is not right, check the current after operating in V/F mode without load connected and enter that current value.

Note: make sure to use correct value for FU2-35 [Motor No-load Current]. Otherwise, Sensorless performance may be degraded.

Note: Preset motor parameters may differ with user motors. In this case, enter the nameplate value of your motor to the corresponding parameters. If motor rating exceeds inverter capacity, unsatisfactory control performance may result because all other control parameters follow inverter capacity.

Motor rated slip freq [Hz]=(Rated input freq. [Hz] – (Motor rpm * P/120) P: Number of motor poles

(Ex) In the case of 60Hz, 4 pole, 1730 rpm motor Motor rated slip freq [Hz]= (60[Hz]-(1750[rpm] * 4/120)) =60[Hz]-58.67[Hz]=1.33[Hz]

FU2-38:	Gain	for	Motor	Speed	Disp	lay
---------	------	-----	-------	-------	------	-----

FU2▶ RPM factor 38 100 %	38	100
Factory Default: 100 %		100

This code is used to change the motor speed display to rotating speed (r/min) or mechanical speed (m/min). The display is calculated by following equation.

Rotating speed (r/min) = 120 * F / P, Where, F=Output frequency, P= motor pole number

Mechanical speed (m/min) = Rotating speed * Motor RPM Display Gain [FU2-38]

FU2-60: Control mode selection

FU2 Control mode 60 V/F	60	0
Factory Default: V/F		0

Selects the control mode of the inverter

FU2-40 setting	LCD Display	Description
	V/F	V/F Control
	Slip compensation	Slip compensation
		Sensorless vector
	Sensorless	control speed
		operation

V/F control:

This parameter controls the voltage/frequency ratio constant. It is recommended to use the torque boost function when a greater starting torque is required. Related function: FU1-47~48 [Torque boost]

Slip compensation:

This function is used to maintain constant motor speed. To keep the motor speed constant, the output frequency varies within the limit of slip frequency set in FU2-33 according to the load current. For example, when the motor speed decreases below the reference speed (frequency) due to a heavy load, the inverter increases the output frequency higher than the reference frequency to increase the motor speed. The inverter increases or decreases the output by delta frequency shown below.

Delta freq (Slip Comp. Freq.) = Motor Rated slip *		
(Output current - Motor No load current) / (Motor rated		
current - Motor No load current)		
Output freq = Reference freq + Delta freq		

Most suitable motor capacity corresponding inverter capacity is set as factory setting, but the following parameters can be adjusted if necessary.

FU2-31~35 [Motor related parameters for Slip Compensation]

Code	LCD Display	Description
FU2-31	Motor select	Select motor capacity
FU2-32	Pole number	Number of Motor Pole
FU2-33	Rated-Slip	Motor rated slip (Hz)
FU2-34	Rated-Curr	Motor rated current
		(rms)
FU2-35	Noload-Curr	Motor no load current
		(rms)

Note: Incorrectly set FU2-35 [Motor No-load Current] value may weaken the Sensorless control.

Sensorless (Sensorless vector speed control) operation:

Use it when high starting torque is needed at low speed load fluctuation is high rapid response is needed. To use this function, set FU2-31~35 [Motor parameters] and FU2-40 [Control mode select] properly.

Set "Yes" in FU2-61 [Auto tuning] first before using this control.

Code	LCD display	Parameter
FU2-42	RS	Stator resistance
FU2-43	Lsigma	Leakage inductance
FU2-45	SL P-gain	Sensorless P gain
FU2-46	SL I-gain	Sensorless I gain

Related parameters: FU2-42~43, FU2-45~46

[Guide for Optimal Use of Sensorless Vector Control]

For optimal use of the sensorless control, the following conditions should be met. If one of the following conditions is not satisfied, the inverter may malfunction due to insufficient torque, irregular rotation, or excessive motor noise. In this case, it is recommended to use V/F control.

- Use a motor capacity that is equal to or one horsepower level lower than the inverter capacity.
- Set appropriate values for the electronic thermal function, the overload limit function and the stall prevention. The set values should exceed 100% of the rated motor current.
- When DRV-04 [Frequency Mode] is set to "V1", "I", or "V1+I", wiring should be conducted to eliminate potential noise influence with the frequency reference.
- Pole number of the motor should be 2 pole, 4 pole, or 6 pole.
- The distance between the inverter and the motor should not exceed regulation distance

[Cautions on Sensorless Vector Control]

- Forced-cooling should be used for the motor when the average operating speed is under 20Hz and more than 100% load is used constantly.
- Motor may rotate 0.5% faster than the maximum speed if the motor temperature does not reach normal operating temperature.
- Utilize the auto-tuning feature when the motor reaches normal temperature (average temperature where the motor normally operates).
- Overcurrent trip may occur if FU2-43 [Stator resistance] is set twice more than auto-tuned value.

[Detail Tuning Method for Sensorless Vector Control]

- Adjust the FU2–35 [No Load Motor Current (RMS)] value larger or smaller by 5% units if the current is larger or smaller than that of V/F control under small load.
- Adjust the FU2–33 [Rated Motor Slip] value larger or smaller by 5% units if the speed is faster or slower than that of V/F control with rated load.

FU2-42~44: Auto tuning

			_	
FU2►	Auto tu	ning	10	NO
42	NO		42	NU
Fastar	v Dafaulti	NO	•	NO
Factor	y Default:	NO		NU

All of the motor parameters can be tuned by setting "YES (1)". Auto tuning is deactivated when "No (0)" is selected.

The Auto Tuning function automatically measures the motor parameters, e.g., stator resistance, %Rs, leakage inductance, %Lsigma, required for the control so that the control method selected in the FU2-40 [Select Control Mode] can perform properly.

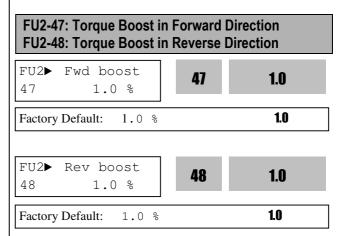
Since the %impedance concept is applied instead of the [Ohm, mH] expression of conventional inverters, the tabulation according to the motor capacity setting is not required. Though a little error is included, the average motor constant is applied as the default value. It is recommended to perform Auto Tuning to improve the performance of the Sensorless mode.

[Parameter display based on Inverter capacities]

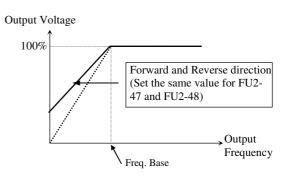
Motor parameters		
Lsigma		
X.X%		
초기값(12.0%)		

FU2-45: P Gain for Sensorless Control FU2-46: I Gain for Sensorless Control

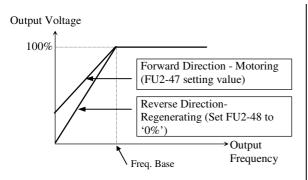
FU2▶ SL P-gain 45 600	45	600
Factory Default: 600		600

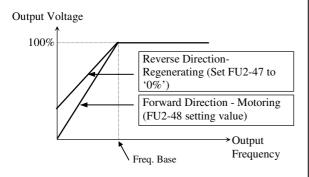

SL P-gain is the proportional gain of speed controller. If this value is set high, you can get fast speed response characteristic. However, if this value is set too high, the steady state characteristics may become unstable. Set the proper value for your application.

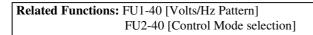
FU2▶ SL I-gain 46 4	46	4
Factory Default: 4		4

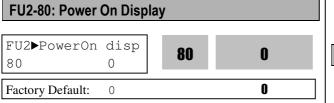

SL I-gain is the integral gain of speed controller. If this value is set low, you can get better transient response characteristic and steady state characteristic. However, if this value is set too low, there may be an overshoot in speed control.

Note: The response time of a system is affected by the load inertia.


> The initial value is set up. Unless specially required, the set up value supports proper performance of the Sensorless mode.


This function is used to increase the starting torque at low speed by increasing the output voltage of the inverter. If the boost value is set too high than required, it may cause the motor flux to saturate, causing over-current trip. Increase the boost value when there is excessive distance between inverter and motor.


[Constant Torque Loads: Conveyor, Moving Equip. etc.]



[Ascending and Descending Loads: Parking, Hoist etc.]

[Ascending and Descending Loads: Parking, Hoist etc.]

This code selects the parameter to be displayed first on keypad (DRV-00) when the power is turned on.

