7-solution Leader in Electrics & Automation

GLOFA G3F-PIDB G4F-PIDB

LS Programmable Logic Controller

- Read this manual carefully before installing, wiring, operating, servicing or inspecting this equipment.
- Keep this manual within easy reach for quick reference.

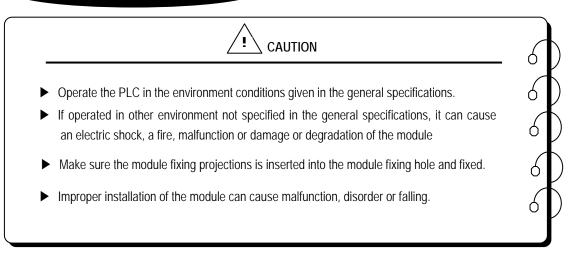
SAFETY PRECAUTIONS

Be sure to read carefully the safety precautions given in data sheet and user's manual before operating the module and follow them.

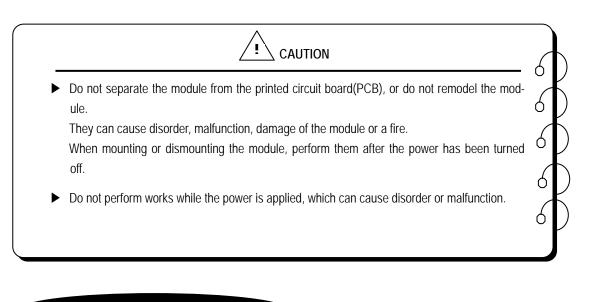
The precautions explained here only apply to the G3F-PIDB and G4F-PIDB.

For safety precautions on the PLC system, see the GLOFA GM3/4 User's Manuals.

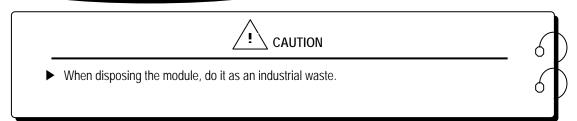
A precaution is given with a hazard alert triangular symbol to call your attention, and precautions are represented as follows according to the degree of hazard.


If not provided with proper prevention, it can cause death or fatal injury or considerable loss of property.
If not properly observed, it can cause a hazard situation to result in severe or slight injury or a loss of property.

However, a precaution followed with **CAUTION** can also result in serious conditions.


Both of two symbols indicate that an important content is mentioned, therefore, be sure to observe it.

Keep this manual handy for your quick reference in necessary.


Installation Precautions

Test Run and Maintenance Precautions

Waste Disposal Precautions

◎ CONTENTS ◎

Chapter 1. INTRODUCTION

1.1	Features	1-1
1.1	Features	

Chapter 2. SPECIFICATIONS

2.1 (General specifications 2-1
2.2 F	Performance specifications 2-2
2.3 N	lames of parts and functions
2.4 F	PID control action
2.4	5 71
-) Velocity type processing 2-5
4	P) Measured value derivative type (Pre-derivative type)2-5
2.4	2 Control actions2-6
) Proportional action (P action) 2-6
4	2-8 Integral action (I action)
	Derivative action (D action)2-10
2) PID action2-11
Ę) PID processing expression2-11
ť) Forward/Reverse actions
2.5	Auto-tuning 2-13
) Auto-tuning block diagram 2-13
4	2-13 Sequence of auto-tuning
2.6	Set value (SV) –ramp function 2-15
2.7	PWM control output ·····2-16
2.8	ON/OFF control ·····2-17
2.9	Manipulated value upper/lower limit function2-17
2.1	0 MV value output limit function
2.1	Output upper/lower limit function2-18
2.1	2 Change from manual control mode to PID control mode2-18
banto	

Chapter 3. INSTALLATION

3.1	Installation ambience	 3-1
3.2	Handling precautions	 3-1

Chapter 4. FUNCTION BLOCKS

4.1	Inse	ertion of the function blocks for PID control module on the GMWIN
4.2	Fur	A-2 action Blocks used in PID control module
	4.2.1	Module Initialization for array type(PIDBAINI)
	4.2.2	Module Initialization for single type(PIDBINI)
	4.2.3	Controlling calculation for array type(PIDBACAL)
	4.3.4	Controlling calculation for single type(PIDBCAL)
	4.3.5	Auto tuning for array type(PIDBAAT)
	4.3.6	Auto tuning for single type(PIDBAT)
4.3	Erre	ors on function block······ 4-8

Chapter 5. GM PROGRAMMING

5.1	Program example using G3F-AD4B module	5-1
5.2	Program using the auto tuning function(TC module used)	5 -6
5.3	Program using PWM ·······5	-10

Chapter 6. BUFFER MEMORY CONFIGURATION AND FUNCTIONS

6.1	Buffe	r memory configuration
	6.1.1	G3F-PIDB buffer memory6-1
	6.1.2	G4F-PIDB buffer memory6-3
6.2	Fuction	ons of buffer memory ······ 6-5
	6.2.1	Specifying loop enable/disable(G3F-PIDB : Addresses 0, 1 G4F-PIDB : Address 0)6-5
	6.2.2	Specifying Forward/Reverse Action (G3F-PIDB : Addresses 34,35 G4F-PIDB : Address 17)6-5
	6.2.3	Specifying output enable/disable(G3F-PIDB : Addresses 292,293 G4F-PIDB : Address 146))6-6
	6.2.4	Specifying set data enable/disable (G3F-PIDB : Addresses 422,423 G4F-PIDB : Address 211)6-6
	6.2.5	Specifying ON/OFF action (G3F-PIDB : Addresses 424,425 G4F-PIDB : Address 212)6-7
	6.2.6	$\label{eq:auto-tuning-state} Auto-tuning-operation-enable/disable-(G3F-PIDB: Addresses-426,427 \\ G4F-PIDB: Address-213) \cdots 6-7$
	6.2.7	Specifying auto/manual operation enable/disable(G3F-PIDB : Addresses 460,461 ,
	G4F-P	IDB : Address 230)6-8
	6.2.8	Auto tuning complete (G3F-PIDB : Addresses 622,623, G4F-PIDB : Address 311)6-8
	6.2.9	Status Information(G3F-PIDB : Addresses 720,721, G4F-PIDB : Address 360)6-9
	6.2.10	Setting PID control data
	6.2.11	Alarm Information(G3F-PIDB : Addresses 722~753, G4F-PIDB : Address 361~376)6-10
	6.2.12	Setting error Information(G3F-PIDB : Addresses 754~785, G4F-PIDB : Address 377~392)6-10

Chapter 7. DEDICATED INSTRUCTIONS FOR SPECIAL MODULES

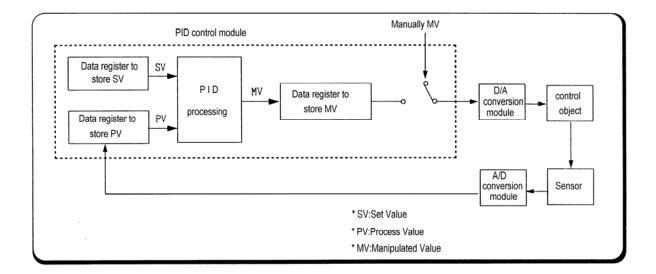
7.1	Read from buffer memory · · · GET, GETP ·····	7-1	l

7.2	Write to buffer memory ·	• PUT, PUTP	7-:	2
-----	--------------------------	-------------	-----	---

Chapter 8. PROGRAMMING

8.1	Bas	sic programming ······ 8-1
	8.1.1	G3F-PIDB
	8.1.2	G4F-PIDB
8.2	Арр	blication programming ······ 8-3
	8.2.1	Program example using G3F-AD4B module
	8.2.2	Program using the auto tuning function (TC module used)
	8.2.3	Program using PWM8-9

Chapter 9. TROUBLESHOOTING


9.1 Eri	rors indicated by RUN LED flickering 9-1
9.2 Tro	publeshooting procedure
9.2.1	RUN LED flickering ······9-1
9.2.2	RUN LED off9-1
9.2.3	Unreadable processing result of PID control module9-2
9.2.4	Run LED of enabled loops off9-2
9.2.5	PID control module hardware defect9-2
Chapter	10. DIMENSIONS
10.1	G3F-PIDB dimensions10-1
10.2	G4F-PIDB dimensions10-2

Chapter 1. INTRODUCTION

These two modules are called G3F-PIDB and G4F-PIDB. The G3F-PIDB is used with the CPU of GLOFA PLC GM1.2.3 series and MASTER-K 1000S series , The G4F-PIDB is used with the CPU of GM4 series and MASTER-K 300S series. Hereafter, the two modules will be commonly called the PID control module.

PID control means a control action that in order to keep the object at a value set beforehand (SV), it compares the SV with a sensor-measured value (PV) and when a difference between them is detected the controller makes PV come to be SV by adjusting output to eliminate the difference. The PID control is composed of combinations of Proportional (P), Integral (I) and Derivative (D) actions.

When a difference between SV and PV occurs, proportional, integral, differential quantities are calculated upon that difference and a MV(Manipulated Value) is output.

1.1 Features

The features of the PID control module are as follows.

- 1) One module can control various processes separately and at the same time.
- 2) Forward/reverse action selection is available.
- 3) Manually manipulated out (forced to be output by the user), not operation processing output, is available.
- 4) The number of modules available on one base unit is unlimited.
- 5) auto-tuning function finds the value of P,I,D constant automatically

Chapter 2. SPECIFICATIONS

2.1 General Specifications

Table 2.1 shows the general specifications of GLOFA GM series and MASTER-K series.

No	Items	Specifications					Standard	
1	Operating ambient temperature			0 ~ 55 °C	2			
2	Storage ambient temperature			-25 ~ 75	C			
3	Operating ambient humidity		5 ~ 9 5%	%RH, non	-condensing			
4	Storage ambient humidity		5 ~ 9 5%	RH, nor	n-condensing	J		
			00	ccasional vi	bration			
		Frequency	Acceleration		Amplitude		Sweep count	
		10≤f∠57 Hz	-		0.075 mm			
5	Vibration	57 $\leq f \leq 150 \text{ Hz}$	9.8m/s² {1G}		-		10.11	IEC 61131-2
5	VIDIALIUII		Continuous	vibration			10 times in each direction for	IEC 01131-2
		Frequency	Acceleration		Amplitude		X, Y, Z	
		10≤f∠57 Hz	-		0.035 mm		Λ, Τ, Ζ	
		$57 \le f \le 150 \text{ Hz}$	4.9m/s² {0.5G}		-			
6	Shocks	*Duration time :11 m	mum shock acceleration: 147 m/s² {15G} tion time :11 ms e wave: half sine wave pulse(3 times in each of X, Y and Z directions)				IEC 61131-2	
		Square wave impulse noise ± 1,500 V			LGIS Standard			
		Electrostatic di	scharge	Vo	oltage :4kV(c	ontact d	ischarge)	IEC 61131-2 IEC1000-4-2
		Radiated electrom	agnetic field		27 ~ 500 M	MHz, 10	V/m	IEC 61131-2 IEC 1000-4-3
7	Noise immunity	Fast transient b	urst noise	Severity Level	All power modules	Digital I/Os (Ue ≥ 24 V)	(Ue < 24 V) Analog I/Os communication	IEC 61131-2 IEC1000-4-4
		Voltage 2 kV 1 kV		0.25 kV				
8	Operating atmosphere	Free from corrosive gases and excessive dust						
9	Altitude for use	Up to 2,000m						
10	Pollution degree	2 or lower						
11	Cooling method		Self-cooling					

[Table 2.1] General specifications

REMARK

1) IEC(International Electrotechnical Commission)

: The international civilian organization which produces standards for electrical and electronics industry.

2) Pollution degree

: It indicates a standard of operating ambient pollution level.

The pollution degree 2 means the condition in which normally, only non-conductive pollution occurs. Occasionally, however, a temporary conductivity caused by condensation shall be expected.

2.2 Performance Specifications

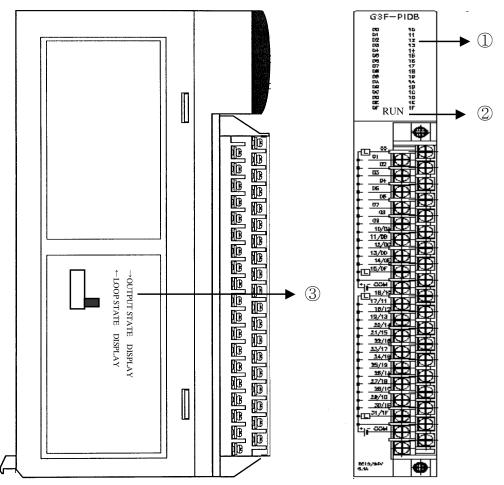
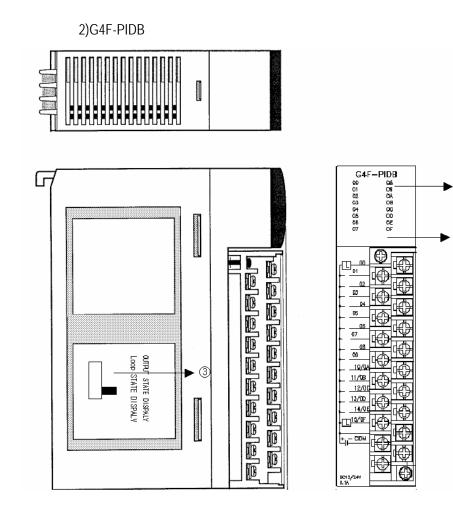

	lkow	Specifi	cation		
	Item	G3F-PIDB	G4F-PIDB		
, I	O Points	16 Pc	pints		
	Proportional constant (P)	(When the integral and derivative co			
Setting range of PID constants	Integral constant (I)	0.0 sec, the proportional action is a 0.0 ~ 3000.0 sec (When the integral constant is set to applied.)			
	Derivative constant (D)	0.0 ~ 3000.0 sec (When the derivative constant is sel not applied.)	t to 0.0 sec, the derivative action is		
Setting range: SV (Set Value)	0 ~ 16,000			
Input range: PV (Pr	rocess Value)	0 ~ 1	6,000		
Output range: MV (Manipulated Value	.)	0 ~ 1	6,000		
Setting (Manually	range: M_MV Manipulated value)	0 ~ 16,000			
Number of	f PID control loops	32	16		
Со	ntrol action	PID Control (Auto-tuning function) ON/OFF Control			
C	ontrol cycle	Manual output 0.01~99	202.00		
	ontrol type	Measured value derivative			
	Туре	Open Collecto			
	Points				
	Output control cycle	1 ~ 10	0 sec		
	Rated load voltage	DC12/24V			
Output	Voltage range	DC10.2~26.4V			
	Maximum load current	0.1A/1 point, 1.5A/1 COM			
	Response time	2 ms			
	Common type	16point/1COM			
	Minimum pulse output	1 ms(1/1000:1 ms unit output)			
LED 표시	RUN / STOP	 > stop : RUN LED Off > Run : Run LED → RUN LED On Output display→RUN LED flickering > Auto- tuning : RUN LED On Run or Output display are selecting by switch on product 			
	NORMAL/ERROR	Normal: RUN LED ON Error: RUN LED flickering			
Internal current cor	sumption		0.6 A		
Weight		510 g	300 g		

Table. 2.2 shows performance specifications of the high speed PID control module.


[Table 2.2] Performance specifications

2.3 Names of Parts and Functions

Following gives names of parts. 1)G3F-PIDB

No.	Descriptions							
	Loop Run LED							
1	It shows the PID control module run status.							
	ON : The corresponding loop is running							
	OFF : The corresponding loop is stopping							
	RUN LED							
2	It shows the PID module Operating status							
	ON: Normal, Running the Auto-tuning							
	Flickering : Error ,LED display switch is selecting output state							
	LED display switch							
3	Loop State Display : Display Loop Running state							
	Output State Display : Display TR Output(PWM Output)							

No.		Descriptions				
	Loop Run LED					
1	It shows the PID control m					
	ON : The corresponding lo	op is running				
	OFF : The corresponding I	oop is stopping				
	RUN LED					
2	It shows the PID module Operating status					
(L)	ON: Normal, Running the	Auto-tuning				
	Flickering : Error ,LED disp	play switch is selecting output state				
	LED display switch					
3	Loop State Display : Display Loop Running state					
	Output State Display : Disp	play TR Output(PWM Output)				

1

2

2.4 PID Control Action

2.4.1 Processing type

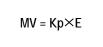
1) Velocity type

Velocity type is a processing that in PID processing, the process Manipulated Value(MV) is obtained by adding the calculated variation of MV (Δ MV) to the previous MV

MVn =	=	MV _{n-1}	+	ΔMV_n
MV_n	:	Pres	sent	Manipulated Value
MV _{n-1}	:	Prev	viou	s Manipulated Value
ΔMV_n	:	Varia	tior	of the Previous Manipulated Value

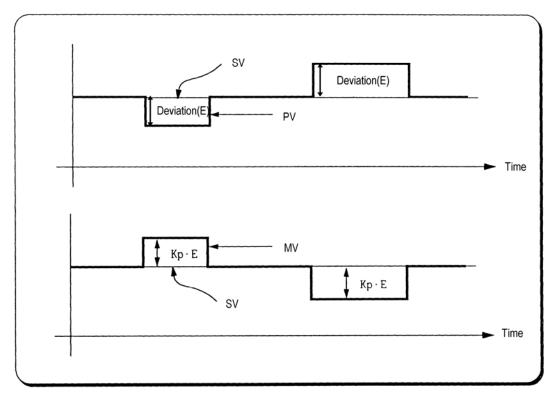
2) Measured Value Derivative Type (Pre-derivative)

Measured value derivative processing, in PID processing, uses the process value(PV) for the derivative term. Generally, PID processing, when a deviation occurs, operates toward the direction in which the deviation will be reduced.


The deviation occurs due to alteration of set value(SV) or outside disturbances. Therefore, if the deviation is used in the derivative processing, the output of the derivative term changes rapidly when the deviation occur due to alteration of set value (SV). So, to prevent raid changes like that, this processing uses the process value(PV) for the derivative term.

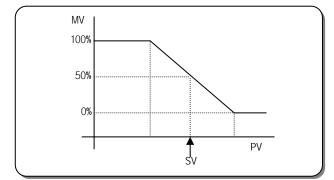
	ivivn —	MVn-1 + Kp 5 (En-En-1) + Kp5S/Ki 5En
		+ $K_p 5 K_d / S5 (2 P V_n - P V_{n-1} - P V_{n-2})$
MV_n	:	Manipulated Value
MV _{n-1}	:	Previous Manipulated Value
A MVn En En-1 Kp Ki Kd S PVn PVn-1 PVn-1 PVn-2	:	Variation of the Previous Manipulated Value present Deviation Previous Deviation Proportional Constant Integral Constant Derivative Constant Control Cycle (100ms) present Process Value One-step previous Process Value Two-step previous Process Value

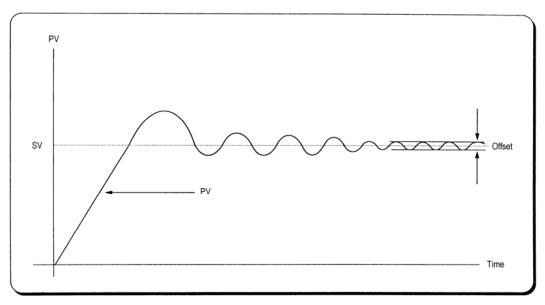
2.4.2 Control Action


1) Proportional Action (P Action)

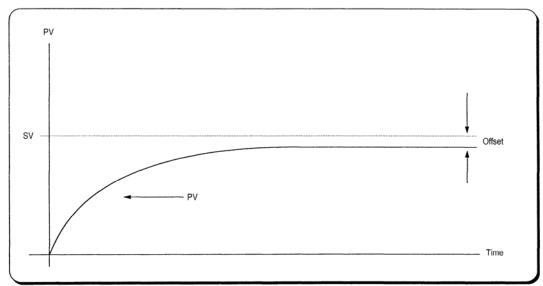
- P action means a control action that obtains a MV which is proportional to the deviation (E: the difference between SV and PV).
- (2) The expression which denotes the change relationship of E to MV in P action is shown as follows:

where Kp is a proportional constant and means gain.

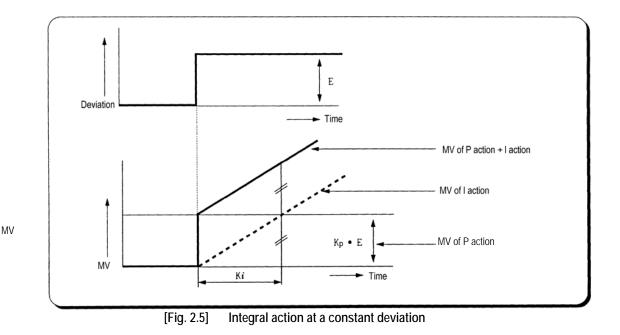

(3) When deviation occurs, the MV by P action is shown in Fig. 2.1.


[Fig. 2.1] MV with the proportional action

- (4) As shown in Fig. 2.1, the larger the proportional constant Kp the larger the MV, that is, the stronger the P action when the deviation(E) is same . Also, the smaller the Kp the smaller the MV after P action.
- (5) If the Kp is too large, PV reaches SV swiftly but can make bad effects like oscillations shown in Fig. 2.3 and cause damage in control stability.
- (6) If the Kp is too small, oscillations do not occur but the velocity with which PV reaches SV slows down and offset can happen as shown in Fig. 2.4.
- (7) Manipulated Value varies within 0 to 16,000.


(8) P action MV Output graph for forward action

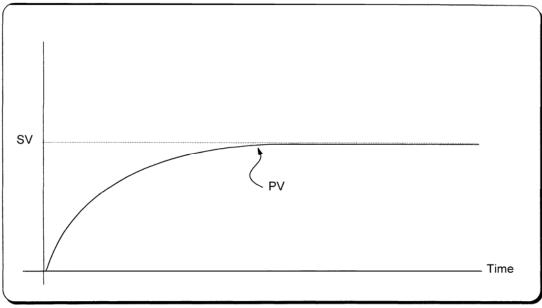
[Fig. 2.2] P Action MV output graph


[Fig. 2.3] When the proportional constant Kp is large.

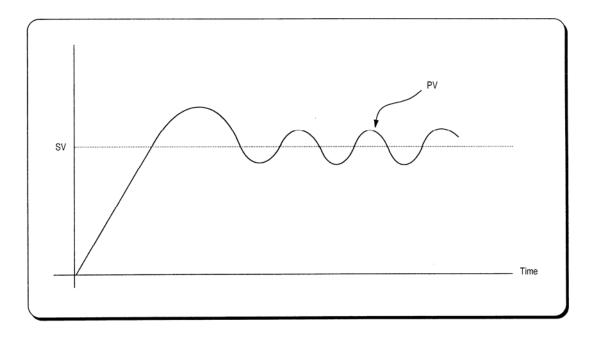
[Fig. 2.4] When the proportional constant Kp is small.

2) Integral Action (I Aaction)

- (1) When a deviation(E) occurs between SV and PV, Integral action continuously adds the deviation to or subtracts it from the MV in accordance time in order to eliminate the deviation When a deviation is small it is not expected that the MV will be changed by P action but I action will eliminate it.
 - Therefore, the offset which occurs in P action can be eliminated by I action.
- (2) The period of the time from when the deviation has occurred in I action to when the MV of I action become that of P action is called Integration time and represented as Ki.
- (3) Integral action when a given deviation has occurred is shown as the following Fig. 2.5.

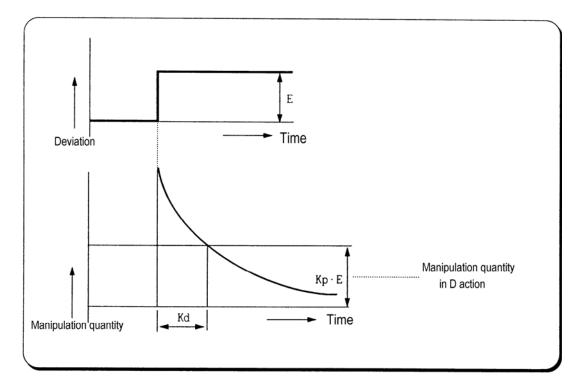

(4) Expression of Integral Action is as follows:

$$MV = P \times E + P \times \frac{1}{K_i} \times \int E dt$$


As shown in the expression, Integral action can be made stronger or weaker by adjusting integration time (K) in I action.

That is, the more the integration time (the longer the integration time) as shown in Fig. 2.6, the lesser the quantity added to or subtracted from the MV and the longer the time needed for the PV to reach the SV. As shown in Fig. 2.7, when the integration time given is short the PV will approach the SV in short time since the quantity added or subtracted become increased. But, If the integration time is too short then oscillations occurs, therefore, the proper P.I value is requested.

(5) Integral action is used in either PI action in which P action combines with I action or PID action in which P and D actions combine with I action.

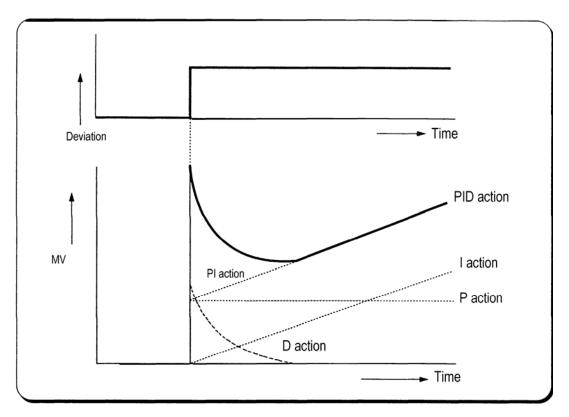

[Fig. 2.5] When a long integration time is given.

[Fig. 2.6] When a short integration time is given.

3) Derivative Action (D Action)

- (1) When a deviation occurs due to alteration of SV or external disturbances, D action restrains the changes of the deviation by producing MV which is proportioned with the change velocity (a velocity whose deviation changes at every constant interval) in order to eliminate the deviation.
 - D action gives quick response to control action and has an effect to reduce swiftly the deviation by applying a large control action (in the direction that the deviation will be eliminated) at the earlier time that the deviation occurs.
 - D action can prevent the large changes of control object due to external conditions.
- (2) The period of time from when the deviation has occurred to when the MV of D action become the MV of P action is called derivative time and represented as Kd.
- (3) The D action when a given deviation occurred is shown as Fig. 2.8

[Fig. 2.8] Derivative action at a constant deviation

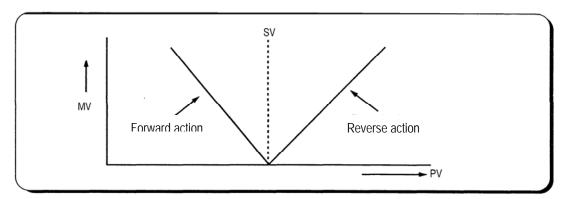

(4) The expression of D action is represented as follows:

$$MV = K_{P} \times E + K_{P} \times \frac{dE}{dt}$$

- In this expression, an output proportional with the variation rate of deviation is added to P action quantity.
- If the derivative time is increased then P action is strengthened.
- D action is applied when a change of deviation occurs and the deviation at normal state become 0. D action, therefore, do not reduce offset.
- (5) D action is used in either PD action in which P action combines with D action or PID action in which P and I actions combine with D action.

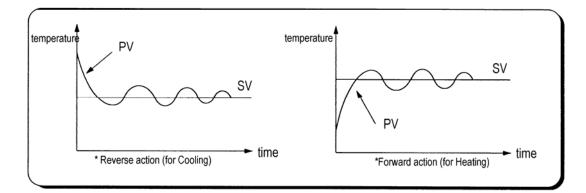
4) PID Action

(1) PID action controls the control object with the manipulation quantity produced by (P+I+D) action.
 (2) PID action when a given deviation has occurred is shown as the following Fig. 2.9


[Fig. 2.9] PID action at a constant deviation

5) PID Processing Expression

Expressions		Parameters names
	MVn	: Present Manipulated Value
	MVn-1	: One-step-previous
		Manipulated Value
$E_n = SV - PV_n$	En	: Process deviation
	En-1	: Previous deviation
$MV_n = MV_{n-1} + K_p \times (E_n - E_{n-1})$	Кр	: Proportional constant
+ K _p ×S/K _i ×E _n	Ki	: Integral constant
	Kd	: Derivative constant
+ $K_p \times K_d/S \times (2PV_{n-1} - PV_n - PV_{n-2})$	S	: Control cycle (100 ms)
	PVn	: Process value
	PVn-1	: One-step-previous
		Process Value
	PVn-2	: Two-step-previous
		Process value


6) Forward/Reverse Actions

- (1) PID control has two kinds of action, forward action and reverse action.
- a) Forward action makes PV reach SV by outputting MV when PV is less than SV.
 - b) Reverse action makes PV reach SV by outputting MV when PV is more than SV.
- (2) A diagram in which forward and reverse actions are drawn using MV, PV and SV is shown as Fig. 2.10

[Fig. 2.10] Forward and reverse action with MV, PV and SV

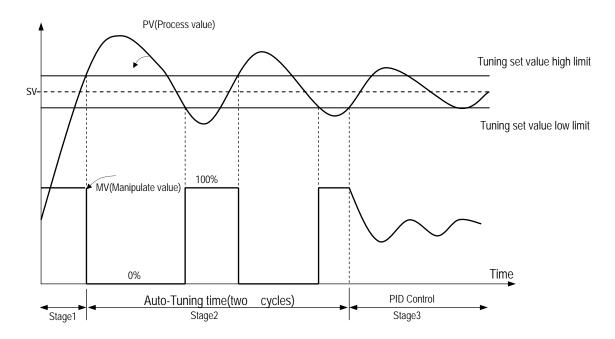
(3) Fig 2.11 shows examples of process control by forward and reverse actions, respectively.



[Fig. 2.11] Examples of process control by forward and reverse actions

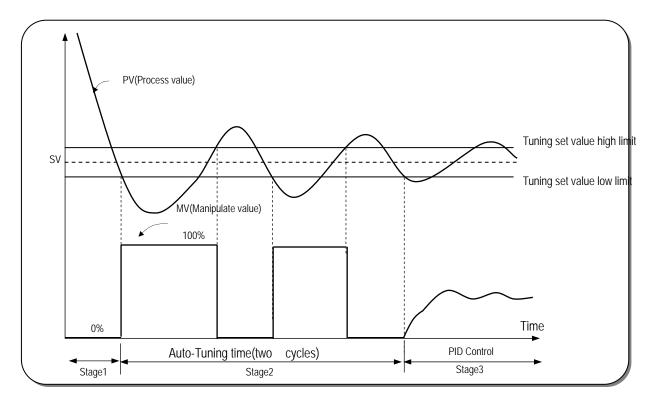
2.5 Auto-tuning

2.5.1 Auto-Tuning block Diagram


- Appropriate P, I, D constant shall be set to perform optimal control when PID control is applied. The function to find these parameters automatically is called Auto-Tuning.
- ▶ If Auto-Tuning command starts, PID control module stops PID calculation and moves to start Auto-Tuning.