Setting Range	Description
0	DRV-00 [Command Frequency]
1	DRV-01 [Acceleration Time]
2	DRV-02 [Deceleration Time]
3	DRV-03 [Drive Mode]
4	DRV-04 [Frequency Mode]
5	DRV-05 [Step Frequency 1]
6	DRV-06 [Step Frequency 2]
7	DRV-07 [Step Frequency 3]
8	DRV-08 [Output Current]
9	DRV-09 [Motor Speed]

10	DRV-10 [DC link Voltage]
11	DRV-11 [User Display selected in FU2-81]
12	DRV-12 [Fault Display]

81

FU2-81: User display selection

0

FU2►	User	Disp
81	Vol	ltage

0	

0

Factory Default:

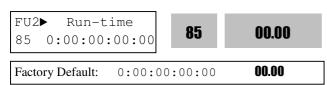
Related Function: DRV-11 [User display selection] Select the display as shown below.

FU2-81	Name	Description
Voltage	Output	Display output voltage of the inverter
voltage	voltage	(Factory setting)
Watt	Output	Display output power of the inverter
vv att	power	

Note: The displayed value of "Watt" is approximate value.

FU2-82: Software Version

FU2▶ S 82	W Version Ver X.X	82	X.X
Factory D	Default: Ver. X	K.X	X.X

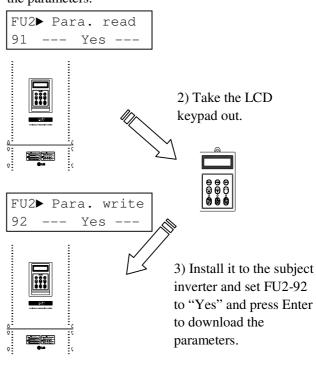

Displays the software version. This will vary depending on software version integrated.

FU2-83, 84, 85: Las	st Trip Time, On-ti	me, Run-time
FU2▶LastTripT 83 0:00:00:0	'ime 0:00 83	00.00
Factory Default: 0):00:00:00:00	00.00

Displays time elapsed after last trip occurs. Note: it is reset automatically upon trip occurs.

FU2► On-ti 84 0:00:00	me :00:00	84	00.00
Factory Default:	0:00:00	0:00:00	00.00

Displays time after Power is turned ON. Note: it is not reset automatically.


Displays time for inverter to be run. Note: it is not reset automatically. FU1-83~85 display→ X : XX : XX : XX (Year:Month:Day:Hour:Minute)

FU2-91: Parameter Read FU2-92: Parameter Write		
FU2▶ Para. read 91 No	91	NO
Factory Default: No		NO
FU2▶ Para. write 92 No	92	NO
Factory Default: No		NO

This is useful for programming multiple inverters to have same parameter settings. The LCD keypad can read (upload) the parameter settings from the inverter memory and can write (download) them to other inverters. This function is only available with LCD keypad.

Note: Perform FU2-95 [Parameter save] first before FU2-91 [Parameter Read].

1) Set FU2-91 to "Yes" and press Enter key to read the parameters.

FU2-93: Parameter Initialize			
FU2▶ Para. init 93 No	93	0	
Factory Default: NO		0	

This is used to initialize parameters back to the factory default values. Each parameter group can be initialized separately.

Note: Set FU2-40~46 [Motor parameters] again after this function.

Note: Parameter initialize cannot clear trip information. Instead, use FU2-06 [Erase trips].

Setting Range	Description	
No	Displayed after initializing is finished.	
All Groups	All parameter groups initialized to factory default value.	
DRV	Only Drive group initialized.	
FU1	Only Function 1 group initialized.	
FU2	Only Function 2 group initialized.	
I/O	Only Input/Output group initialized.	
CEL	Only External group initialized.	

FU2-94: Parameter Lock

FU2⊳ Para. lock 94 0	94	0
Factory Default: 0		0

This function is used to lock the parameters from being changed. When the parameters are locked, the display arrow changes from solid to dashed line. The lock and unlock code is '12'.

FU2-95: Parameter Save (Manual Save)			
FU2▶ P 95	ara. save No	95	0
Factory Default: 0 0			

When FU2-95 is set to "Yes", the changed parameter value is saved into memory.

6.4 Input/Output Group [I/O]

I/O-00: Jump to Desired Code

I/O► Jump code 00 1

Factory Default: 1

Jumping directly to any parameter code can be accomplished by entering the desired code number. This code is available only with LCD keypad.

I/O-01 ~ I/O-05: Analog Voltage Input (V1) Signal Adjustment

This is used to adjust the analog voltage input signal when the frequency is referenced by the control terminal 'V1'. This function is applied when DRV-04 is set to 'V1' or 'V1+I'. Reference frequency versus Analog voltage input curve can be made by four parameters of I/O-02 ~ I/O-04.

Code	Factory Default	Setting Range
I/O-01	10 [msec]	0~9999 [msec]
I/O-02	0 [V]	0 ~ 12 [V]
1/0.02	0 [Hz]	0 ~ Max Freq
I/O-03	0 [**]	0 ~ 100.00 [**]
I/O-04	10 [V]	0 ~ 12 [V]
1/0.05	60 [Hz]	0 ~ Max Freq
I/O-05	0 [**]	0 ~ 100.00 [**]

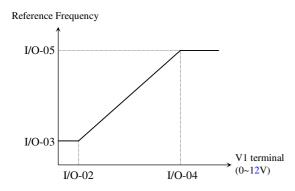
I/O► V1 filter 01 10 ms	01	10
Factory Default: 10 ms		10

This is the filtering time constant for V1 signal input. Increase this value if the V1 signal is affected by noise causing unstable operation of the inverter. Increasing this value makes response time slower.

I/O► V1 volt x1 02 0.00 V	02	0.00
Factory Default: 0.00	V	0.00

This is the minimum voltage of the V1 input at which inverter outputs minimum frequency.

I/O► V1 freq y1 03 0.00 Hz	03	0.00
Factory Default: 0.00	Hz	0.00


This is the inverter output minimum frequency (or target value) when there is the minimum voltage (I/O-02) on the V1 terminal.

I/O► V1 volt x2 04 0.00 V	04	10.00
Factory Default: 10.00	V	10.00

This is the maximum voltage of the V1 input at which inverter outputs maximum frequency.

I/O► V1 freq 05 60.00	-	05	60.00
Factory Default:	60.00	Hz	60.00

This is the inverter output maximum frequency (or target value) when there is the maximum voltage (I/O-03) on the V1 terminal.

[Reference Frequency vs Analog Voltage Input (0 to 12V)]

I/O-06 ~ I/O-10: Analog Current Input (I) Signal Adjustment

This is used to adjust the analog current input signal when the terminal 'I' references the frequency. This function is applied when DRV-04 is set to 'I', or V1+I'. Reference frequency versus Analog current input curve can be made by four parameters of I/O-07 ~ I/O-10. User-selected Unit appears in [**]. To change the unit, more than one in APP-02 [PID operation selection] and APP-80 [Ext. PID operation selection] is set to "Yes" and then select the desired unit Percent, Bar, mBar, kPa, and Pa among in I/O-87 [I user unit selection].

Code	Default	Setting
I/O-06	10 [msec]	0~9999 [msec]
I/O-07	4 [mA]	0 ~ 20 [mA]
I/O-08	0 []]_]	0 ~ Max freq
1/0-08	0 [Hz]	0~100.00[**]
I/O-09	20[mA]	0 ~ 20 [mA]
1/0 10	(0[11-]	0 ~ Max freq
I/O-10	60[Hz]	0~100.00[**]

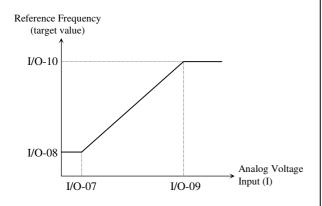
I/O► 06	I filt 10		06	10
Factory	v Default:	10 ms		10

This is the filtering time constant for 'I' signal input. If the 'I' signal is affected by noise causing unstable operation of the inverter, increase this value. Increasing this value makes response time slower.

I/O► 07	I curr 4.00	x1) mA		07	4.00
Factory	Default:	4.00	mA		4.00

This is the minimum current of the 'I' input at which inverter outputs minimum frequency.

I/O► 08	I frec	y1 O Hz		08	0.00
Factory	Default:	0.00	Ηz		0.00


This is the inverter output minimum frequency (or target value) when there is minimum current (I/O-07) input on the 'I' terminal.

I/O► 09	I curr 20.00		09	20.00
Factory	Default:	20.00	mA	20.00

This is the maximum current of the 'I' input at which inverter outputs maximum frequency.

I/O► 10	I freq 60.00	-	10	60.00
Factory	Default:	60.00	Hz	60.00

This is the inverter output maximum frequency (or target value) when there is the maximum current input (I/O-09) on the 'I' terminal.