[Fig 2.12] Auto-Tuning block diagram

2.5.2 Sequence of Auto-Tuning


Relay control method is applied to Auto-Tuning in PID module, which finds and selects P, I, D constant value of itself while watching the transition of the object to control using relay output.

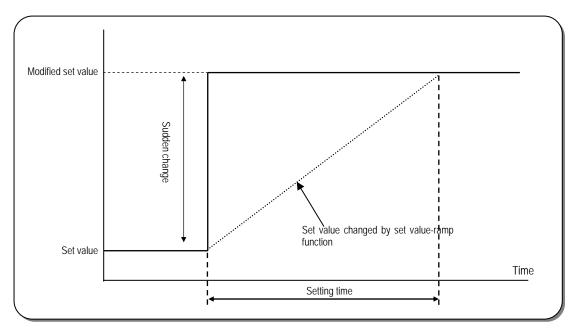
(1) Forward action (if PV<SV)

[Fig1.13] Auto-Tuning Algorithm for Forward action

2) Reverse action (if PV<SV)

[Fig1.14] Auto-Tuning Algorithm for Reverse action

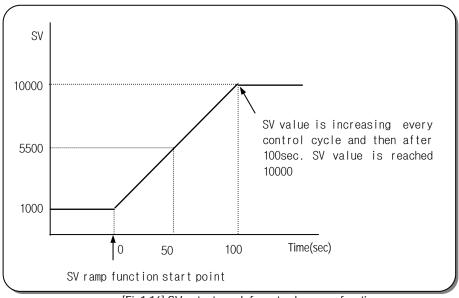
- Stage 1) Distinction of forward/reverse
 - ► By comparison between Process value(PV) and Tuning setting value(Set value:SV) Forward : if the process value is lower than the tuning setting value Reverse : if the process value is higher than the tuning setting value
- Stage 2) Auto-tuning operation


Forward : Manipulated value is repeatedly output 2 cycles in order of min.(0% : 0) to max.(100% : 16000). Reverse : Manipulated value is repeatedly output 2 cycles in order of max.(100% : 16000) to min.(0% : 0).

► If auto-tuning operation is complete as repeated as above, output variable END of auto-tuning value Read function block(PIDBAAT, PIDBAT) changes "0 ⇒ 1". Thus, when output variable END of auto-tuning value Read function block changes "0 ⇒ 1" in program, P, I, D constant value shall be moved to input variable P, I, D of module initializing function block (PIDBAINI, PIDBINI)

Stage 3) PID calculation

2.6 Set Value(SV) - Ramp function (Set value inclination function)


- Manipulated value changes by the change of difference the present value to the Manipulated value or by the change of Manipulated value if PID control is used. Thus, sudden change of the set value leads to sudden change of the manipulated value causing damage on the control object.
- Staged increasing or decreasing function of set value (SV) is the set value-ramp function to prevent set value setting from suddenly changed when modified.
- Set value-ramp function setting time: 0 \sim 65,535(Unit:sec)

► Related function block: **PIDBINI**

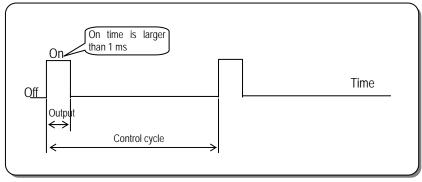
[Fig1.15] Set value ramp function

► For example, SV_UP value of PIDBINI function block are setting 100 sec, Display SV value graph for Initial SV value is change from 1000 to 10000

[Fig1.16] SV output graph for set value ramp function

2.7 PWM control output

- PID Module has Tr output for PWM in every loop.
 Tr output drives SSR for PWM (ON/OFF Control for Pulse width)
- Control cycle varies within 1 to 100sec
- ► Minimum pulse time is 1ms


$$ON \quad time (\mathbb{MS}) = \frac{Output \quad Range (1000)}{MV \quad Range (16000)} \times MV \quad output \quad value \times Output \quad control \quad cycle (S)$$

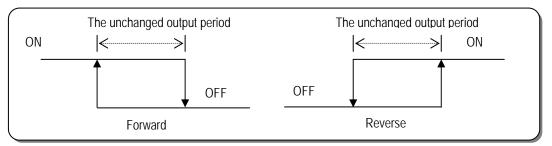
However pulse ON time round off the numbers to one decimal place

For example if the output control cycle is 1sec, MV 200 the output is 12.5.

In this case On time is 3ms and 987ms is OFF. Although MV is changed during the control cycle the output is not changed and PWM pulse is changed with the MV of the next 1s.

ON time (ms) =
$$\frac{1}{16} \times 200 \times 1(S) = 12.5$$

[Fig1.17] PWM Control output


- ▶ PWM control is one of the PID control.
- ▶ To use PWM control,TR output can be used by setting the function blocks as follows..
 - OUT_EN of PIDBINI \rightarrow 1
 - OUT_PERD of PIDINI \rightarrow Setting between 1~100 sec,(Control cycle)

2.8 ON/OFF Control

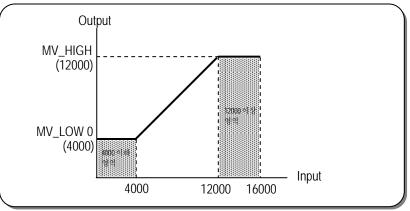
- ON/OFF control is a method controlling the output by comparing SV and MV. The unchanged output period is used to prevent the rapid variety of the output.
- ▶ In forward action, if PV is less than SV ON operation is executed and if PV is higher than SV OFF operation is executed.

During OFF operation, if PV is decreased, MV is repeated ON/OFF near SV.

It makes the operation unstable, the unchanged output period is used to be stable the output.

[Fig1.18] ON/OFF control by setting the The unchanged output period.

Example)When SV is 8000 in the forward action and ONOFF_HYS is 100.


If PV is increased and higher than 8000, the output is OFF and the cooling is processed.

If PV is less than 7900, the output is ON and the heating is processed.

Like the above, ON/OFF is not run between 7900~8000 and ON/OFF is run when the PV is out of the value(7900~8000). This area is called the unchanged output period.

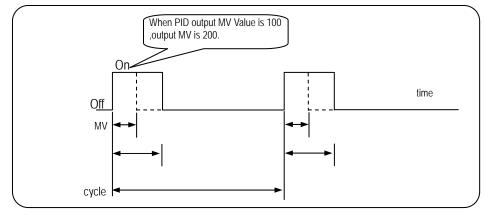
2.9 Manipulated value upper/Lower LIMIT function

- ▶ The MV upper/lower limit function is executed with the default value(upper:16000,lower:0) although it's not set.
- ▶ If MV_HIGH is set at 12000 and MV_LOW 4000, MV is out 4000 when MV is less than 4000, 12000 when MV is higher than 12000, and if MV is 4000~12000 the same value is out.

[Fig1.19] MV value upper/lower limit

2.10 MV value output limit function

- ▶ MV value output limit function is executed with the default value(16000) although it's not set.
- When DELTA_MV is 12000, Δ MVn is limited by 12000 according the following equation.


```
MV_n (MV output value) = MV_{n-1} (Previous MV value) + \Delta MV_n(Varied MV value)
```

► According the above equation MV value is out and △ MVn is limited to 0~16000 to prevent the rapid variation. But if this value is limited so small, the time to reach at SV is needed more.

2.11 Output upper/lower limit function

- Output upper/lower limit function is executed with the default value(upper:1000,lower:0) although it's not set.
- Output upper/lower limit function is used to control PWM output value when MV's output is used as PWM control. If PWM control value is less than 200 it PWM is limited at 200, and the value is higher than 800 it PWM is limited at 800.

If MV is 200~800 the same value is out.

2.12 Change from Manual control mode to PID control mode

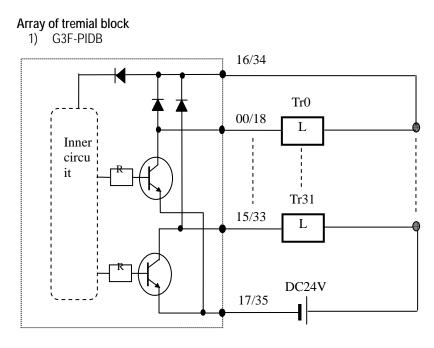
When Control mode changes from manual control mode to PID control mode, MV output Value starts manual MV value.

Chapter 3. INSTALLATION

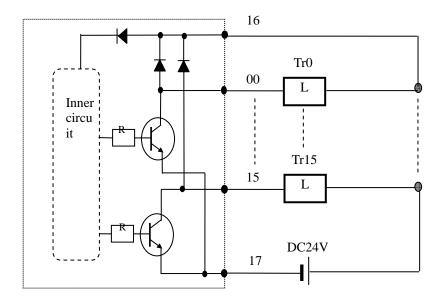
3.1 Installation Ambience

This module has high reliability regardless of its installation ambience. But be sure to check the following for system in higher reliability and stability.

1) Ambience Requirements


Avoid installing this module in locations, which are subjected or exposed to:

- Water leakage and dust a large amount of dust, powder and other conductive power, oil mist, salt, of organic solvent exists.
- Mechanical vibrations of impacts are transmitted directly to the module body.
- Direct sunlight.
- Dew condensation due to sudden temperature change.
- High or low temperatures (outside the range of 0-55 $^\circ\!\mathrm{C}$)
- 2) Installing and Wiring
 - During wiring or other work, do not allow any wire scraps to enter into the PLC
 - Install it on locations that are convenient for operation.
 - Make sure that it is not located near high voltage equipment on the same panel.
 - Make sure that the distance from the walls of duct and external equipment be 50 mm or more.
 - Be sure to be grounded to locations that have good noise immunity.


3.2 Handling Precautions

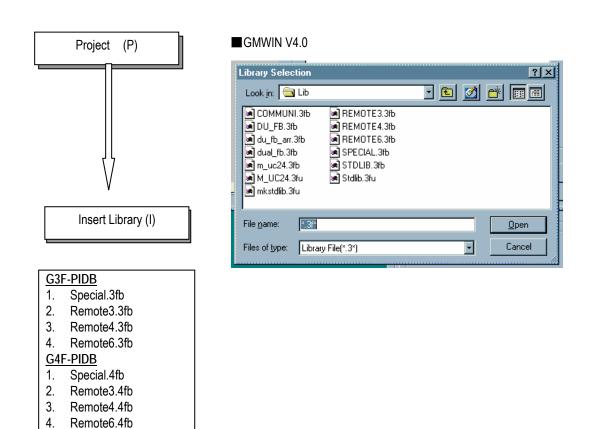
From unpacking to installing the PID control module, be sure to check the following:

- 1) Do not drop it off, and make sure that strong impacts should not be applied.
- 2) Do not dismount printed circuit boards from the case. It can cause malfunctions.
- 3) During wiring, be sure to check any foreign matter like wire scraps should not enter into the upper side of the PLC, and in the event that foreign matter entered into it, always eliminate it.
- 4) Be sure to disconnect electrical power before mounting or dismounting the module.

2) G4F-PIDB

Chapter 4 FUNCTION BLOCK

▶ PID control module function blocks used in GMWIN are described below.


NO	G3F-PIDB	G4F-PIDB	Description
1	PIDBAINI	PIDBAINI	Module initialization (Array type)
2	PIDBINI	PIDBINI	Module initialization (Single type)
3	PIDBACAL	PIDBACAL	PID calculation (Array type)
4	PIDBCAL	PIDBCAL	PID calculation (Single type)
5	PIDBAAT	PIDBAAT	Auto Tuning (Array type)
6	PIDBAT	PIDBAT	Auto Tuning (Single type)

Remark

To operate PID calculation FB and Auto tuning FB simultaneously causes the malfunction.
 Array number of 4.2 × 1 is G3F- PIDB :32, G4F-PIDB: 16.

4.1 Insertion of the function blocks for the PID control module on the GMWIN

- Function blocks can be inserted with the following procedures while the GMWIN is running.
- ▶ Inserting a function block is only possible when a project is open.

4.2 Function block used in PID control module

4.2.1 Module initialization for array type (PIDBAINI)

Module initialization function block specifies PID control module base location, slot location, run loop enable/disable and forward/reverse action, and sets MV, M_MV and P.I.D constants for use in program so on.

Function Block	I/O	Variable	Data Type	Descriptions
per pidbaini —		REQ	BOOL	Function block execution request area • Used to request an execution of the initialization function block • If the conditions connected with this area are established while program is running and "0" changes into "1", the initialization function block is executed
- REQ DONE -		BASE	USINT	 Base location No. Used to write the base No. where the PID control module is mounted. Setting range: GM1 series (0~31), GM2 series (0~7), GM3/4 series (0-3)
- BASE STAT - - SLOT ACT -		SLOT	USINT	Slot location No. • Used to write slot No. where the PID control module is mounted. • Setting range: 0~7
- LOOP		LOOP	BOOL [ARRAY]*1	Run loop enable/disable specification Used to enable or disable a loop for run. Specify "1" for enabling, and "0" for disabling
– PERD		PERD	UINT [ARRAY]*1	Run loop control cycle (0.01 ~ 99.99sec) • Setting range: 1 ~ 9999 • If this value is not set or set as "0" this value is initialized as "1".
		D/R	BOOL [ARRAY] ^{*1}	Forward/Reverse action specification for a run loop. • Specify "0" for forward action and "1" for reverse action.
- SV UP - SV		SV_UP	UINT [ARRAY] ^{*1}	Setting a time until a run loop reaches at the target value when the target value rises. •Setting range: 0~65535sec
DOWN MV		SV_DOWN	UINT [ARRAY]*1	Setting a time until a run loop reaches at the target value when the target value falls. •Setting range: 0~65535sec
		MV_LOW	UINT [ARRAY] ^{*1}	Setting the low limit for the run loop • Setting range: 0 ~ 16000 (The range should be within the high limit) [Refer 2.9]
HIGH - DELT A_MV	Input	MV_HIGH	UINT [ARRAY]*1	Setting the high limit for the run loop •Setting range: 1 ~ 16000 (The range should be within the high limit) • If this value is not set or set as "0" this value is initialized as "16000". (Refer 2.9)
- P		DELTA_MV	UINT [ARRAY] ^{*1}	Setting for the variable quantity limit of the control value • Setting range: 1 ~ 16000 • If this value is not set or set as "0" this value is initialized as "16000". (Refer 2.10)
- D		Р	UINT [ARRAY] ^{*1}	Setting a proportional constant (0.01 ~ 100.00) for a run loop •Setting range: 1~10000 • If this value is not set or set as "0" this value is initialized as "1"
– OUT_ EN – OUT_ PERD		I	UINT [ARRAY] ^{*1}	Setting an integral constant (0.0 ~3000.0 sec) for a run loop • Setting range: 0~30000 • Integral action not executed if the integral constant is set to '0'.
OUT_ LOW OUT		D	UINT [ARRAY]*1	Setting a derivative constant (0.0 ~3000.0 sec) for a run loop • Setting range: 0~30000 • Derivative action not executed if the derivative constant is set to '0'.
HIGH – ONOF _HYS		OUT_EN	BOOL [ARRAY] ^{*1}	Run roop output enable, disable (Transistor output) • "0" disable. • "1" enable.
		OUT_PERD	UINT [ARRAY]*1	Run roop output enable/disable set in OUT_EN (1 ~ 100s) • Setting range: 1 ~ 100 • If this value is not set or set as "0" this value is initialized as "1"
		OUT_LOW	UINT [ARRAY] ^{*1}	Setting the output low limit of the run roop set in OLIT. EN
		OUT_HIGH	UINT [ARRAY]*1	Setting range: 0 ~ 16000 (The range should be within the high limit) [Refer 2.11] Setting the output high limit of the run roop set in OUT_EN Setting range: 0 ~ 16000 (The range should be within the high limit) [Refer 2.11] If this value is not set or set as '0' this value is initialized as '1'
		ONOF_HYS	UINT [ARRAY]*1	Setting the run interval for the run roop ON/OFF • Setting range: 0 ~ 8000 [Refer 2.8]
		DONE	BOOL	Function block finished execution status "1" is output when the initialization function block is finished with no error and "1" remains until next execution. If an error occurs, '0' is displayed and the operation enters into the stop state.
	Output	STAT	USINT	 Error status indication area Used to output the number of an error when it occurs during initialization function block execution. For description of errors, see GM Section 6.3
		ACT	BOOL [ARRAY]*1	 Run loop status indication area After the initialization function block is finished with no error, "1" is output if the loop is in normal state. But "0" is output for the disabled loops.

4.2.2 Module initialization for single type (PIDBINI)

Module initialization function block specifies PID control module base location, slot location, run loop enable/disable and forward/reverse action, and sets MV, M_MV and P.I.D constants for use in program so on.

Function Block	I/O	Variable	Data Type	Descriptions	
		REQ	BOOL	 Function block execution request area Used to request an execution of the initialization function block If the conditions connected with this area are established while program is running and "0" changes into "1", the initialization function block is executed 	
- REQ DONE -		BASE	USINT	Base location No. • Used to write the base No. where the PID control module is mounted. • Setting range: GM1 series (0~31), GM2 series (0~7), GM3/4 series (0-3)	
– BASE STAT – – Slot		SLOT	USINT	Slot location No. • Used to write slot No. where the PID control module is mounted. • Setting range: 0~7	
- LOOP		LOOP	USINT	Run loop enable/disable specification Used to enable or disable a loop for run. Specify "1" for enabling, and "0" for disabling 	
– PERD – D/R		PERD	UINT	Run loop control cycle (0.01 ~ 99.99sec) • Setting range: 1 ~ 9999 • If this value is not set or set as "0" this value is initialized as "1".	
sv		D/R	BOOL	Forward/Reverse action specification for a run loop. •Specify "0" for forward action and "1" for reverse action.	
		SV_UP	UINT	Setting a time until a run loop reaches at the target value when the target value rises. •Setting range: 0~65535sec	
DOWN MV		SV_DOWN	UINT	Setting a time until a run loop reaches at the target value when the target value falls. •Setting range: 0~65535sec	
LOW MV		MV_LOW	UINT	 Setting the low limit for the run loop Setting range: 0 ~ 16000 (The range should be within the high limit) [Refer 2.9] 	
HIGH - DELT A_MV	Input	MV_HIGH	UINT	Setting the high limit for the run loop •Setting range: 1 ~ 16000 (The range should be within the high limit) • If this value is not set or set as "0" this value is initialized as "16000". (Refer 2.9)	
– P – I		DELTA_MV	UINT	Setting for the variable quantity limit of the control value • Setting range: 1 ~ 16000 • If this value is not set or set as "0" this value is initialized as "16000". (Refer 2.10)	
- D		Р	UINT	Setting a proportional constant (0.01 ~ 100.00) for a run loop •Setting range: 1~10000 • If this value is not set or set as "0" this value is initialized as "1"	
- OUT_ EN - OUT_ PERD		I	UINT	Setting an integral constant (0.0 ~3000.0 sec) for a run loop • Setting range: 0~30000 • Integral action not executed if the integral constant is set to '0'.	
OUT_ LOW OUT_		D	UINT	Setting a derivative constant (0.0 ~3000.0 sec) for a run loop • Setting range: 0~30000 • Derivative action not executed if the derivative constant is set to '0'.	
HIGH - ONOF _HYS		OUT_EN	BOOL	Run roop output enable, disable (Transistor output) • "0" disable. • "1" enable.	
		OUT_PERD	UINT	Run roop output enable/disable set in OUT_EN (1 ~ 100s) • Setting range: 1 ~ 100 • If this value is not set or set as "0" this value is initialized as "1"	
			OUT_LOW	UINT	 Setting the output low limit of the run roop set in OUT_EN Setting range: 0 ~ 16000 (The range should be within the high limit) [Refer 2.11]
					OUT_HIGH
		ONOF_HYS	UINT	Setting the run interval for the run roop ON/OFF • Setting range: 0 ~ 8000 [Refer 2.8]	
		DONE	BOOL	Function block finished execution status "1" is output when the initialization function block is finished with no error and "1" remains until next execution. If an error occurs, '0' is displayed and the operation enters into the stop state. 	
	Output	STAT	USINT	 Error status indication area Used to output the number of an error when it occurs during initialization function block execution. For description of errors, see GM Section 6.3 	

4.2.3 Controlling calculation for array type (PIDBACAL)

PIDBACAL control PID whole loops and specifies ON/OFF enable or disable, auto/manual run enable or disable, manually controlled value, target value and current value, PID calculated value etc.

Function Block	I/O	Variable	Data Type	Descriptions
REQ DONE		REQ	BOOL	 Function block execution request area Used to request an execution of the initialization function block If the conditions connected with this area are established while program is running and "0" changes into "1", the initialization function block is executed
- BASE STAT - - SLOT ALM -		BASE	USINT	Base location No. • Used to write the base No. where the PID control module is mounted. • Setting range: GM1 series (0~31), GM2 series (0~7), GM3/4 series (0-3)
-LOOP ACT -		SLOT	USINT	Slot location No. • Used to write slot No. where the PID control module is mounted. • Setting range: 0~7
$- \begin{array}{c} ON_ & MV \\ OFF & MV \\ - A_M & SV_C \\ AL & AL \end{array}$		LOOP	BOOL [ARRAY] ^{*1}	Run loop enable/disable specification Used to enable or disable a loop for run. Specify "1" for enabling, and "0" for disabling
MAN_OUT_ MV CAL SV	Input	ON_OFF	BOOL [ARRAY]*1	ON/OFF control enable/ disable for the run loop. • "0": ON/OFF control enable. • "1": ON/OFF control disable.
- PV				
		MAN_MV		Manual control value for the run loop.
		SV		•
		PV	INT [ARRAY] ^{*1}	Current value for the run loop. • Range: 0 ~ 16000
	Output	DONE	BOOL	 Function block finished execution status "1" is output when the initialization function block is finished with no error and If an error occurs, '0' is displayed and the operation enters into the stop state.
		STAT	USINT	 Error status indication area Used to output the number of an error when it occurs during initialization function block execution. For description of errors, see GM Section 6.3
		ALM	USINT [ARRAY]*1	Alarm status If an alarm happened the alarm number is displayed during the function block execution. For description of alarms, see section 4.4.
		ACT	BOOL [ARRAY] ^{*1}	Run loop status indication area • After the initialization function block is finished with no error, "1" is output if the loop is in normal state. But "0" is output for the disabled loops.
		MV	INT [ARRAY] ^{*1}	MV data for the enabled run loops • Range: 0 ~ 16000
		SV_CAL	INT [ARRAY]*1	Calculated SV value for the enabled run loops. • Range: 0 ~ 16000
		OUT_CAL	INT [ARRAY]*1	Output value for the enabled run loops (0.0 ~ 100.0%) • PWM range: 0 ~ 1000

4.2.4 Controlling calculation for single type (PIDBCAL)

PIDBCAL control PID whole loops and specifies ON/OFF enable or disable, auto/manual run enable or disable, manually controlled value, target value and current value, PID calculated value etc.

Function Block	I/O	Variable	Data Type	Descriptions
REQ DONE		REQ	BOOL	Function block execution request area • Used to request an execution of the initialization function block • If the conditions connected with this area are established while program is running and "0" changes into "1", the initialization function block is executed
- BASE STAT -		BASE	USINT	Base location No. • Used to write the base No. where the PID control module is mounted. • Setting range: GM1 series (0~31), GM2 series (0~7), GM3/4 series (0-3)
-LOOP MV -		SLOT	USINT	Slot location No. • Used to write slot No. where the PID control module is mounted. • Setting range: 0~7
ONSV_C OFF AL A_M OUT		LOOP	USINT	Run loop enable/disable specification Used to enable or disable a loop for run. Specify "1" for enabling, and "0" for disabling
- MAN_ MV - SV	Input	ON_OFF	BOOL	ON/OFF control enable/ disable for the run loop. • "0": ON/OFF control enable. • "1": ON/OFF control disable.
- PV		A_M	BOOL	Auto/Manual control enable/ disable for the run loop. • "0": Auto-calculation selection. • "1": Manual control selection.
		MAN_MV	INT	Manual control value for the run loop. • Range : $0 \sim 16000$
		SV	INT	Target value for the run loop. ● Range: 0 ~ 16000
		PV	INT	Current value for the run loop. • Range: 0 ~ 16000
		DONE	BOOL	Function block finished execution status "1" is output when the initialization function block is finished with no error and "1" remains until next execution. If an error occurs, '0' is displayed and the operation enters into the stop state.
		STAT	USINT	 Error status indication area Used to output the number of an error when it occurs during initialization function block execution. For description of errors, see GM Section 6.3
	Output	ALM	USINT	Alarm status If an alarm happened the alarm number is displayed during the function block execution. For description of alarms, see section 4.4.
	Output	MV	INT	MV data for the enabled run loops • Range: 0 ~ 16000
		SV_CAL	INT	Calculated SV value for the enabled run loops. ● Range: 0 ~ 16000
		OUT_CAL	INT	Output value for the enabled run loops (0.0 ~ 100.0%) • PWM range: 0 ~ 1000

4.2.5 Auto Tuning for array type (PIDBAAT)

PIDBAAT specifies base number, slot number, run loop selection, auto tuning start/stop selection for the enabled loop and displays MV, and auto-tuned value.

Function Block	I/O	Variable	Data Type	Descriptions				
		REQ	BOOL	 Function block execution request area Used to request an execution of the initialization function block If the conditions connected with this area are established while program is running and "0" changes into "1", th initialization function block is executed 				
- REQ DONE - - BASE STAT -		BASE	USINT	Base location No. • Used to write the base No. where the PID control module is mounted. • Setting range: GM1 series (0~31), GM2 series (0~7), GM3/4 series (0-3)				
- SLOT ALM -	SLOT		USINT	Slot location No. • Used to write slot No. where the PID control module is mounted. • Setting range: 0~7				
– LOOP ACT – – AUTO MV –	Input	Input LOOP		Run loop enable/disable specification Used to enable or disable a loop for run. Specify "1" for enabling, and "0" for disabling 				
- SV TUNE - PV TUNE -	AUTO TUNE		BOOL [ARRAY]*1	Auto tuning start/stop selection for the enabled loops. • "0": Auto Tuning stop. • "1": Auto Tuning start [See section 2.5.2]				
TUNEI		SV	INT [ARRAY] ^{∗1}	Target value for the run loops. ● Range: 0 ~ 16000				
TUNED		PV	INT [ARRAY] ^{*1}	Current value for the run loops. ● Range: 0 ~ 16000				
		DONE	BOOL	Function block finished execution status "1" is output when the initialization function block is finished with no error and "1" remains until next execution. If an error occurs, '0' is displayed and the operation enters into the stop state.				
		STAT	USINT	 Error status indication area Used to output the number of an error when it occurs during initialization function block execution. For description of errors, see GM Section 6.3 				
		ALM	USINT [ARRAY]*1	Alarm status If an alarm happened the alarm number is displayed during the function block execution. For description of alarms, see section 4.4. 				
		ACT	BOOL [ARRAY]*1	Run loop status indication area • After the initialization function block is finished with no error, "1" is output if the loop is in normal state. But "0" is output for the disabled loops.				
	Output	MV	INT [ARRAY] ^{*1}	MV data for the enabled run loops • Range: 0 ~ 16000				
		TUNE_END	BOOL [ARRAY]*1	Auto Tuning status. • "0": Auto Tuning is not completed or canceled. • "1": Auto Tuning is completed.				
		TUNE_P	UINT [ARRAY]*1	P value obtained by Auto Tuning. ● Range: 1 ~ 10000				
		TUNE_I	UINT [ARRAY] ^{*1}	I value obtained by Auto Tuning. ● Range: 0 ~ 30000 (I value: 0.0 ~ 3000.0 sec)				
		TUNE_D	UINT [ARRAY]*1	D value obtained by Auto Tuning. • Range: 0 ~ 30000 (D value: 0.0 ~ 3000.0 sec)				

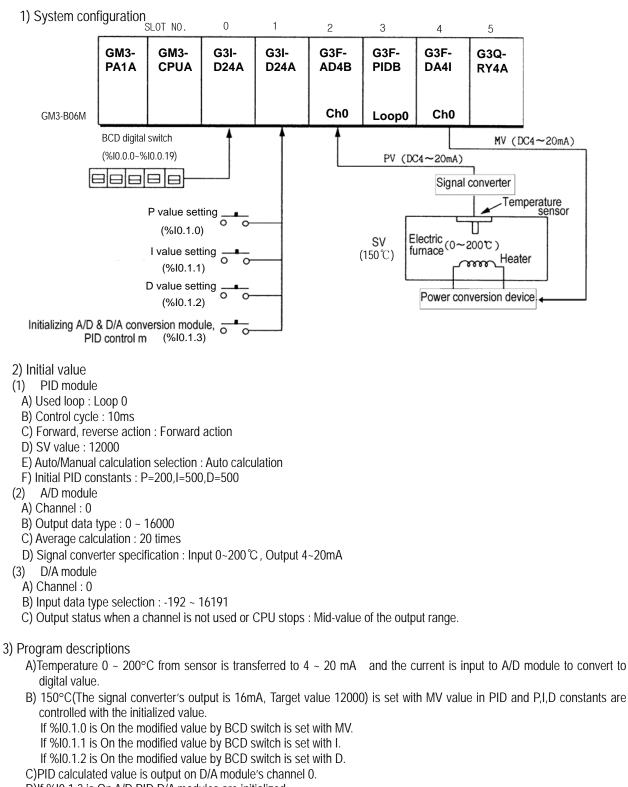
4.2.6 Auto Tuning for single type (PIDBAT)

PIDBAT specifies base number, slot number, run loop selection, auto tuning start/stop selection for the enabled loop and displays MV, and auto-tuned value.