[Reference Frequency vs Analog Current Input (4 to 20mA)]

I/O-11, 12, 13: Criteria fo	or Analog I	nput Signal Loss
I/O► Wire broken 11 None	11	0
Factory Default: None		0
I/O►Lost command 12 None	12	0
Factory Default: None		0
I/O► Time out 13 1.0 sec	13	1.0
Factory Default: 1.0 s	ec	1.0

This is to set the criteria for analog input signal loss when DRV-04 [Frequency Mode] is set to 'V1', 'V1S' 'I', 'V1+I' or 'Pulse'. However, for "V1+I", main speed is V1 so inverter does not respond when I signal is missing. Following table shows the setting value.

Setting Range	Description
None	Disabled.
half of x1	The inverter determines that the frequency reference is lost when the analog input signal is less than half of the minimum set value (I/O-02, I/O-07).
below x1	The inverter determines that the frequency reference is lost when the analog input signal is less than the minimum set value (I/O-02 or I/O-07).

I/O-12 [Operating method after loss of analog freq. command] selects the operation after determining the loss of frequency reference.

The following table shows the selection in I/O-12.

Setting Range	Description
None	Continuous operating after loss of frequency reference.
FreeRun	Inverter cuts off its output after determining loss of frequency reference.
Stop	Inverter stops by its Decel pattern and Decel time after determining loss of frequency reference.

When the analog input signal is lost, inverter displays the following table.

Setting Range	Description
LOV	Loss of analog input signal, V1
LOI	Loss of analog input signal, I
LOA	Loss of pulse reference frequency

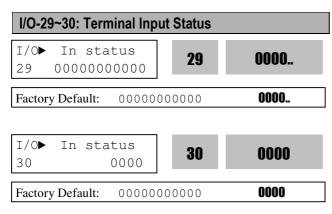
I/O-13 [Time out] sets the waiting time before determining the loss of reference signal. Inverter waits to determine the loss of a reference signal until time-out.

Reference frequency can be viewed as Rpm when DRV-16 [Hz/Rpm Display] is set to "rpm".

I/O-14~28: Programmak 'M1, M2, M3', 'M4', 'M5'	_	•
I/O► MO define 14 Speed-L	14	0
Factory Default: RST		0
I/O► M1 define 15 Ext.Trip1	15	9
Factory Default: Speed	-M	1
I/O► M2 define 16 FX	16	18
Factory Default: Speed	-H	2

Programmable Digital input terminals can be defined for many different applications. The following table shows the various definitions for them.

Code	LCD display	Default	Setting
I/O-14	M0 define	RST	
I/O-15	M1 define	Ext Trip1	
I/O-16	M2 define	FX	
I/O-17	M3 define	RX	
I/O-18	M4 define	Trans. OHT	
I/O-19	M5 define	Fan Trip	See the
I/O-20	M6 define	High Voltage	table
I/O-21	M7 define	Run_Enable	below
I/O-22	M8 define	Control LV	
I/O-23	M9 define	None	
I/O-24	M10 define	None	
I/O-25	M11 define	None	
I/O-26	M12 define	None	


Chapter 6 – PARAMETER DESCRIPTION

Code	LCD display	Default	Setting
I/O-27	M13 define	None	
I/O-28	M14 define	BX	

Note: BX is Emergency Stop key. Parameter setting is disabled when BX is ON.

Selection of M0, M1, M2 M3, M4, M5, M6, M7, M8, M9, M10, M11, M12, M13, M14 in I/O-14~28

Setting Range	Description
Speed-L	Multi-step speed - Low
Speed-M	Multi-step speed - Mid
Speed-H	Multi-step speed - High
XCEL-L	Multi-accel/decel - Low
XCEL-M	Multi-accel/decel - Mid
XCEL-H	Multi-accel/decel - High
Up	Up drive
Down	Down drive
3-Wire	3 wire operation
Ext Trip1	External trip1
Ext Trip2	External trip2
LOC/REM	Exchange between Drv-03, 04 and Drv-91, 92
Analog hold	Hold the analog input signal
XCEL stop	Disable Accel and Decel
Speed-X	Additional Step frequency selection
Reset	Reset
BX	BX (Emergency stop)
JOG	Jog
FX	Forward Run/Stop
RX	Reverse Run/Stop
Ana Change	Analog input Switch-over
Door Open	Panel Door Open Trip
Trans.OHW	Transformer OverHeat Warning
Trans.OHT	Transformer OverHeat Trip
Motor OHT	Motor OverHeat Trip
Fan Trip	Fan Trip
High Voltage	High Voltage Input
Run Enable	Run Enable Selection
None	Disabled
1 tone	121500100

I/O-29 provides the information on the 11 less significant bits and I/O-30 provides information on the more significant bits.

[LCD Keypad Display]

Input T/M	M10 10 bit	M9 9 bit	8	7	M6 6 bit	5	M4 4 bit	M3 3 bit	M2 2 bit	M1 1 bit	M0 0 bit
OFF status	0	0	0	0	0	0	0	0	0	0	0
ON status	1	1	1	1	1	1	1	1	1	1	1

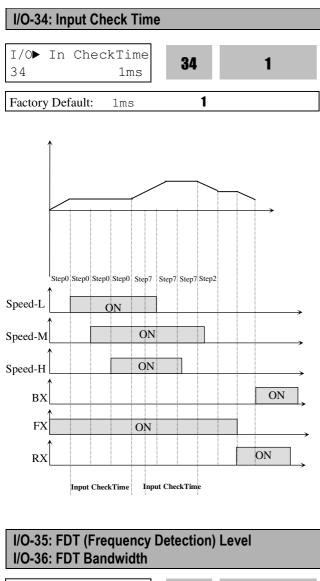
Immut	M14	M13	M12	M11	
Input T/M	14	13	12	11	
1/1/1	bit	bit	bit	bit	
OFF	0	0	0	0	
status	U	0	0	0	
ON	1	1	1	1	
status	1	1	1	1	

I/O-31: Programmable Digital Input Terminal filter time constant

I/O► Ti Filt Num 31 15 ms	31	15
Factory Default: 15 ms		15

Set the responsiveness of input terminals M1-M14. It is effective when noise level is high. Increasing this will make response time slower and decreasing faster.

Note: Set it higher than 100msec at Invertercommercial line exchange operation. This will be useful to prevent chattering and momentary malfunction.


I/O-32~33: Normal Open/Close Selection I/O► Jog freq 30 10.00 Hz Factory Default: 10.00 Hz

This code sets the jog frequency. See I/O-31~42, DRV-05~ 07 for details.

T4	M10	M9	M8	M7	M6	M5	M4	M3	M2	M1	MO
Input T/M	10	9	8	7	6	5	4	3	2	1	0
1/1/1	bit	bit	bit	bit	bit	bit	bit	bit	bit	bit	bit
NO status	0	0	0	0	0	0	0	0	0	0	0
NC status	1	1	1	1	1	1	1	1	1	1	1

Input T/M	M14 14 bit	M13 13 bit	M12 12 bit	M11 11 bit
NO	0	0	0	0
status	0	0	0	0
NC	1	1	1	1
status	1	1	1	1

I/O 32 selects the input contact type of the 11 less significant bits between Normal Open(A contact) or Normal Close(B contact). The 4 more significant bits select the input contact type at I/O 33 between Normal Open(A contact) or Normal Close(B contact).

I/O► FDT fr 35 30.0	- 39	30.00
Factory Default:	30.00 Hz	30.00

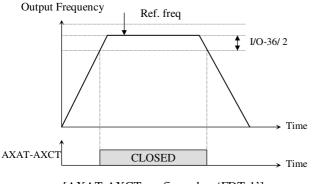
I/O►	FDT ba	nd	36	10.00
36	10.0	0 Hz	UU	10.00
Factory	/ Default:	10.00	Hz	10.00

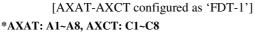
These functions are used in I/O-37-44

[Programmable Digital Auxiliary Output Terminal]. See [FDT-#] in I/O-37~44.

Chapter 6 – PARAMETER DESCRIPTION

	7~44: Programmabl ut mode 1, 2, 3, 4, `)	-	
I/0► 37	Aux model Ready	37	Ready
Factor	y Default: None		Ready

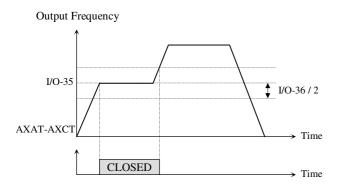

The auxiliary contact works (Close) when the defined condition has occurred.