Function Block	I/O	Variable	Data Type	Descriptions			
		REQ	BOOL	Function block execution request area • Used to request an execution of the initialization function block • If the conditions connected with this area are established while program is running and "0" changes into "1", the initialization function block is executed			
- REQ DONE - BASE STAT -	SE STAT - SLOT DT ALM - SLOT DP MV - Input LOOP		USINT	Base location No. • Used to write the base No. where the PID control module is mounted. • Setting range: GM1 series (0~31), GM2 series (0~7), GM3/4 series (0-3)			
			USINT	Slot location No. • Used to write slot No. where the PID control module is mounted. • Setting range: 0~7			
AUTO TUNE			USINT	Run loop enable/disable specification • Used to enable or disable a loop for run. • Specify "1" for enabling, and "0" for disabling			
- SV TUNE -			BOOL	Auto tuning start/stop selection for the enabled loops. • "0": Auto Tuning stop. • "1": Auto Tuning start [See section 2.5.2]			
TUNED		SV	Target value for the run loop				
		PV	INT	Current value for the run loop. ● Range: 0 ~ 16000			
	Output	DONE	BOOL	 Function block finished execution status "1" is output when the initialization function block is finished with no error and If an error occurs, '0' is displayed and the operation enters into the stop state. 			
		STAT	USINT	 Error status indication area Used to output the number of an error when it occurs during initialization function block execution. For description of errors, see GM Section 6.3 			
		ALM	USINT	Alarm status If an alarm happened the alarm number is displayed during the function block execution. For description of alarms, see section 4.4. 			
		MV	INT	MV data for the enabled run loop. • Range: 0 ~ 16000			
		TUNE_END	BOOL	Auto Tuning status. • "0": Auto Tuning is not completed or canceled. • "1": Auto Tuning is completed.			
		TUNE_P	UINT	P value obtained by Auto Tuning. • Range: 1 ~ 10000			
		TUNE_I	UINT	I value obtained by Auto Tuning. ● Range: 0 ~ 30000 (I value: 0.0 ~ 3000.0 sec)			
		TUNE_D	UINT	D value obtained by Auto Tuning. ● Range: 0 ~ 30000 (D value: 0.0 ~ 3000.0 sec)			

4.3 Errors on function block

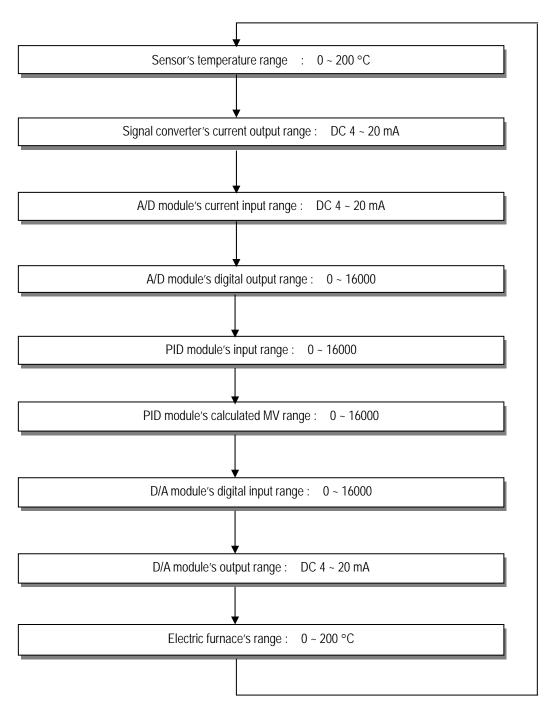
				F	unction	block			
STAT No.	Item	Descriptions	Initialization		Calculation		Auto Tuning		Corrective Action
			Array	Single	Array	Single	Array	Single	
0		Normal Run status							-
		Base location No. outside the setting range							Adjust it within the setting range (See Section 4.2, 4.3)
2		The corresponding base module hardware defect	0	0	0	0	0	0	Contact a service station
3		Slot location No. outside the setting range	0	0	0	0	0		Specify correctly the slot No. where the PID control module is mounted.
4		The specified slot has no PID control module	0	0	0	0	0		Mount the PID control module on the specified slot.
5	Local	A module other than the PID control module is loaded on.	0	0	0	0	0	U	Mount the PID control module on the specified slot.
6		Loop No. outside the setting range			-	0	-	0	Specify correctly the No. of the run loop.
7		PID control Module hardware Defect	0	0	0	0	0	0	Contact a service station.
8		PID control module shared memory defect	0	0	0	0	0	0	Contact a service station.
9		The run loop was not specified in the Initialization function block.		-	0	0	0		Specify correctly run loops in the initialization function block.
10		Inputs outside the setting range		0	0	0	0	0	One or more of SV, M_MV, P, I, D and PV outside the setting range, adjust it/them within its/their setting range.

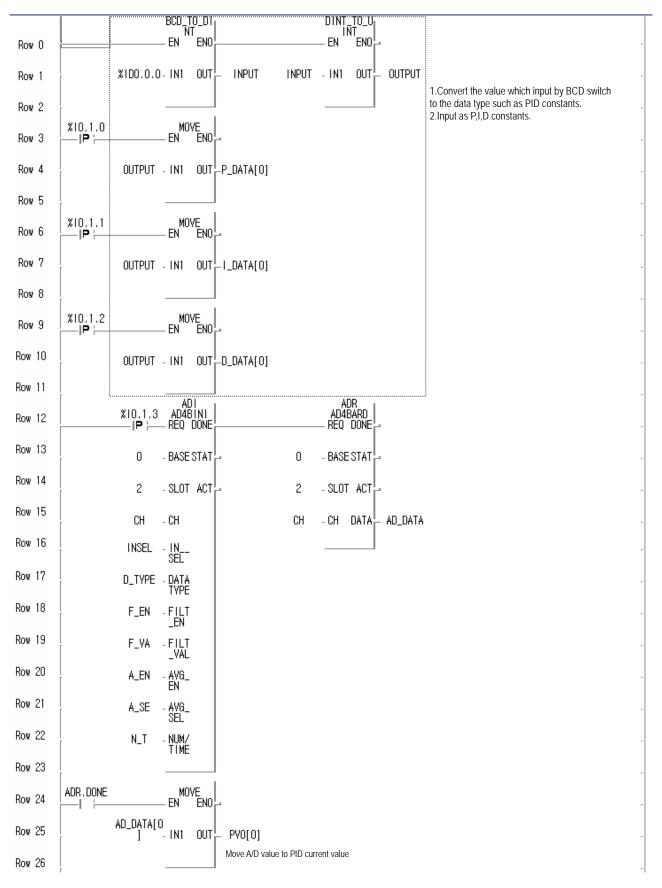

Errors indicated by an output variable STAT and their corrective actions are explained.

4.4 Alarms on function block

ALM No.	Description	Run status	Corrective Action			
0	Normal Run status	Normal run	-			
1	Auto Tuning execution during ON/OFF operation.	ON/OFF operation executed.	Stop Auto Tuning operation.			
2	ON/OFF operation during Auto Tuning execution.	Auto Tuning operation executed.	Stop ON/OFF operation.			
3	SV change during Auto Tuning	Run with the SV value before changing.	The alarm is executed only during Auto Tuning.			
4	SV value over	Run with Low limit (0) or High limit (16000)	Specify correctly the value.			
5	PV value over	Run with Low limit (0) or High limit (16000)	Specify correctly the value.			
6	MV value over	Run with Low limit (0) or High limit (16000)	Specify correctly the value.			

Chapter5 GM PROGRAMS

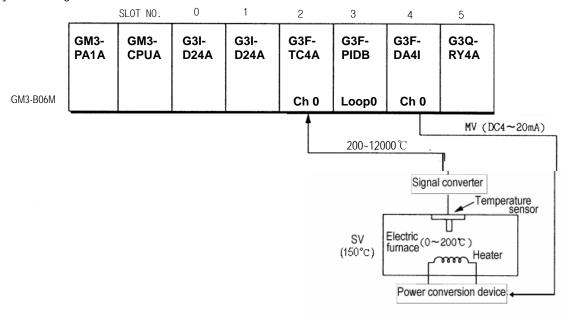

5.1 Program example using G3F-AD4B module


D)If %I0.1.3 is On A/D,PID,D/A modules are initialized.

Chapter 5 GM Programs

4) Signal processing relation with each modules

5) Program


U						
Row 27	×10.1.3	INIO PIDBAII REQ DO		PIDRD PIDBACAL REQ DONE		-
Row 21	×10.1.0	0 - BASEST		- BASE STAT		-
	×10.1.1	3 - SLOT A		- SLOT ALM		
Row 29	×10.1.2	LOOP - LOOP	LOOP	- LOOP ACT		
Row 30		RERD - PERD	00FF		MVO	-
Row 31		DR - D/R			PID MV value is used as D/A input value	-
Row 32			AM	- A_M_SV_C		-
Row 33		SV_UP - SV UP	MAN	- MAN_OUT_ MV CAL		-
Row 34		SV_DN - SV DOWN	SVO	- SV		-
Row 35		MV_L -MV LOW	PVO	- PV		-
Row 36		MV_H - MV HIGH				-
Row 37		DELT_MV - DELT A_MV				-
Row 38		P_DATA - P				-
Row 39		I_DATA - I				-
Row 40		D_DATA - D				-
Row 41		OUT_EN - OUT_ EN				-
Row 42		OUT_P - OUT_ PERD				-
Row 43		OUT_L - OUT_ LOW				-
Row 44		OUT_H - OUT_ HIGH				-
Row 45	[onoff - onof _Hys				-
Row 46	PIDRD.DON					-
Row 47	E 					-
Row 48	 MVO[O]] - IN1 OUT DA	PID MV value is used as D/A	input value		-
Row 49	PIDBD.DON		DAWR			-
Row 50	PIDRD.DON E	DAIN DA4INI REQ DONE	DAWR Da4Wr Req Don	E		-
Row 51	0	- BASE STAT	0 - BASE STA	т <mark>Г</mark>		-
Row 52	4	- SLOT ACT	4 - SLOT			-
Row 53	 DA_CH	I - CH	0 - CH			-
Row 54	TVP	- DATA TYPE	DA - DATA			-
Row 55	SEL	- SEL				-
Row 56	ſ					-

6) Input/Output variables used in this program.

	Variable name	Data Kind	Memory allocation	Used	Data Type	Initial Value	Comments
1	A_EN	VAR	<auto></auto>	*	ARRAY[16] OF BOOL		
2	A_SE	VAR	<auto></auto>	*	ARRAY[16] OF BOOL		
3	AD_DATA	VAR	<auto></auto>	*	ARRAY[16] OF INT		
4	ADI	VAR	<auto></auto>	*	FB Instance		
5	ADR	VAR	<auto></auto>	*	FB Instance		
6	AM	VAR	<auto></auto>	*	ARRAY[32] OF BOOL	•	
7	СН	VAR	<auto></auto>	*	ARRAY[16] OF BOOL	Setting	
8	D_DATA	VAR	<auto></auto>	*	ARRAY[32] OF UINT		
9	D_TYPE	VAR	<auto></auto>	*	ARRAY[16] OF BOOL		
10	DA	VAR	<auto></auto>	*	INT		
11	DA_CH	VAR	<auto></auto>	*	ARRAY[16] OF BOOL	Setting	
12	DAIN	VAR	<auto></auto>	*	FB Instance	-	
13	DAWR	VAR	<auto></auto>	*	FB Instance		
14	DELT_MV	VAR	<auto></auto>	*	ARRAY[32] OF UINT		
15	DR	VAR	<auto></auto>	*	ARRAY[32] OF BOOL		
16	F_EN	VAR	<auto></auto>	*	ARRAY[16] OF BOOL	Setting	
17	F_VA	VAR	<auto></auto>	*	ARRAY[16] OF USINT	Setting	
18	I_DATA	VAR	<auto></auto>	*	ARRAY[32] OF UINT	Setting	
19	INIO	VAR	<auto></auto>	*	FB Instance		
20	INPUT	VAR	<auto></auto>	*	DINT		
21	INSEL	VAR	<auto></auto>	*	ARRAY[16] OF BOOL	Setting	
22	LOOP	VAR	<auto></auto>	*	ARRAY[32] OF BOOL	Setting	
23	MAN	VAR	<auto></auto>	*	ARRAY[32] OF INT	i ooung .	
24	MV_H	VAR	<auto></auto>	*	ARRAY[32] OF UINT		
25	MV_L	VAR	<auto></auto>	*	ARRAY[32] OF UINT		
26	MVO	VAR	<auto></auto>	*	ARRAY[32] OF INT		
27	N_T	VAR	<auto></auto>	*	ARRAY[16] OF UINT		
28	ONOFF	VAR	<auto></auto>	*	ARRAY[32] OF UINT		
29	OOFF	VAR	<auto></auto>	*	ARRAY[32] OF BOOL		
30	OUT_EN	VAR	<auto></auto>	*	ARRAY[32] OF BOOL		
31		VAR	<auto></auto>	*	ARRAY[32] OF UINT	<u>.</u>	
32		VAR	<auto></auto>	*	ARRAY[32] OF UINT		
33	OUT_P	VAR	<auto></auto>	*	ARRAY[32] OF UINT		
34	OUTPUT	VAR	<auto></auto>	*	UINT		
35	P_DATA	VAR	<auto></auto>	*	ARRAY[32] OF UINT	Setting	
36	PIDRD	VAR	<auto></auto>	*	FB Instance	county	
37	PV0	VAR	<auto></auto>	*	ARRAY[32] OF INT		
38	RERD	VAR	<auto></auto>	*	ARRAY[32] OF UINT	Setting	
39	SEL	VAR	<auto></auto>	*	ARRAY[16] OF USINT		
40	SV_DN	VAR	<auto></auto>	*	ARRAY[32] OF UINT		
41	SV_UP	VAR	<auto></auto>	*	ARRAY[32] OF UINT		
42	SVO	VAR	<auto></auto>	*	ARRAY[32] OF INT	Setting	
43	TYP	VAR	<auto></auto>	*	ARRAY[16] OF BOOL	Journa	

5.2 Program using the auto tunning function (TC module used)

1) System configuration

2) Initial value

(1) PID module

A) Loop : Loop 0

- B) Cycle : 50ms
- C) Forward/reverse action : Forward action
- D) MV value : 8000(700 °C)

E) Auto/Manual calculation selection : After synchronization, auto operation with P,I,D constants.

- (2) A/D module
- A) Channel : 0

B) Input sensor type : K TYPE(-200~1200℃)

(3) D/A module

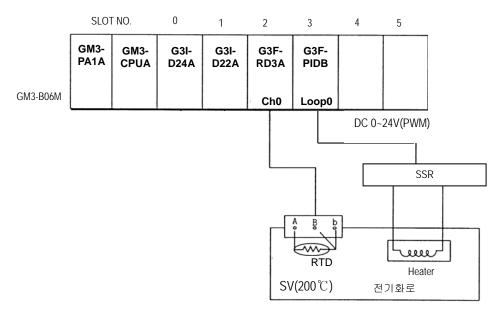
- A) Channel : 0
- B) Input data type : 0 ~ 16000

C) Output status when a channel is not used or CPU stops : Mid-value of the output range.

2) Program descriptions

- (1) The converted temperature value is transferred 0~16000 and input as a current value..
- (2) PID is set MV as 700°C and P,I,D constants are calculated by auto-tuning.
- PID control is executed with this calculated value.
- (3) PID calculated values are output to D/A module' ch0.