Setting Range	Description
None	None
FDT-1	Output frequency arrival detection
FDT-2	Specific frequency level detection
FDT-3	Frequency detection with pulse
FDT-4	Frequency detection 1 with contact closure
FDT-5	Frequency detection 2 with contact closure
OL	Overload detection
IOL	Inverter overload detection
Stall	Stalling
OV	Over voltage detection
LV	Low voltage detection
OH	Inverter overheat detection
Lost Command	Lost command detection
Run	Inverter running detection
Stop	Inverter stop detection
Steady	Steady speed detection
Ssearch	Speed search mode detection
Ready	Inverter ready detection
Warning	Warning
FAN RUN	FAN RUN
NORMAL	Drive enable(CAN Mode)
OCT	Over Current Trip
Cell ByPass	Bypass state
Run_MV	Run signal during Bypass state

[FDT-1]

When the output frequency reaches the reference frequency (target frequency), AXAT-AXCT terminal is CLOSED.

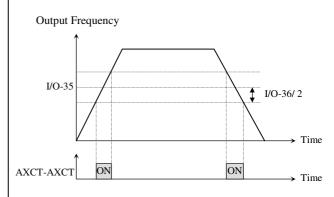
Detecting Condition: Value (Ref. Freq-Output Freq)<= Freq Detection Bandwidth (I/O-36)/2



[FDT-2]

AXAT-AXCT is CLOSED when the reference frequency is in I/O-36 [FDT Bandwidth] centered on I/O-35 [FDT Frequency], and the output frequency reaches I/O-36 centered on I/O-35. **Detecting Condition: FDT-1 condition & (Value**

(Output Freq- Freq Detection)<= Freq Detection Bandwidth (I/O-36)/2)



[FDT-3]

AXAT-AXCT is CLOSED when the output frequency reaches the band centered on the FDT frequency. The output is OPENED when the output frequency goes outside the FDT bandwidth centered on the FDT frequency.

Detecting Condition: Value (Freq Detection (I/O-35)-Output Freq)<= Freq Detection Bandwidth (I/O-36)/2


[AXAT-AXCT configured as 'FDT-3']

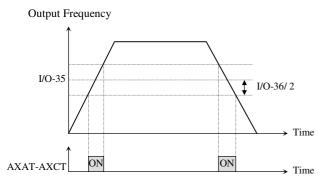
[FDT-4]

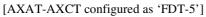
AXAT-AXCT is CLOSED when the output frequency reaches the FDT frequency. The output is OPENED when the output frequency goes below the FDT bandwidth centered on the FDT frequency.

Detecting Condition:

During Accel: Output freq >= Freq Detection During Decel: Output freq > (Freq Detection (I/O-35) -Freq Detection Bandwidth (I/O-36)/2)

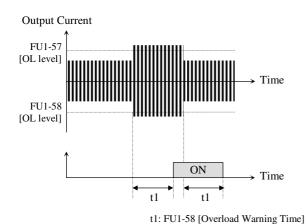
[AXAT-AXCT configured as 'FDT-4']


[FDT-5]

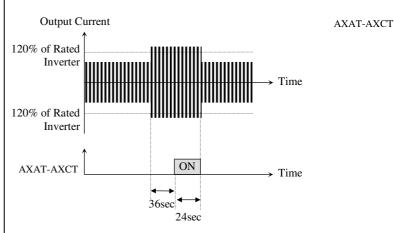

This is the inverted output of [FDT-4].

Detecting Condition:

During Accel: Output freq >= Freq Detection During Decel: Output freq > (Freq Detection (I/O-35) -

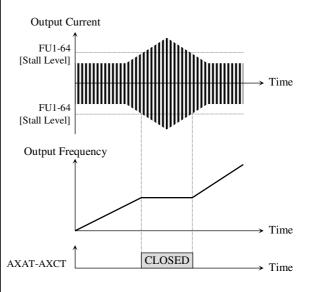

Freq Detection Bandwidth (I/O-36)/2)

[OL]


AXAT-AXCT is CLOSED when the output current has reached the FU1-57 [Overload Warning Level] for the FU1-58 [Overload Warning Time].

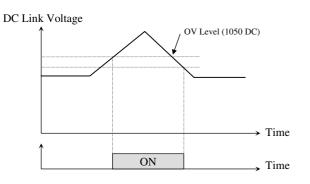
[AXAT-AXCT configured as 'OL']

[IOL]


AX-CX is CLOSED when the output current is above the 120% of rated inverter current for 60 seconds. If this situation is continued for one minute, the inverter will cut off its output and displays 'IOL' (Inverter overload) Trip. See the nameplate for the rated inverter current.

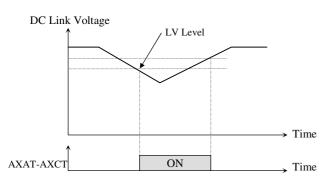
[AXAT-AXCT configured as 'IOL']

[Stall]


AXAT-AXCT is CLOSED when the inverter is on the stall prevention mode.

[AXAT-AXCT configured as 'Stall']

[OV]


AXAT-AXCT is CLOSED when the DC link voltage is above the Over-voltage level.

[AXAT-AXCT configured as 'OV']

[LV]

AXAT-AXCT is CLOSED when the DC link voltage is below the Low-voltage level.

[OH]

AXAT-AXCT is CLOSED when the heat sink of the inverter is above the reference level.

[Lost Command]

AXAT-AXCT is CLOSED when frequency reference is lost.

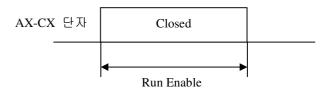
[Run]

AXAT-AXCT is CLOSED when the inverter is running.

[Stop]

AXAT-AXCT is CLOSED when the inverter is stopped.

[Steady]


AXAT-AXCT is CLOSED when the inverter is running at constant speed.

[Speedsearch]

AXAT-AXCT is CLOSED during the inverter is speed searching.

[Ready]

AXAT-AXCT is CLOSED when the inverter is ready to run.

[Warning]

AXAT-AXCT is CLOSED when the inverter is Transformer Overheat Warning.

[FAN RUN]

AXAT-AXCT is CLOSED during the inverter is High Voltage(I/O 15 ~ 28) ON and Ready status.

[Normal]

AXAT-AXCT is CLOSED during the inverter is Run enable status.

[OCT]

AXAT-AXCT is CLOSED during the inverter is Over Current Trip status.

I/O-45: Terminal Output Status

Out status 00000000000	45	0000

Factory Default: 0000000000

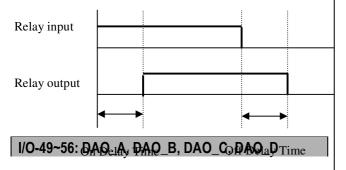
0000..

Input	30AT ~30Ct	AUX 4	AUX 4	AUX 4	AUX 4	AUX 4	AUX 3	AUX 2	AUX 1
T/M	8 Bit	7	6	5	4	3	2	1	0
	0 DIL	Bit							
OFF	0	0	0	0	0	0	0	0	0
status	0	0	U	U	0	0	0	0	0
ON	1	1	1	1	1	1	1	1	1
status	1	1	1	1	1	1	1	1	1

I/O-46: Fault Output Relay (30AT,30BT,30CT)

I/O► Relay mode 46 10	46	10
Factory Default: 10)	10

This function is used to allow the fault output relay to operate when a fault occurs. The output relay terminal is 30AT, 30BT, 30CT where 30AT-30CT is a normally open contact and 30BT-30CT is a normally closed contact.

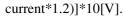

Setting	Description
0	Fault output relay does not operate
	at 'Low voltage' trip.
1	Fault output relay operates at 'Low voltage' trip.
0	Fault output relay does not operate at any fault.
1	Fault output relay operates at any fault except 'Low voltage' and 'BX' (inverter disable) fault.
	0

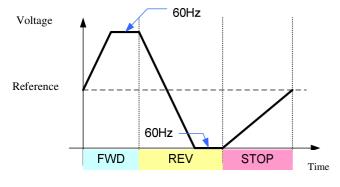
When several faults occurred at the same time, Bit 1 has the first priority. (Active order: Bit 0->Bit 1)

I/O-47~48: Fault Relay On/Off Delay Time

I/O► Relay On 47 0.0 sec 47	0.0
Factory Default: 0.0 sec	0.0
I/O► Relay Off 48 0.0 sec 48	0.0
Factory Default: 0.0 sec	0.0

Fault relay output is delayed for the set time and it is turned ON/OFF after the set time.