	3) Program		
Row O			
Row 1		TC_RD TC4ARD REQ DONE	
Row 2	0 - BASE STAT	0 - BASE STAT	
Row 3	1 - SLOT ACT	2 - SLOT ACT	
Row 4	CH_TC - CH	TC_CH - CH ALM	
Row 5	KTYPE - TYPE		
Row 6			channel's temperature value)
Row 7		SCAL SCALO (Temp	erature value is changed to 0~16000)
Row 8	SCALO[0] - IN1 OUT PV0[0]		
Row 9		INIO .	ATO .
Row 10		PIDBINI REQ DONE	
Row 11	END IP /	0 - BASE STAT	0 - BASE STAT
Row 12		2 - SLOT	3 - SLOT ALM - ALM
Row 13		0 - LOOP	O -LOOP MY MY
Row 14	END IP - O - BASE STAT After auto-tuning,	1 - PERD	ENABLE - AUTO TUNE - END TUNE _END
Row 15	auto-run is executed 3 - SLOT ALM	DRO - D/R	SV - SV TUNE - PO
Row 16	O -LOOP MV MV1	SV_UP - SV UP	
Row 17	OFF - ONSV_C OFF AL	SV_DN - SV_ DOWN	TUNE DO
Row 18	AUTO - A_M OUT	MV_L - MV LOW	
Row 19	MAM - MAN_	MV_H - MV HIGH	
Row 20	SV - SV	DELT_MV - DELT A_MV	
Row 21	PV0[01_: PV	P0 - P	
Row 22		10 - 1	
Row 23		D0 - D	
Row 24		OUR_E - OUT_	
Row 25		OUT_T - OUT_ PERD	
Row 26		OUT_L - OUT_ LOW	
Row 27		OUT_EN - OUT_ HIGH	
Row 28		ON_HYS - ONOF _HYS	
Row 29	l ſ		


Row 30	l ſ	
Row 31	ATO.DONE CALO.DONE MOVE	-
Row 32	MY - INI OUT	 DA (During auto-tuning MV is transferred to D/A module)
Row 33		
Row 34	CALO.DONE ATO.DONE MOVE	-
Row 35	MV1 - IN1 OUT	 DA (During auto-tuning MV is transferred to D/A module)
Row 36	 	
Row 37	ATO.DONE DA4INI	REQ_DONE
Row 38	CALO.DONE 0 - BASE STAT	0 - BASE STAT
Row 39	3 - SLOT ACT	- 4 - SLOT
Row 40	DA_CH - CH	0 - CH
Row 41	TVP - DATA TVPE	DA - DATA
Row 42	SEL - SEL	
Row 43	ļ]	

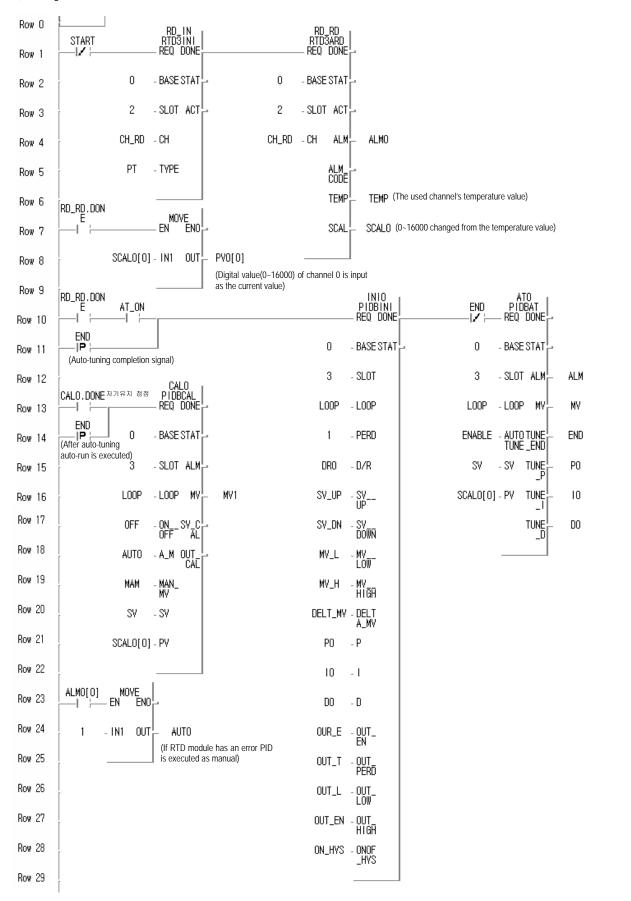
Input/Output variables used in this program

	Variable name	Data Kind	Memory allocation	Used	Data Type	Initial Value	Comments
1	ALM	VAR	<auto></auto>	*	USINT		
2	AT_ON	VAR	<auto></auto>	*	BOOL		
3	AT0	VAR	<auto></auto>	*	FB Instance		°
4	AUTO	VAR	<auto></auto>	*	BOOL		
5	CALO	VAR	<auto></auto>	*	FB Instance		·····
6	СН_ТС	VAR	<auto></auto>	*	ARRAY[16] OF BOOL		
7	DO	VAR	<auto></auto>	*	UINT		o
	DA	VAR	<auto></auto>	*	INT		
9	DA_CH	VAR	<auto></auto>	*	ARRAY[16] OF BOOL	Setting	o
10	DAIN	VAR	<auto></auto>	*	FB Instance		
11	DAWR	VAR	<auto></auto>	*	FB Instance		·····
12	DELT_MV	VAR	<auto></auto>	*	UINT		
13	DRO	VAR	<auto></auto>	*	BOOL		·····
14	ENABLE	VAR	<auto></auto>	*	BOOL	1	
15	END	VAR	<auto></auto>	*	BOOL		·····
16	10	VAR	<auto></auto>	*	UINT		
17	INIO	VAR	<auto></auto>	*	FB Instance		•
18	KTYPE	VAR	<auto></auto>	*	ARRAY[16] OF USINT		
19	MAM	VAR	<auto></auto>	*	INT		o
	MV	VAR	<auto></auto>	*	INT		
	MV_H	VAR	<auto></auto>	*	UINT		·····
	MV_L	VAR	<auto></auto>	*	UINT		
23	MV1	VAR	<auto></auto>	*	INT		·····
24	OFF	VAR	<auto></auto>	*	BOOL		
25	ON_HYS	VAR	<auto></auto>	*	UINT		·····
26	OUR_E	VAR	<auto></auto>	*	BOOL		
	OUT_EN	VAR	<auto></auto>	*	UINT		·····
	OUT_L	VAR	<auto></auto>	*	UINT		
29	OUT_T	VAR	<auto></auto>	*	UINT		°
30	PO	VAR	<auto></auto>	*	UINT		
31	PV0	VAR	<auto></auto>	*	ARRAY[32] OF INT		°
32	SCALO	VAR	<auto></auto>	*	ARRAY[16] OF INT		
33	SEL	VAR	<auto></auto>	*	ARRAY[16] OF USINT		
	START	VAR	<auto></auto>	*	BOOL		
	sv	VAR	<auto></auto>	*	INT	10000	
	SV_DN	VAR	<auto></auto>	*	UINT		
	SV_UP	VAR	<auto></auto>	*	UINT		
38	тс_сн	VAR	<auto></auto>	*	ARRAY[16] OF BOOL		
39	TC_INI	VAR	<auto></auto>	*	FB Instance		0
40	TC_RD	VAR	<auto></auto>	*	FB Instance		
41	TEMP1	VAR	<auto></auto>	*	ARRAY[16] OF INT		¢
42	TYP	VAR	<auto></auto>	*	ARRAY[16] OF BOOL		

5.3 Program using PWM

1) System configuration

- 2) Initial value
 - (1) PID module
 - A) Loop : 0
 - B) Cycle : 50ms
 - C) Forward/reverse action : Forward action
 - D) SV: 8000
 - E) PID constants: P,I,D constants by Auto-tuning
 - F) Auto calculation/manual calculation : Auto In case that RTD doesn't have an error.


Manual – In case that RTD has an error.

- G) Output :PWM
- H) Output cycle:10 ms

(2) RTD module

- A) Channel : 0
- B) RTD module's sensor : Pt100
- C) Input temperature range: 200~600 ℃ (SCAL:0~16000)
- 3) Program description
 - (1) RTD module detects the heater's temperature with Pt100 and the detected value is changed to the digital value.
 - (2) MV value is set as 8000(Temperature 200°C) and PID is executed with auto-tuned P,I,D If PID module has an error (by RTD module's disconnection) PID is run with SV(0).

4) Program

5) Input/Output variables used in this program.

	Variable name	Data Kind	Memory allocation	Used	Data Type	Initial Value	Comments
1 4	ALM	VAR	<auto></auto>	¥	USINT		
2 7	ALMO	VAR	<auto></auto>	÷	ARRAY[8] OF BOOL		
3 7	AT_ON	VAR	<auto></auto>	÷	BOOL		
4 7	ATO	VAR	<auto></auto>	÷	FB Instance		
5 7	AUTO	VAR	<auto></auto>	÷	BOOL		
6 0	CALO	VAR	<auto></auto>	÷	FB Instance		
7 0	CH_RD	VAR	<auto></auto>	£	ARRAY[8] OF BOOL	Setting	
- 1-	DO	VAR	<auto></auto>	÷	UINT		
9 C	DELT_MV	VAR	<auto></auto>	£	UINT		
10 C	DRO	VAR	<auto></auto>	£	BOOL		
11 Ë	ENABLE	VAR	<auto></auto>	£	BOOL	1	
	END	VAR	<auto></auto>	*	BOOL		
13 ï	0	VAR	<auto></auto>	÷	UINT		
14 ï	NIO	VAR	<auto></auto>	£	FB Instance		
15 Ü	LOOP	VAR	<auto></auto>	÷	USINT	7	
16 N	MAM	VAR	<auto></auto>	÷.	INT	0	
17 N	MV	VAR	<auto></auto>	÷	INT		
18 N	MV_H	VAR	<auto></auto>	÷.	UINT		
19 🕅	MV_L	VAR	<auto></auto>	÷	UINT		
	MV1	VAR	<auto></auto>	÷	INT		
	OFF	VAR	<auto></auto>	÷	BOOL		
22 0	ON_HYS	VAR	<auto></auto>	÷	UINT		
23 0	OUR_E	VAR	<auto></auto>	÷	BOOL	1	
24 0	OUT_EN	VAR	<auto></auto>	£	UINT		
25 0	OUT_L	VAR	<auto></auto>	÷	UINT		
26 0	OUT_T	VAR	<auto></auto>	÷	UINT	1	
27 F	PO	VAR	<auto></auto>	÷	UINT		
28 F	PT	VAR	<auto></auto>	÷	ARRAY[8] OF BOOL		
29 F	PVO	VAR	<auto></auto>	÷	ARRAY[32] OF INT		
	RD_IN	VAR	<auto></auto>	÷	FB Instance		
	RD_RD	VAR	<auto></auto>	*	FB Instance		
32 Š	SCALO	VAR	<auto></auto>	÷	ARRAY[8] OF INT		
33 Š	START	VAR	<auto></auto>	÷	BOOL		
	SV	VAR	<auto></auto>	÷	INT	5600	
35 S	SV_DN	VAR	<auto></auto>	÷	UINT		
36 S	SV_UP	VAR	<auto></auto>	÷	UINT		
37 T	ТЕМР	VAR	<auto></auto>	*	ARRAY[8] OF INT		

Chapter6 BUFFER MEMORY CONFIGURAGION AND FUNCTIONS

The PID control module has the PLC CPU and the buffer memories for communications.

6.1 Buffer memory configuration

The followings describe buffer memory configuration

6.1.1 G3F-PIDB Buffer memory

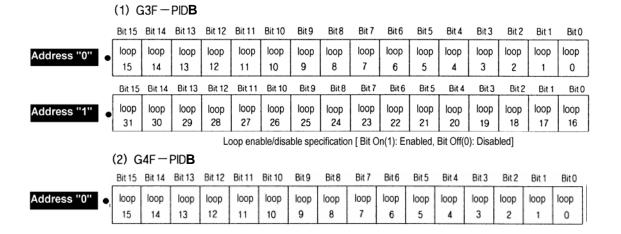
Address (Decimal)	Function	Descriptions	Default Setting	Read / Write	
0	Loop enable/disable Specification area (loop 0 to 15) Loop enable/disable Specification area	Bit On(1): Enabled Bit Off(0): Disabled	Disabled		
2	(loop 16 to 31)				
2~ 33	Control cycle of each loop	Range:1~9999 (0.01~99.99 sec)	10	ш	
34	Forward/Reverse action Specification area (loop 0 to 15)	Bit On(1): Reverse	0: Forward	ш	
35	Forward/Reverse action Specification area (loop 16 to 31)	Bit Off(0): Forward	0. Poliwalu		
36~ 67	SV-ramp of each loop(rising) *1		0:SV reaching Immediately.	ш	
68~ 99	SV-ramp of each loop(falling) *2	Setting range :0 to 65535 sec) [See section 2.6]	0:SV reaching Immediately	н	
100~ 131	MV low limit of each loop	Setting range :0~16000 (It should be set lower than MV higher limit) [See section 2.9]	0	ш	
132~ 163	MV higher limit of each loop	Setting range:1~16000 (It should be set higher than MV higher limit) [See section 2.9]	16000	и	
164~ 195	Δ MV Limit of each loop	Setting range:1~16000 [See section 2.10]	16000	и	
196~ 227	P of each loop	Setting range:1~10000	1	и	
228~ 259	l of each loop	Setting range:0~30000	0	и	
260~ 291	D of each loop	Setting range:0~30000	0	u	
292	Output enable/ disable (loop 0~15)	Dit Or (1) Fractia Dit Off(0) Disable	0. Disable		
293	Output enable/ disable (loop 16~31)	Bit On(1):Enable, Bit Off(0):Disable	0:Disable		
294~ 325	Output control cycle of each loop	Setting range :1~100 see (It should be higher than the loop control cycle)	10	ш	
326~ 357	Output lower limit of each loop (It should be lower than the upper limit)	Setting range:0~16000 [see section 2.11]	0	и	
358~ 389	Output upper limit of each loop (It should be lower than the lower limit)	Setting range:1~16000 [see section 2.11]	16000	и	
390~ 421	ON/OFF interval of each loop	Setting range:0~8000 [see section 2.8]	100	и	
422	SET DATA enable/disable (loop 0~15)	Bit On(1): Set address 0~421,424~493to a new SV value	0		
423	SET DATA enable/disable (loop16~31)	Bit Off(0): Set address 0~421,424~493to a previous value	0		
424 425	ON/OFF enable/disable (loop0~15) ON/OFF enable/disable (loop16~31)	Bit On(1):ON/OFF enable Bit Off(0):ON/OFF disable [see section 2.8]	0	ш	
426 427	Auto Tuning enable/ disable (loop 10~15) Auto Tuning enable/ disable (loop 16~31)	Bit On(1):Auto Tuning enable Bit Off(0):Auto Tuning disable [see section 2.5.2]	0	ш	