Terminal		
I/O► SDA A read 49 NONE	49	NONE
Factory Default: 0000		0000
I/O► SDA A Shift 50 100%	50	100
Factory Default: 10		10
I/O► SDA B read 51 NONE	51	NONE
Factory Default: 0000		0
I/O► SDA B Shift 52 100%	52	100
Factory Default: 10		10
I/O► SDA 1 read 53 None	53	0
Factory Default: None		0
I/O► SDA 1 Shift 54 10	54	10
Factory Default: 10		10
I/O► SDA 2 read 55 None	55	0
Factory Default: None		0
I/O► SDA 2 Shift 56 10	56	10
Factory Default: 10		10

The 4 kinds of the inverter information can be monitored via the SDA A, SDA B, SDA1, and SDA2 terminals. Selecting desired item in this code will output analog voltage through the SDA A, SDA B, SDA 1, and SDA 2 terminals. The output voltage of the SDA A, SDA B, SDA 1, and SDA 2 terminals is 0~10V. In case of graduation error when connecting with a meter, the error can be corrected using the SDA A, SDA B, SDA 1, SDA 2 terminal shift. The output voltage of the SDA A and SDA B terminals is analog 0~10V. Since the reference voltage is 0V, (-) value cannot be expressed. The output voltage of the SDA1 and SDA 2 terminals is analog 0~10V. Since the reference voltage is 5V, (-) values can be expressed. If the factory setting of the SDA A and SDA B is 0000, the output of the SDA A is at the inverter output frequency by Output voltage = (inverter

output frequency/MaxFreq) * 10[V]. SDA B outputs current during operation and its output voltage is

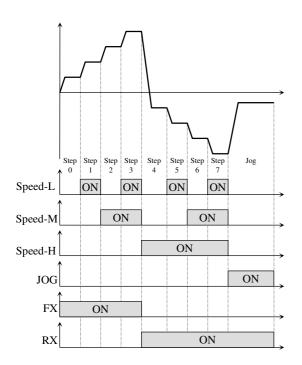
[inverter output current/(rated inverter

I/O-57~69: JOG and Step Frequency4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

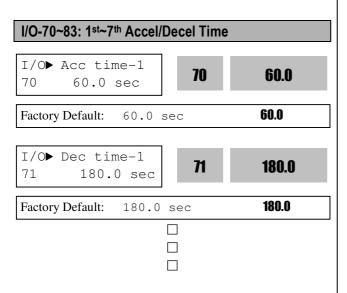
I/O► Jog Freq 57 10.00 Hz 57	10.00
Factory Default: 40.00 Hz	10.00
I/O► Step freq-4 58 40.00 Hz 58	40.00
Factory Default: 40.00 Hz	40.00
I/O► Step freq-15 69 30.00 Hz 69	30.00
Factory Default: 30.00 Hz	30.00

The step frequencies are determined by the combination of M1, M2 and M3 terminals as shown in the following table.

Code	Step speed Frequency	Spd- X	Spd- H	Spd- M	Spd- L	JO G
DRV- 00	S. Freq-0 (Zero Spd)	0	0	0	0	0
I/O-57	Jog Freq	Х	Х	Х	Х	1
DRV- 05	S. Freq-1 (Spd 1)	0	0	0	1	0
DRV- 06	S. Freq-2 (Spd 2)	0	0	1	0	0
DRV- 07	S. Freq-3 (Spd-3)	0	0	1	1	0
I/O-58	S. Freq-4 (Spd-4)	0	1	0	0	0
I/O-59	S. Freq-5 (Spd-5)	0	1	0	1	0
I/O-60	S. Freq-6 (Spd-6)	0	1	1	0	0
I/O-61	S. Freq-7 (Spd-7)	0	1	1	1	0
I/O-62	S. Freq-8 (Spd-8)	1	0	0	0	0
I/O-63	S. Freq-9 (Spd-9)	1	0	0	1	0
I/O-64	S. Freq-10 (Spd-10)	1	0	1	0	0
I/O-65	S. Freq-11 (Spd-11)	1	0	1	1	0
I/O-66	S. Freq-12 (Spd-12)	1	1	0	0	0
I/O-67	S. Freq-13 (Spd-13)	1	1	0	1	0
I/O-68	S. Freq-14 (Spd-14)	1	1	1	0	0
I/O-69	S. Freq-15 (Spd-15)	1	1	1	1	0


0: OFF, 1: ON, X: Ignored (Jog first)

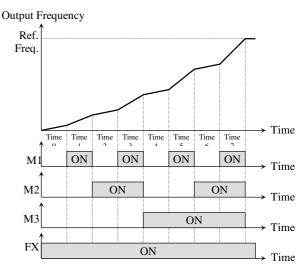
Speed-L: Lowest bit in Multi-Step speed input Speed-M: Middle bit in Multi-Step speed input Speed-H: High bit in Multi-Step speed input Speed-X: Highest bit in Multi-Step speed input Note 1: 'Speed 0' is set in DRV-04.


DRV-04 Data	DRV-00 Speed 0	Freq source
Keypad-1	Digital Freq Ref	Keypad
Keypad-2	Digital Freq Ref	Keypad
V1	Analog Freq Ref.	Terminal
Ι	Analog Freq Ref.	Terminal
V1+I	Analog Freq Ref.	Terminal
Pulse	Pulse Freq Ref.	Terminal
Int. 485	Communication	Terminal

Setting example
 M1=Speed-L, M2=Speed-M, M3=Speed-H, M4=Jog
 M5=BX, M7=FX, M8=RX

Step speed is to be set in DRV-05~06, I/O-37~69

[Multi-Step Frequency Operation]


[XCEL-L, XCEL-M, XCEL-H]

By setting M1, M2 and M3 terminals to 'XCEL-L', 'XCEL-M' and 'XCEL-H' respectively, up to 8 different Accel and Decel times can be used. The Accel/Decel time is set in DRV-01 ~ DRV-02 and I/O-70 ~ I/O-83.

The Accel/Decel time is determined by the combination of M1, M2 and M3 terminals as shown in the following table.

Parameter Code	Accel/Decel Time	XCEL- H (M3)	XCEL- M (M2)	XCEL- L (M1)
DRV-01	Accel Time-0	0	0	0
DRV-02	Decel Time-0	0	0	0
I/O-70	Accel Time-1	0	0	1
I/O-71	Decel Time-1	0	0	1
I/O-72	Accel Time-2	0	1	0
I/O-73	Decel Time-2	0	1	0
I/O-74	Accel Time-3	0		
I/O-75	Decel Time-3	0	1	1
I/O-76	Accel Time-4	1	0	0
I/O-77	Decel Time-4	1	0	0
I/O-78	Accel Time-5	1	0	1
I/O-79	Decel Time-5	1	0	1
I/O-80	Accel Time-6	1	1	0
I/O-81	Decel Time-6	1	1	0
I/O-82	Accel Time-7	1	1	1
I/O-83	Decel Time-7	1	1	1

0: OFF, 1: ON

[Multi-Accel/Decel Time Operation]

nmand so	etting via pulse
84	1
UT	•
	1
05	10
OIJ	10
:	10
00	40
88	10
	10.0
IZ.	10.0
89	60.00
Iz	60.00
	84 85 88 88 2 2

Set the frequency command from control terminal EN_AT, EN_BT. It is settable when DRV-04 [Frequency mode] is set to "Pulse".

Code	Factory setting	Setting range
I/O-84	(A)	(A), (A)+(B)
I/O-85	10 [msec]	0 ~ 9999 [msec]
I/O-86	0 [KHz]	0 ~ 10 [KHz]
I/O-87	0 [Hz]	$0 \sim Max$ frequency
	0 [**]	0 ~ 100.00[**]
I/O-88	10 [KHz]	10 ~ 100 [KHz]
I/O-89	60 [Hz]	$0 \sim Max$ frequency
1/0-89	0 [**]	0~100.00[**]

Note: Do not apply pulse to both EN_AT, EN_BT terminals when I/O-84 set value is A.

Pulse information

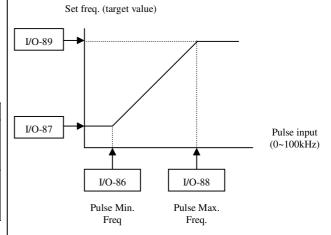
T/N	Default	Setting range
EN_AT	A Pulse Input	High: +3~+12V Max Low: +2.5V Max Max Input Freq.: 100KHz
EN_BT	B Pulse Input	High: +3~+12V Max Low: +2.5V Max Max Input Freq.: 100KHz

Note: Use Open Collector type encoder for Pulse

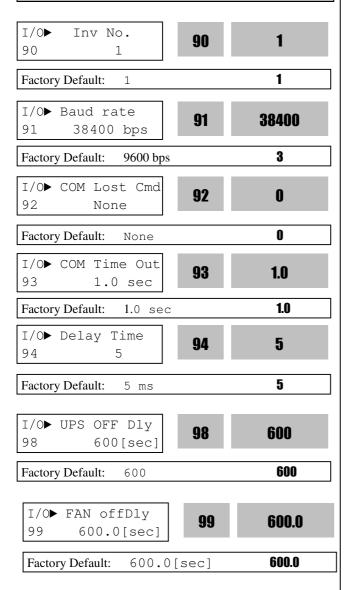
input with Max. 12 V Power supply.

Code	LCD Display	Description
I/O-84	P Pulse Set	Set one of the frequency setting input method either A or A+B.
I/O-85	P filter	Set the embedded filter constant for P Pulse input.
I/O-86	P Pulse x1	Set the Minimum frequency for P Pulse input.
I/O-87	P freq y1	Set the output frequency corresponding to P Pulse input minimum frequency (I/O-86).
1/0-87	P [**] y1	Set the target value corresponding to P Pulse input minimum frequency (I/O-86)
I/O-88	P Pulse x2	Set the Maximum frequency for P Pulse input.
I/O-89	P freq y2	Set the output frequency corresponding to P Pulse input Maximum frequency (I/O-15).
1/0-89	P [**] y2	Set the target value corresponding to P Pulse input maximum frequency (I/O-15)

Note: Increase filter time constant when the noise interference deteriorates stable operation. Increasing that makes response time slower.


Note: When setting P Pulse Input Min/Max Freq. via motor encoder, set the value for encoder pulse as the following;

EX) To give 60Hz (1800 rpm) command from 1000 Pulse encoder

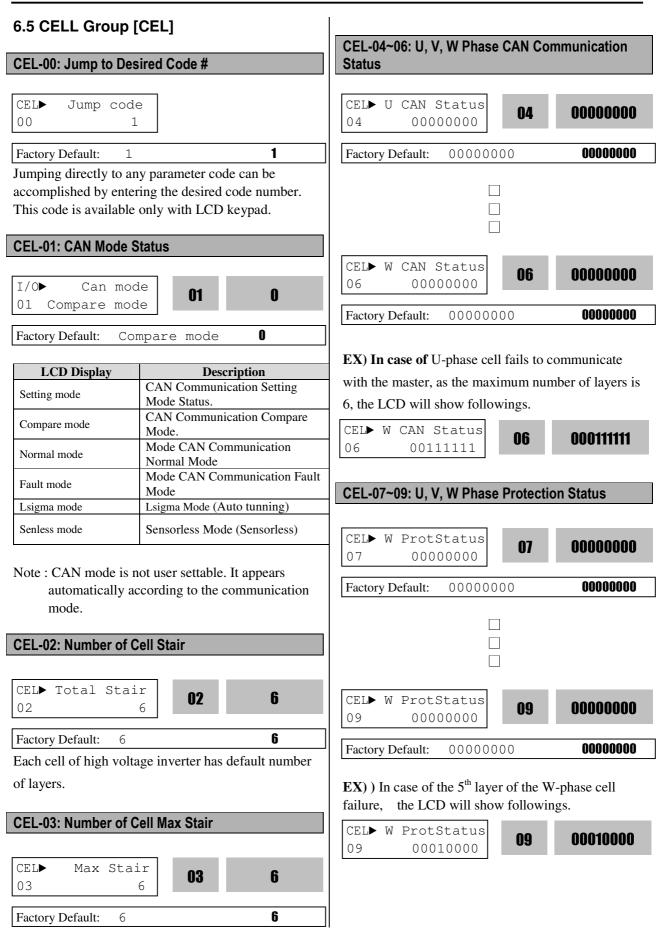

I/O-88 [Max Freq of P Pulse Input]=Rated rpm/60 sec * Number of Encoder Pulse

= 1800 [rpm]/60[sec]*1000=3000Hz,

Therefore, set I/O-88 to 3.0KHz

I/O-90, 91: Inverter Number, Baud Rate I/O-92, 93: Operation method when communication signal is lost, Communication Time Out I/O-94: Communication Delay Time I/O-99: FAN off Delay Time

I/O-90 [Inverter Number] sets the inverter ID to perform RS485 communication with PC. I/O-91 [Baud rate] sets the communication speed. To make the multi-drop system, connect the terminal S+ and S- to CM.


I/O-92, 93 are only displayed when DRV-03 [Drive mode] or DRV-04 [Frequency mode] is set to "Int. 485".

In this case, the LCD display shows "LOR". I/O-93 [Communication time out] determines whether the signal is lost. Three types of operating method described on the table below are settable after loss of communication signal.

Setting Range	Description
None	Continuous operation after loss of communication signal.
FreeRun	Inverter cuts off its output after determining loss of communication signal.
Stop	Inverter stops by its Decel pattern and Decel time after determining communication signal.

I/O-94 setting is for communication using 232-485 converter. It should be set properly according to 232-485 converter specification.

I/O-95 setting is for FAN off time after inverter shut down.

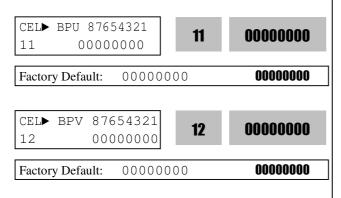
CEL-10: CELL Setting

CEL▶ Go Setting	10	No
10 No	IU	NO
Factory Default: NO	_	No

If the bypass setting is Yes, the maximum No. of cell [CEL-03] is reduced by the maximum value bypassed in U, V, W phases, and the cells in the U, V, W phases are arranged by the number of the largest layer.

EX) If the #1 and #3 cells in the U-phase are bypassed, CEL – 11 [U-phase bypass] status is indicated and the maximum No. of layer is changed from [CEL-03] to 4. Then, the 2 cells of V and W phases are bypassed leaving 4 layers.

Code	Function	Display
CEL-03	Max Stair	6
CEL-11	U_phase bypass	00000101
CEL-12	V_phase bypass	00000000
CEL-13	W_phase bypass	00000000


Bypass status of U,V,W phase before setting Go to yes

Code	Function	Display
CEL-03	Max Stair	4
CEL-11	U_phase bypass	00000101
CEL-12	V_phase bypass	00000101
CEL-13	W_phase bypass	00000101

Bypass status of U,V,W phase before setting Go

to yes

CEL-11~13: U, V, W Bypass Setting

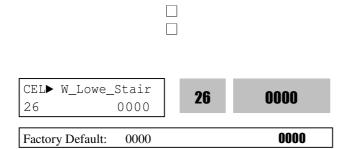
Chapter 6 – PARAMETER DESCRIPTION

CEL► BPW 876 13 0000	554321 00000	13	0000000
Factory Default:	000000	00	0000000

Shows the bypass status of U, V, W phase. If bypassed, '1' is indicated.

CEL-16~18: U, V, W Bypass Status CEL► U Bypass St 16 00000000 16 00000000 0000000 00000000 Factory Default: CEL► V Bypass St 00000000 17 0000000 17 00000000 Factory Default: 0000000 CEL W Bypass St 00000000 18 18 00000000 00000000 Factory Default: 0000000

Shows the bypass status of U, V, W phase. If bypassed, '1' is indicated.


CEL-21, 23, 25 : U,V,W Uper_Stair Status CEL-22, 24, 26 : U,V,W Lower_Stair Status		
CEL▶ U_Uper_Stair 21 0000	21	0000
Factory Default: 0000		0000
Factory Default: 0000		

This code displays each layer of the hardware cell of the upper cell in U-phase after bypass. Here, the criteria between upper and lower is 4 of each cell.

CEL► U_Lowe_Stair 22 0000	22	0000
Factory Default: 0000		0000

This code displays each layer of the hardware cell of the upper cell in U-phase after bypass. Here, the

criteria between upper and lower is 4 of each cell.

CEL-30: Bypass Mode Selection			
CEL► Byp	assMode	30	NO
30	NO	00	NU
Factory De	fault: NO		NO

LCD Display	Description
NO	User Selection
ManualBypass	In case of certain failure cases [(NTC Open or Fuse Open of cell fault), Can Error], pressing Reset Key in the Master will cause automatic bypass
Auto-Bypass	In case of certain failure cases [(NTC Open or Fuse Open of cell fault), Can Error], bypass will occur after 2 seconds automatically without user intervention to maintain

If used with FU2-25 RESET START function, restarting after automatic trip of after failure is possible.

CEL-35: Bypass Restoration					
CEL► 35	All	Back NO	3	5	NO
Factory 1	Default:	NO	_		NO

CHAPTER 7 - TROUBLESHOOTING & MAINTENANCE

7.1 Fault Display

After the faults are occurred, the alarm is activated by protective function and the LCD loader provides visual notification of a fault condition by displaying the following fault codes.

7.1.1 Fault codes displayed on master controller

- Fault codes displayed on master controller are as shown below.
- Master controller indicates [Cell Fault] which all of the faults are occurred on Cell as following fault codes at 1.1.2.