Address (Decimal)	Function	Descriptions	Default Setting	Read / Write	
428~ 459	Manual MV of each loop	Setting range :0~16000	0	ш	
460	Auto/Manual operation enable/disable (loop 0~15) Auto/Manual operation enable/disable	Bit On(1): Manual operation Bit Off(0):Auto operation	0	R/W	
461	(loop 16~31)				
493	SV of each loop	Setting range :0~16000	0	Ш	
494~ 525	PV of each loop	Setting range :0~16000	0	ш	
526~ 557	MV of each loop	Setting range :0~16000	0	읽기	
558~ 589	Calculated SV of each loop *3	Setting range :0~16000	-	Ш	
590~621	Output value of each loop	Setting range :0~1000(0.0~100.0%)	-	ш	
622	Auto Tuning completion(loop 0~15)	Bit On(1):Auto Tuning completion	-	и	
623	Auto Tuning completion(loop 16~31)	Bit Off(0):Auto Tuning running or PID controlling			
624~ 655	Auto Tuned P value of each	Range :1~10000	-	и	
656~ 687	Auto Tuned I value of each	Range :0~30000	-	и	
688~ 719	Auto Tuned D value of each	Range :0~30000	-	ш	
720	Status information (loop 0~15)	Bit On(1):Run		Ш	
721	Status information (loop 16~31)	Bit Off(0):Stop	-		
722~ 753	Alarm information of each loop	Bit0 :During ON/OFF, Auto Tuning executed → ON/OFF hold. Bit1 : During Auto Tuning, ON/OFF command → Auto Tuning, SV changed → Run with the previous SV Bit3 : Manual MV OVER → Run with the limit value (0 or 16000) Bit4 : SV setting OVER → Run with the limit value (0 or 16000) Bit5 : PV setting OVER → Run with the limit value (0 or 16000)	-	u	
754~ 785	Setting error information of each loop	Bit 0 : Control cycle setting error Bit 1 : MV upper/lower Limit setting error Bit 2 : Δ MV Limit setting error Bit 3 : P gain setting error Bit 4 : I gain setting error Bit 5 : D gain setting error Bit 6 : Output control cycle setting error Bit 7 : Output control cycle < Control cycle Bit 8 : Output MV upper/lower limit setting error Bit 9 : ON/OFF interval setting error	-	и	

6.1.2 G4F-PIDB buffer memory

Address (Decimal)	Function	Descriptions	Default Setting	Read / Write
0	Loop enable/disable Specification area (loop 0~15)	Bit On(1):Enable, Bit Off(0):Disable	Disable	R/W
1~ 16	Control cycle of each loop	Range :1~9999 (0.01~99.99 see)	10	ш
17	Forward/Reverse action Specification area (loop 0~15)	Bit On(1):Reverse, Bit Off(0):Forward	0: Forward	н
18~ 33	SV-ramp of each loop(rising) *1	Sotting range (0 to 45525 cos [cos costion 2.4]	0:SV reaching Immediately	и
34~ 49	SV-ramp of each loop(falling) *2	Setting range :0 to 65535 sec [see section 2.6]	0:SV reaching Immediately	и
50~ 65	MV low limit of each loop	Setting range :0~16000 (Under MV upper limit) [see section 2.9]	0	и
66~ 81	MV higher limit of each loop	Setting range :1~16000 (Over MV low limit) [see section 2.9]	16000	ш
82~ 97	Δ MV limit of each loop	Setting range :1~16000 [see section 2.10]	16000	и
98~ 113	P of each loop	Setting range :1~10000	1	и
114~ 129	l of each loop	Setting range :0~30000	0	ш
130~ 145	D of each loop	Setting range :0~30000	0	ш
146	Output enable/disable (loop 0~15)	Bit On(1):Enable, Bit Off(0):Disable	Disable	и
147~ 162	Output control cycle of each loop	Setting range:1~100 sec (It should be higher than the loop control cycle)	10	ш
163~ 178	Output low limit of each loop (It should be lower than the output upper limit)	Setting range :0~16000 [see section 2.11]	0	и
179~ 194	Output upper limit (It should be lower than the output lower limit)	Setting range :1~16000 [see section 2.11]	16000	ш
195~ 210	ON/OFF interval of each loop	Setting range :0~8000 [see section 2.8]	100	ш
211	SET DATA enable/disable (loop 0~15)	Bit On(1): Set address 0~210,212~246 to a new SV value Bit Off(0): Set address 0~210,212~246to a previous value	0	ш
212	ON/OFF enable/disable (loop 0~15)	Bit On(1):ON/OFF enable Bit Off(0):ON/OFF disable [see section 2.8]	0	ш
213	Auto Tuning enable/disable (loop 0~15)	Bit On(1):Auto Tuning enable Bit Off(0):Auto Tuning disable [see section 2.5.2]	0	ш
214~ 229	Manual MV of each loop	Setting range :0~16000	0	ш

Address (Decimal)	Function	Descriptions	Default Setting	Read / Write
230	Auto/Manual operation enable/disable (loop 0-15)	Bit On(1): Manual operation Bit Off(0): Auto operation	0	ш
231~ 246	SV of each loop	Setting range :0~16000	0	ï
247~ 262	PV of each loop	Setting range :0~16000	0	и
263~ 278	MV of each loop	Setting range :0~16000	0	읽기
279~ 294	Calculated SV of each loop *3	Range :0~16000	-	읽기
295~310	Output value of each loop	Range:0~1000(0.0~100.0%)	-	ш
311	Auto Tuning completion (loop 0~15)	Bit On(1):Auto Tuning completion Bit Off(0):Auto Tuning running or PID controlling	-	и
312~ 327	Auto Tuned P value of each loop	Range :1~10000	-	и
328~ 343	Auto Tuned I value of each loop	Range :0-30000	-	и
344~ 359	Auto Tuned D value of each loop	Range :0~30000	-	и
360	Status information (loop0~15)	Bit On(1):Run Bit Off(0):Stop	-	и
361~ 376	Alarm information of each loop	Bit 0 : During ON/OFF, Auto Tuning executed → ON/OFF hold Bit 1 : During Auto Tuning, ON/OFF command → Auto Tuning hold Bit 2 : During Auto Tuning, SV changed → Run with the previous SV Bit 3 : Manuel MV setting OVER → Run with the limit value (0 or 16000) Bit 4 : SV setting OVER → Run with the limit (0 or 16000) Bit 5 : PV setting OVER → Rung with the limit (0 or 16000)		u
377~ 392	Setting error information of each loop	Bit 0 : Control cycle setting error Bit 1 : MV upper/lower limit setting error Bit 2 : △MV Limit setting error Bit 3 : P gain setting error Bit 4 : I gain setting error Bit 5 : D gain setting error Bit 6 : Our control cycle setting error Bit 7 : Output control cycle < Control cycle Bit 8 : Output MV upper/lower limit setting error Bit 9 : ON/OFF interval setting error	-	и


*1 : If SV is modified higher than the current SV during PID operation, specify the rising ramp time for the system to be stable.
*2 : If SV is modified lower than the current SV during PID operation, specify the falling ramp time for the system to be stable.
*3 : The changed value of SV is shown in proportion to the rising ramp time or the falling ramp time.

6.2 Functions of buffer memory

Each address in the buffer memory occupies one word and it is represented with 16 bits. In the 16 bits which compose an address, every bit can be set to either "1" when it should be turned On or "0" when Off in order to implement the function of each bit.

6.2.1 Specifying loop enable/disable (G3F-PIDB : Address 0, 1, G4F-PIDB : Address 0)

- 1) Loop enable/disable specification is possible on every channel.
- 2) Disabled loops will not be used in processing.
- 3) The followings show the bit corresponding to each loop.

6.2.2 Specifying Forward/Reverse action (G3F-PIDB : Address 34, 35, G4F-PIDB : Address 17)

Turns the corresponding bit Off(0) for forward action processing and On (1) for reverse action processing.
 Default is forward action.

3) The following show the bit corresponding to each loop.

(1) G3F-PIDB								ON[1]	:Rever	se act	ion, O	FF[0]:	Forwa	rd acti	on	
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AAddress "34"	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop
AAuuress J4	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AAddress "35"	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
(2) G4F-PIDB								ON[1]	: Reve	rse ac	tion, C)FF[0]	:Forwa	ard act	ion	
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AAddress "17"	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop
AAddress 17	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

6.2.3 Specifying Output enable/disable(G3F-PIDB : Address 292, 293, G4F-PIDB : Address 146)

- 1) If the bit of the output enable/disable area is set as "1" the output of PID module is allowed and in case of "0" the output is prohibited.
- 2) The followings show the bit corresponding to each loop.

(1) G3F-PIDB	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	ON Bit 7	1]:Out Bit 6	puten Bit5	able, Bit 4	OFF[0 Bit 3	1:Outp Bit 2	ut disa Bit 1	ible Bit0
AAddress "292"	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	BitO
AAddress "293"	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
(2) G4F-PIDB	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit8	ON[Bit 7	[1]: Ou Bit6	tput ei Bit5	nable, Bit 4	OFF[0 Bit 3)]: Out Bit 2	put dis Bit 1	able Bit0
AAddress "146"	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

6.2.4 Specifying Set data enable/disable (G3F-PIDB : Address 422, 423, G4F-PIDB : Address 211)

- If a bit, corresponding to each loop, in Set data specification area is turned On(1), then the PID processing is executed with new user-defined data due to loop enable/disable specification, forward/reverse action specification, setting SV, setting M_MV, and change of P.I.D constants.
- 2) If the bit corresponding to each loop is not turned On(1), then the PID processing is executed not with the new userdefined data but with the previous Setting range.
- 3) The followings show the bit corresponding to each loop.

(1) G3F-PIDB					C)N[1]:S	Set dat	a enal	ole, Ol	F[0]: 1	Set da	ta disa	able			
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AAddress "422"	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
[<u> </u>													.	.	
AAddress "423"	loop	loop	loop	loop	loop	loop	000	loop	loop	loop	loop	loop	loop	loop	loop	loop
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
(2) G4F-PIDB)N[1]:		ta ena								
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AAddress "211"	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop
	15		1.2	10	1	1.0	0	0	7				0			

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

6.2.5 Specifying ON/OFF action(G3F-PIDB : Address 424, 425, G4F-PIDB : Address 212)

- 1) If the bit of ON/OFF specification area is set as "1" ON/OFF action is enabled and set as "0" ON/OFF is disabled.
- 2) The following show the bit corresponding to each loop.

(1) G3F-PIDB						ON[1]:	:ON/O	FF act	ion en	able, (OFF[0]	:ON/C)FF ac	tion di	sable	
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AAddress "424"	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AAddress "425"	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
(2) G4F-PIDB						ON[1]:	ON/O	FF act	ion en	able, (OFF[0]	:ON/C)FF ac	tion di	sable	
· · /	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop
AAddress "212"	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

6.2.6 Auto -tuning operation enable/disable (G3F-PIDB : Address 426, 427, G4F-PIDA : Address 213)

- 1) Proportional constant(P) ,integral constant(I) ,derivative constant(D) of the system to control can be automatically set.
- 2) Since P,I,D constant decided by auto tuning not to be optimal for the system to control ,the P,I,D constant needs adjustment a little
- 3) Loop setting is as specified below.

(1) G3F-PIDB ON[1]:Auto tuning operation enable, OFF[0]: Auto tuning operation disable

			01	111.710		ng op	Junior	i criab	10, 01	[0].7			oorane	in uisu	010	
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AAddress "426"	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop
AAUULESS 420	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AAddress "427"	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
(2) G4F-PIDB			ON[1]:Auto	tunin	g oper	ation e	enable	, OFF[[0]: Au	to tuni	ng ope	eration	disabl	е	
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

	DICTO	010114	UNITO	DIC 12	DICTI	UNITO	DIG	DICO	DIC /	DICO	DRU	0114	DICO	UILL	DICT	DILU
AAddress "213"	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

6.2.7 Specifying auto/manual operation enable/disable(G3F-PIDB:Address460, 461,G4F-PIDB :Address 230)

- 1) Turn the corresponding bit Off(0) if a loop runs with auto processing. Turn the corresponding bit On if a loop runs with manual MV set before by the user.
- 3) The followings show the bit corresponding to each loop.

(1) G3F-PIDB ON[1]:Manual operation, OFF[0]: Auto operation																
(1) G3F-PIDB	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	ON Bit 7	1 :Mai Bit 6	nual o Bit 5	peratio Bit 4	n, OF Bit3	F 101: A Bit 2		
	DILIU	DIL 14	DILIS	DILTZ	DICTI	DICTO	DILB	DILO	DILT	DILU	DILU	DIL4	DILJ	DILZ	Bit 1	BitO
AAddress "460"	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop						
AAddress 400	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop						
AAddress "461"	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							- Matrix I									
(2) G4F-PIDB									ON	[1]: Ma	nual c	perati	on, OF	F[0]: A	Auto o	peratior
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop						
AAddress "230"	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

6.2.8 Auto tuning complete (G3F-PIDB : Address 622,623, G4F-PIDB : Address 311)

- If auto tuning is complete ,each of loop bit is turned on(1). 1)
- 2) The followings show the bit corresponding to each loop.

(1) G3F-PIDB		ON[1]: aut	o tun	ing c	ompl	etion,	OFF[0]: au	to tur	ning r	unnii	ng or	PID	contr	olling
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AAddress "622"	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop						
AAUUICSS UZZ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AAddress "623"	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop						
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
(2) G4F-PIDB	(ON[1]:	auto	tunir	ia coi	nplet	tion, c	OFF[0]	: auto	o tuni	na ru	nnina	a or F	PID co	ontro	llina
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AAddress "311"	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop						
AAuuress 511	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															CONTRACTOR OF THE OWNER.	and the second second

uto tunin nlation חוח

6.2.9 Status information (G3F-PIDB : Address 720, 721, G4F-PIDB : Address 360)

- 1) Area for storing the each loop's status.
- 2) Bit"1" means on running and bit "0" means stop.
- 3) The followings show the bit corresponding to each loop.

(1) G3F-PIDB												ON[1]:Run,	OFF[()]:Stop)
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AAddress "720"	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Addrace #721"	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop
AAddress "721"	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
(2) G4F-PIDB												ON[1]:Run,	OFF[(0]:Stop)
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Г	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop	loop
AAddress 300	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

6.2.10 Setting PID control data

1) The addresses for PID control data and their setting range are given as follows.

Address (1	10 decimal)	ltem	Sotting range	Default
G3F-PIDB	G4F-PIDB	llem	Setting range	Delault
2~33	1~16	Control cycle	1 ~ 9999	"10"
36~67	18~33	Rising ramp of SV	0 ~ 65535	"O"
68~99	34~49	Falling ramp of SV	0~00000	0
100~131	50~65	Low limit of MV		"O"
132~163	66~81	Upper limit of MV	0 ~ 16000	"16000"
164~195	82~97	∆ MV Limit		"16000"
196~227	98~113	Р	1 ~ 10000	"1"
228~259	114~129		0 ~ 30000	"0"
260~291	130~145	D	0~30000	0
294~325	147~162	Output control cycle	1 ~ 100	"10"
326~357	163~178	Output low limit	0 ~ 16000	"0"
358~389	179~194	Output upper limit	0~10000	"16000"
390~421	195~210	ON/OFF interval	0 ~ 8000	"100"
428~459	214~229	Manual MVs		
462~493	231~246	SV		"0"
494~525	247~262	PV	0 ~ 16000	0
526~557	263~278	MV		
558~589	279~294	Calculated SV		-
590~621	295~310	Output value	0 ~ 1000	-
624~655	312~327	Auto Tuned P	1 ~ 10000	-
656~687	328~343	Auto Tuned I	0 ~ 30000	-
688~719	344~359	Auto Tuned D	0 - 30000	-

- 2) If PID data is out of range, PID runs with the previous SV.
- 3) If PID data is out of range, the error number is displayed on the error information.

6.2.11 Alarm information (G3F-PIDB : Address 722~753, G4F-PIDB : Address 361~376)

1) Bit0~Bit5 for the alarm information is used and if the each bit is "ON" a user can see the alarm information.