Protective Function	LCD Loader Text	Description	
Overcurrent	Output OCT	The inverter disables its output when the current exceeds 140% of the rated current.	
Cell Overvoltage Protection	DC-Link OVT	The inverter disables its output if the one of DC_Link voltage of Cells exceeds the rated value.	
AC Input Overvoltage Protection	Input OVT	The inverter disables its output when the AC input of transformer exceeds 120% of the rated voltage.	
AC Input Lowvoltage Protection	Input LVT	The inverter disables its output when the AC input of transformer is less than 70%.	
Current Limit Protection (Overload Protection)	Over Load	The Inverter disables its output if the output current exceeds the continuous current rating (OLT level) for a prolonged period of time (OLT time).	
Transformer Overheat	Trans Over Heat	The inverter disables its output if the transformer reaches its overtemperature threshold because of cooling fan failure or air flow obstructed by debris.	
Cell Overheat	CELL OverHeat	The inverter disables its output if heatsink temperature of each cell is more than 75 $^{\circ}$ C by receiving the temperature through communication.	
Cell Fault	Cell Fault	The master disables its output if the one of cell has a fault. (Overvoltage, Lowvoltage, NTC Open, FuseOpen, Overcurrent, ArmShort, Overheat)	
Electronic Thermal	E-Thermal	The drive internal Motor Electronic Thermal Overload operates similar to a motor thermal switch to protect the motor from overheating damage.	
External Fault 1	Ext.Trip 1	When External Trip is enabled, the drive will disable its output if an External	
External Fault 2	Ext.Trip 2	Trip Signal is detected.	
Input Phase Open	InPhase Open	The transformer disables its output when one or more input phase (R, S, and T), is open. The transformer monitors input current to detect an input phase loss.	
Output Phase Open	OutPhase Open	The transformer disables its output when one or more output phase (U, V, W), is open. The transformer monitors output current to detect an output phase loss.	
BX Protection (Instant Cut Off)	BX	Used for to immediately disable the inverter output and thus cause a coast-to stop. The inverter instantly disables its output when the BX terminal is turned ON. Inverter returns to normal operation when the BX terminal is turned OF CAUTION: Unexpected motor start will occur when the BX terminal is turned OFF. The user must ensure that automatic start up of the driven equipment will not cause injury to operating personnel or damage to the	

Chapter 7 – TROUBLESHOOTING & MAINTENANCE

Protective Function	LCD Loader Text	Description	
		driven equipment. In addition, the user is responsible for providing suitable audible or visual alarms or other devices to indicate that this function is enabled and the drive may start at any moment. Failure to observe this precaution could result in severe bodily injury or loss of life.	
Communication Error 1	COM Error CPU Error	Fault trips when communication loss occurs between the LCD loader and the main inverter.	
Communication Error 2	CAN Error	The inverter disables its output when communication loss occurs between the master and each cell.	
Operating method on loss of speed reference	LOP/ LOV/ LOI/ LOX	When there is a loss of the reference command, one of three methods of operation may be selected in parameter I/O-12: (1) Continue running, (2) Coast stop, (3) Decelerate to a stop.	
Inverter Overload	Inv. OLT	The inverter disables its output when the output current exceeds the rated level, (120% for 1 minute).	
Ground Fault Protection	Ground Fault	The inverter disables its output when a ground fault is detected. The ground fault trip will occur when the ground current exceeds the ground fault rating for a prolonged period of time.	
Fan Failure	FAN Error	The inverter disables its output when the fan has a fault since fan failure can make overheating of transformer and cell.	
UPS Control Power Shortage	Control LVT	The inverter disables its output when the UPS capacity is not sufficient to provide the power.	

7.1.2 Fault codes displayed on cell

- Fault codes displayed on cell controller are as shown below.

Protective Function	LCD Loader Text	Description	
Overcurrent	1	The inverter disables its output by sending the fault signal to master when the output current exceeds the rated value.	
Cell Overvoltage Protection	Over Voltage	The inverter disables its output by sending the fault signal to master if the DC_Link voltage of cell exceeds the rated value.	
Arm Short	Over Current 2	The inverter disables its output by sending the fault signal to master if iGBT of cell has a fault of Arm Short.	
Communication Error	Can Rx Error	The inverter disables its output by sending the fault signal to master if cell did not receive the communication signal 3 times continuously. the communication between master and cell is not established	
Fuse Open	Fuse Open	The inverter disables its output by sending the fault signal to master if the internal fuse of cell is damaged by Overcurrent.	
Transformer Overheat	Trans Over Heat	The inverter disables its output if the transformer reaches its over temperature threshold because of cooling fan failure or air flow obstructed by debris.	
NTC Open	NTC open	The inverter disables its output by sending the fault signal to master when the NTC for detecting the temperature of heatsink has a fault.	
Lowvoltage Protection	Low Voltage	The inverter disables its output by sending the fault signal to master when the temperature of cell power is lower than rated value. Low voltage can make a torque shortage and overheat motor.	

If a problem persists, please contact the factory or your local distributor.

7.2 Fault Remedy

Protective Functions	Possible Cause	Corrective Actions
Over Current	 Acceleration/Deceleration time is too short for inertia of the load. Inverter rating too low for load requirement. Starting into a rotating load. Output short circuit or ground fault detected. Cooling failure resulting in component overtemperature. 	 Increase Acceleration and/or Deceleration time. Increase inverter capacity. Restart only after motor has come to rest. Check output wiring. Check cooling fan and heatsink. Clean as necessary.
Ground Fault Current Protection	 Ground condition occurred at the drive output. Output wiring connection not insulated properly. 	 (Caution) Operating inverter prior to correcting fault may damage the IGBT. 1) Check output power wiring for proper connection. 2) Replace the motor.
Over Voltage Protection	 The deceleration time is too short for inertia of the load. High AC input voltage. 	 Increase deceleration time. Check input line voltage.
Current Limit Protection (Overload Protection)	 Load is larger than drive rating. Incorrect inverter capacity setting. Incorrect V/F curve setting. 	 Verify load requirements match drive and motor rating. If necessary, increase motor and/or inverter capacity. Select correct inverter capacity. Select correct V/F curve setting.
Overheat	 Cooling fan failure. Air flow obstructed by debris. Ambient temperature exceeds 40 °C, (104 °F) 	 Replace cooling fan. Clean heatsink and remove obstructions from air flow channel. Maintain ambient temperature below 40 °C, (104 °F).
E-Thermal	 Motor overloaded. Drive and motor not sized correctly for the load. ETH level set too low. Incorrect V/F curve setting. Low motor speed for long time. 	 Reduce driven load. Install correctly rated inverter. Set correct ETH parameter value. Select correct V/F curve. Install externally powered motor cooling fan.
External Trip	1) Open circuit at the External Trip terminal.	1) Determine open circuit condition and correct problem, or disable External Trip function.
Low Voltage Protection	 Low input line voltage. Electrical loading on the AC supply excessive. (welding machine, motor with high starting current connected to the commercial line) Faulty magnetic switch at the input side of the inverter 	 Check input line voltage, add transformer if necessary. Increase AC input line capacity, or reconnect to alternate branch circuit. Replace magnetic switch.
Output Phase Open	 Faulty output contactor (if used). Faulty output wiring. 	 Check output contactor operation. Check output wiring
Comm. Error	 Faulty connection between main inverter and LCD loader. Inverter CPU failure 	 Turn power off, then remove and replace Loader to assure proper connection. Replace drive.
Operating method on loss of speed reference	 LOP (Loss of reference from option), LOR (loss of reference from remote), LOV (loss of reference from V1), LOI (Loss of reference from I), LOW(Loss of reference from Pulse) 	 Analyze the reference path and resolve reason for signal loss (e.g. broken wire, PLC programming error)
Inverter Overload	 Load exceeds inverter rating. Incorrect inverter capacity selected. 	 Increase motor and/or inverter capacity. Select correct inverter capacity.

Protective Functions	Possible Cause	Corrective Actions
Control Power	 Commercial power source OFF UPS capacity shortage 	1) Check the capacity of commercial power source.
Shortage		

Caution: If fault is not cleared after corrective action has been taken, Please contact your sales representative.

7.3 Trouble Shooting

7.3 Trouble Shooting			
Condition	Checking Point		
The Motor Does Not Rotate.	 Main circuit inspection: Is the input (line) voltage normal? (Is the LED in the inverter is lit?) Is the motor connected correctly? Input signal inspection: 		
The Motor Rotates in	Is the phase sequence of the output terminal U, V, W correct?		
Opposite Directions.	Is the starting signal (forward/reverse) connected correctly?		
The Difference Between the Rotating Speed and the Reference is Too Large.	Is the frequency reference signal correct? (Check the level of the input signal) Is the following parameter setting is correct? Lower Limit Frequency (FU1-34), Upper Limit Frequency (FU1-35), Analog Frequency Gain (I/O-1~10) Is the input signal line influenced by external noise? (Use a shielded wire)		
The Inverter Does Not Accelerate or Decelerate Smoothly.	Is the acceleration/deceleration time is set too short a period of time? Is the load too large? Is the Torque Boost (FU2-68, 69) value is too high that the current limit function and the stall prevention function do not operate?		
The Motor Current is Too High.	Is the load too large? Is the Torque Boost Value (manual) too high?		
The Rotating Speed Does Not Increase.	Is the Upper Limit Frequency (FU1-35) value correct? Is the load too large? Is the Torque Boost (FU1-68, 69) value too high that the stall prevention function (FU1-70, 71) does not operate?		
The Rotating Speed Oscillates When the Inverter is Operating.	 Load inspection: Is the load oscillating? Input signal inspection: Is the frequency reference signal oscillating? Other: Is the wiring too long when the inverter is using V/F control? (over 500m) 		

7.4 Maintenance

7.4.1 Regular Check List (once/year)

Check Point	Check items	Description
		Megger Check (between main circuit terminals and ground terminals)
	Entire circuit	Loose screw, bolt, or connect
		Thermal trace of parts
		Clean up the panel
	Wiring	Damage or deteriorated cable cover
Main Circuit	Transformer	Normal primary/secondary voltage
		Leakage at smoothing condenser
		Protrusion of the safety valve of the smoothing condenser
	Power Cell	Swelling of smoothing condenser
		Measure static capacity of smoothing condenser
		Loose screw or bolts
		Check main circuit control fuse
		Dust/dirt on heat radiating plate
	Operation	Check protection/indicator circuits
		Beep sound in operation
Control Circuit	Relay	Check timer action time
Control Circuit		Check contact points
	Board	Check abnormal odor or discoloration
	Doald	Check power supply
Cooling System	Cooling Fan	Check abnormal vibration or noise
	Cooning Fair	Check the bearing

7.4.2 MEGGER CHECK (insulation resistance measurement)

1) Measuring the insulation resistance of the inverter primary side

- Use 1000V MEGGER tester.
- Acceptance criteria is $2 M\Omega$ min.
- Since this line is grounded with high resistance for input voltage detection, isolate the ground cable of voltage detection and the detection signal cable to the controller board before measuring the insulation resistance.

2) Measuring the insulation resistance of the inverter secondary side (motor)

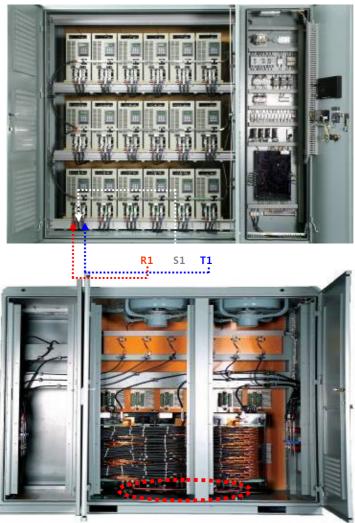
- Use 1000V MEGGER tester. Acceptance criteria is $2 M\Omega$ min.
- Since this line is grounded with high resistance for output voltage detection and ground fault det ection, isolate the high resistor for voltage detection connected to the output terminal and the po wer cell output cable before measurement.

(If the inverter has a secondary panel, open the connector and measure at the secondary panel output)

- Control power input terminal
- I/O terminals of control transformer
- I/O terminal of cooling fan connector
- Screws, bolts, and connectors of control boards
- External I/O terminals

7.4.3 Checking Screws, Bolts, and Connectors

Loose bolts of I/O terminals or loose connectors on boards may cause system malfunction or failure. At every periodic inspection, check and tighten all the screws, bolts and connectors. Major check points are as follows;


- High voltage I/O terminals
- I/O voltage detector circuit (high resistance part)
- TRANS I/O terminals, primary voltage tap terminals
- TRANS output terminal block
- Power cell I/O terminals, optical fiber cable connectors
- · Screws, bolts and connectors of power cell

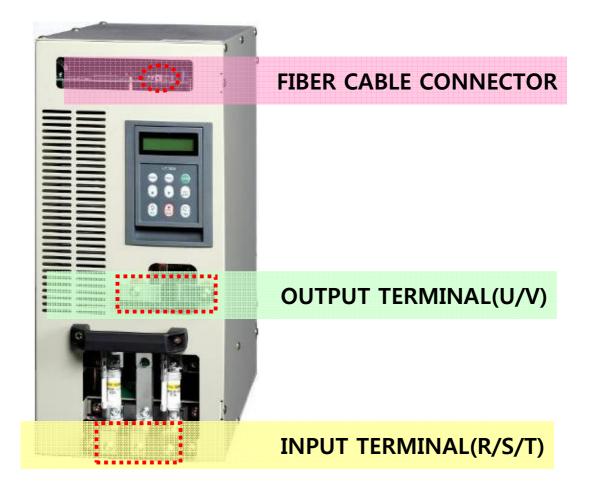
7.4.4 Transformer Inspection

Inspect the transformer in following method.

- Visual inspection
- Tightness of bolts of the transformer I/O terminals and primary voltage tap
- Measure secondary voltage of transformer

Apply control power and high voltage power and measure the input voltage of the power cell. With the digital multimeter in AC range, measure input voltage of the power cell between R1, S1, and T1. The acceptance criteria is within $\pm 10\%$ of the rated voltage (AC 630V). If the criteria is exceeded in the whole, adjust the primary voltage tap (changeable by ± 10 , ± 5 , or 0%)

TAP Adjustment


7.4.5 POWER CELL Inspection

Check the power cell in following method.

Visual inspection of power cell.

- 1) Trace of overheat, such as discoloration
- 2) Leak, protrusion pr swell of safety valve of smoothing condenser.
- 3) Loose bolt at input terminals (R/S/T)
- 4) Loose bolt at output terminals (U/V)
- 5) Reconnect optical fiber connectors
- 6) Tighten the screws and bolts of the power cell
- 7) Check the main circuit fuse and control fuse

- 8) Check if any discoloration or loose part
- 9) Clean up heat radiating plate
- 10) Remove dirt or dust with dry air whose pressure is $39.2 \times 10^4 \text{ }^{\circ} 58.8 \times 10^4 \text{Pa}(4 \text{ }^{\circ} \text{ } 6 \text{kg.cm}^2)$

7.4.6 Air Filter Inspection

If the air filter is dirty or clogged, the cooling performance of the **LSMV-6V600** is degraded leading to temperature problem. Check the filter in daily inspection and clean it with neutral detergent if dirty.

7.4.7 Circuit Board Inspection

Perform visual inspection with the controller board for following defects;

- 1) Discoloration or odor of circuit board
- 2) Loose screw or connector

7.4.8 Cooling Fan inspection

Check the cooling fan for following defects;

- 1) Abnormal noise or vibration
- 2) Loose bolts
- 3) Motor insulation resistance
 - acceptance criteria is $1 \ 0 \ M\Omega$ or above.
- 4) Motor bearing
 - Bearing service life is about 10,000 hours.

7.4.9 Parts Replacement

Replace worn parts to maintain proper performance and service life of the LSMV-6V600.

Parts	Standard Life	Action	
Cooling Fan	1~2 years (10,000 service hours)	Replace bearing (motor and fan body)	
Cell soothing CONDENSOR	5 years	Replace with a new condenser. (determine by inspection)	
Fuses	10 years	Replace with a new fuse	
Al condenser on the print circuit board 5 years		Replace with a new board (determine by inspection)	
Breaker, power fuse	—	Determine by inspection	

Warranty

Maker	LS Industrial Systems Co., Ltd.		Installation (Start-up) Date	
Model No.	LSMV - DDVDD-G1		Warranty Period	
	Name			
Customer Information	Address			
	Tel.			
	Name			
Sales Office (Distributor)	Address			
(2.120110000)	Tel.			

Warranty period is 12 months after installation or 18 months after manufactured when the installation date is unidentified. However, the guarantee term may vary on the sales term.

■ IN-WARRANTY service information

If the defective part has been identified under normal and proper use within the guarantee term, contact your local authorized LS distributor or LS Service center.

OUT-OF WARRANTY service information

The guarantee will not apply in the following cases, even if the guarantee term has not expired.

- Damage was caused by misuse, negligence or accident.
- Damage was caused by abnormal voltage and peripheral devices' malfunction (failure).
- Damage was caused by improper repair or altering by other than LS authorized distributor or service center.
- Damage was caused by an earthquake, fire, flooding, lightning, or other natural calamities.
- When LS nameplate is not attached.
- When the warranty period has expired.

Chapter 7 – TROUBLESHOOTING & MAINTENANCE

Revision History

No.	Date	Edition	Changes
1	Feburary, 2009	First Release	