Bit	Description	Remark
0	During ON/OFF action ,Auto Tuning executed $ ightarrow$ ON/OFF action hold	
1	During Auto Tuning, ON/OFF command \rightarrow Auto Tuning hold	
2	During Auto Tuning, SV changed $ ightarrow$ Run with the previous SV	
3	Out of range manual MV \rightarrow Run with the limit value (0 or 16000)	
4	Out of range SV \rightarrow Run with the limit (0 or 16000)	
5	Out of range SP \rightarrow Run with the limit (0 or 16000)	
6~15	Ignored	

6.2.12 Setting error information (G3F-PIDB : Address 754~785, G4F-PIDB : Address 377~392)

1) When setting the control data for each loop, if any setting exceeds its range the error information is indicated on this area.

2) Bit 0 to 9 are used to indicate error information for each loop. The following shows the error information indicated by each bit when it turns On(1).

Bit	Description	Remark
0	Control cycle setting error(1~9999)	
1	MV Upper/Lower limit setting error (0~16000)	
2	\triangle MV Limit setting error (0~16000)	
3	P gain setting error (1~10000)	
4	I gain setting error (0~30000)	
5	D gain setting error (0~30000)	
6	Output control cycle setting error (1~100)	
7	Output control cycle < Control cycle	
8	Output MV upper/lower Limit setting error (0~16000)	
9	ON/OFF interval setting error (0~8000)	
10~15	Ignored	

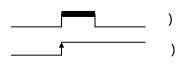
Chapter 7. DEDICATED INSTRUCTIONS FOR SPECIAL MODULES (Read from /Write to buffer memory)

The PID module is available only for local and occupies 16 I/O points.

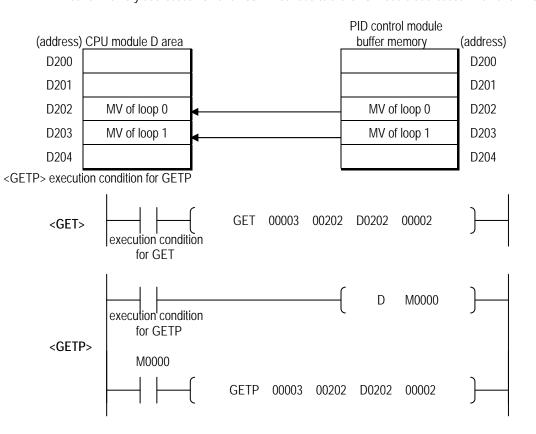
7.1 Read from buffer memory · · · GET, GETP

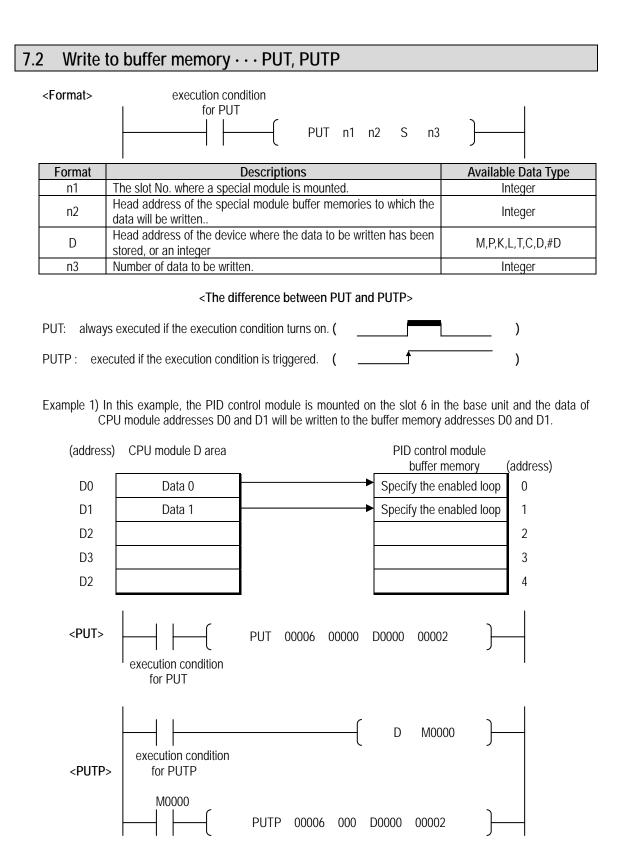
<format></format>	
-------------------	--

execution condition



Format	Descriptions	Available Data Type		
n1	The slot No. where a special module is mounted	Integer		
n2	Head address of the special module buffer memories from which the data will be read.	Integer		
D	Head address of the device to store the data read.	M,P,K,J,T,C,D,#D		
n3	Number of data to be read .	Integer		


<The difference between GET and GETP>


GET: Always executed if the execution condition turns on.(

GETP: Executed if the execution condition is triggered. (

Example 1) In this example, the PID control module is mounted on the slot 3 in the base unit and the data of buffer memory addresses 202 and 203 will be read to the CPU module addresses D202 and D203.

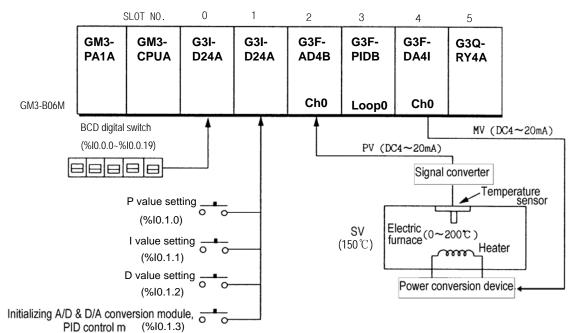
Chapter 8. PROGRAMMING

8.1 Basic programming

- σ The following describes the method to set the running conditions in the buffer memories of the PID control module.
- σ The PID control module is already mounted on the slot 0.
- σ The PID control module occupies 16 I/O points.

8.1.1 G3F-PIDB

	P0020							
, <u></u>	11			FMOV	10000	D0016	00032	Setting SV
T	rigger	-		FMOV	00100	D0048	00032	Setting the SV_UP
				FMOV	00100	D0080	00032 -	Setting the SV_DN
	-			FMOV	08000	00143	00016	Setting the manual MV
				FMOV	00500	D0175	00032	
			_	FMOV	01000	D0207	00032	Setting the P,I,D constant
				FMOV	01000	D0239	00032	
-	F0010		PUT	00000	00494	D0111	00032 -	Writing PV stored in address d111 to
,	P0021		PUTP	00000	00000	hffff	00002 -	142 to internal memory Setting loop enable(0~31)
T	rigger		PUTP	00000	00034	hFFFF	00001	Setting reverse action(0~15)
	-	-	PUTP	00000	00035	h0000	00001	Setting forward action(16~31)
		a	PUTP	00000	00426	h0000	00001	Setting auto-tuning disable(0~15)
			PUTP	00000	00427 _	hFFFF	00001	Setting auto-tuning enable(16~31)
1			PUTP	00000	00462	D0016	00032	Write SV stored in address D16t~ D4
		·	PUTP	00000	00036	D0048	00032 -	to internal memory Write SV up/down stored in addre
		-	PUTP	00000	00068	D0080	00032 -	D48~D79 or D80~D111 to inter memory
			PUTP	00000	00428	D0143	00032	Write manual MV to internal memory
	-		PUTP	00000	00196	D0175	00032	Write P,I,D constant to internal memory
			PUTP	00000	00228	D0207	00032	<pre>}</pre>
	-		PUTP	00000	00260	D0239	00032 -	
			PUTP	00000	00422	bFFFF	00002 -	Setting SET data enable
	P0022		PUTP	00000	00460	hFFFF	00001	Setting manual operation(loop0~15)
Tri			PUTP	00000	00461	h0000	00001	Setting PID operation(loop16~31)
	gger F0010		GET	00000	_00720	00012	00002 -	Reading loop run information
			GET	00000	00622	D0014	00002	Reading auto tuning end
Tri	gger		GET	00000	00526	D0271	00032 -	information Reading MV
			GET	00000	00558	D0303	00032	Reading SV_RAMP output
			GET	00000	00558	D0335	00032	Reading error code
				0000	00704	00000		


8.1.2 G4F-PIDB

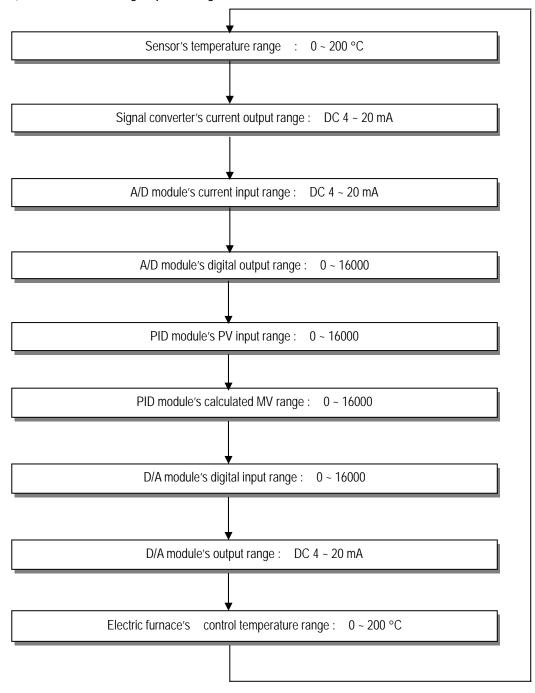
	P0020							
0	Trigger		· · · · · · · · · · · · · · · · · · ·	FMOV	10000	D0000	00016	Setting SV
	inquoi			FMOV	00100	D0016	00016	Setting the SV_UP
				FMOV	00100	D0032	00016	Setting the SV_DN
				FMOV	08000	D0048	00016	Setting the manual MV
				EHOV	00500	00004		
	-			FMOV	00500	D0064	00016	Setting the P,I,D constant
				FMOV	01000	D0080	00016	
		L		FMOV	01000	D0096	00016	
50	F0010	Triager	PUT	00000	00247	D0120	00016	Writing PV stored in address D120-D135 to internal memory
60	P0021		PUTP	00000	00000	hFFFF	00001	Setting loop enable(loop0~15)
	Triaaer		PUTP	00000	00017	h00FF	00001 -	Setting reverse action(loop0~7) and
					· · · ·			forward action(loop8~15)
		•	PUTP	00000	00213	HFF00	00001	Setting auto-tuning enable(loop8~15)
			PUTP	00000	00231	D0000	00016	Write SV to internal memory
			PUTP	00000	00018	D0016	00016	Write SV up rising time to internal memory
			PUTP	00000	00034	D0032	00016	Write SV down falling time to internal memory
		-	PUTP	00000	00214	D0048	00016	Write manual MV to internal memory
			PUTP	00000	00098	D0064	00016	
			PUTP	00000	00114	D0080_	00016	Write P,I,D constant to internal memory
	~							J
	~		PUTP	00000	00130	D0096	00016	
			PUTP	00000	00211	hFFFF	00001	Setting SET data enable
160	P0022		PUTP	00000	00230	HOOFF	00001	Setting manual operation(loop0~7) and PID operation(loop8~15)
170	F0010	Iriager	GET	00000	00360	D0200	00001	Reading loop run information
	Triaaer		GET	00000	00011		00001	Reading auto tuning end
				0000	00311	D0201		information
			GET	00000	00295	D0300	00016	Reading MV
		-	GET	00000	00297	D0316	00016	Reading SV_RAMP output
			GET	00000	00372	D0202	00016	Reading error code
216							END	
210								

8.2 Application programming

8.2.1 Program example using G3F-AD4B module

1) System configuration

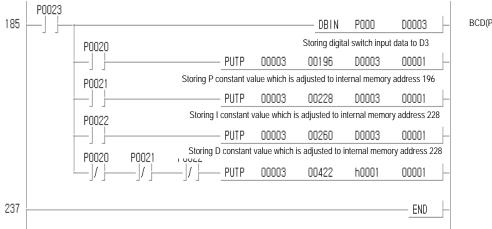
- 2) Initial value
 - (1) PID module
 - A) Used loop : Loop 0
 - B) Control cycle : 10ms
 - C) Forward, reverse action : Forward action
 - D) SV value : 12000
 - E) Auto/Manual calculation selection : Auto calculation
 - F) Initial PID constants : P=200,I=500,D=500
 - (2) A/D module
 - A) Used channel : 0
 - B) Output data type : 0 ~ 16000
 - C) Average calculation : 20 times
 - D) Signal converter specification : Input 0~200 °C , Output 4~20mA
 - (3) D/A module
 - A) Use channel : 0
 - B) Input data type selection : -192 ~ 16191
 - C) Output status when a channel is not used or CPU stops : Mid-value of the output range.


3) Program descriptions

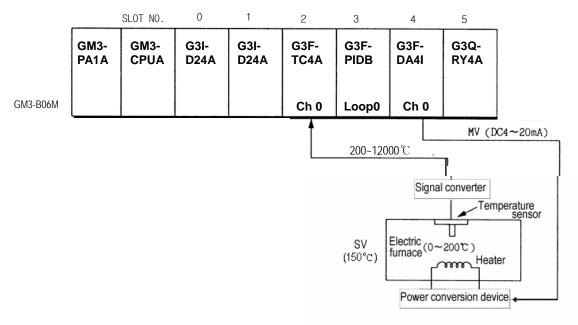
- A)Temperature 0 ~ 200°C from sensor is transferred to 4 ~ 20 mA and the current is input to A/D module to convert to digital value.
- B) 150°C(The signal converter's output is 16mA, Target value 12000) is set with SV value in PID and P,I,D constants are controlled with the initialized value.
 - If %I0.1.0 is On the modified value by BCD switch is set with P.

If %I0.1.1 is On the modified value by BCD switch is set with I.

If %I0.1.2 is On the modified value by BCD switch is set with D. C)PID calculated MV value is output on D/A module's channel 0. D)If %I0.1.3 is On A/D,PID,D/A modules are initialized.


1) Modules and their signal processing

2) Program


) Prog	ram		
_	P0023		
0	Trigger	PUTP 00002 00000 h0001 00001	A/D input module initialization
	ттууы	Specifying channel 0enable	
		PUTP 00002 00001 h0000 00001	
		Specifying data type to 0~16000	
		PUTP 00002 00002 h0000 00001	
		Specifying channel 0 input type to current	
		Specifying channel 0 filter enable	
		PUTP 00002 00004 00050 00001 -	
		Setting channel 0 filter constant to 50	
	P0023	Specifying SET data enable of the A/D input module	
55			D/A output module initialization
		Specifying channel 0enable	
		PUTP 00004 00001 h0001 00001	
		Specifying data type to 0~16000	
		PUTP 00004 00018 00003 00001 -	
		Specify D/A output when CPU module is stop	
		PUTP000040003400001	
	00000		
92	P0023	Specifying SET data enable of the D/A output module PUTP 00003 00000 00001 00001	PID module initialization
52		Specifying loop 0 enable	
		Specifying control cycle of loop 0 to 10ms	
		Specifying loop 0 to forward action	
		Specifying loop 0 to PID control	
		PUTP 00003 00462 12000 00001 - Specifying SV of loop 0 to 12000	
		PUTP 00003 00422 00001 00001	
		Specifying SET data enable of the PID module	
	<u>!</u>		
	MOOOO		
148			A/D conversion value input to PV of PID contorl module ,
		Storing A/D conversion data to D39	And then, PID control module compare SV and PV for PID calculation which is
		PUT 00003 00494 D0039 00001	used to D/A output value.
		Writing the value stored at D39 to the address of PV of loop 0	
		Storing the MV of PID control module LOOP 0 to D2	
		PUT 00004 00002 00002 00001	
		Writing the value stored at D2 to D/A output of channel 0	

Writing the value stored at D2 to D/A output of channel 0

BCD(P000)-→Binary(D003)

8.2.2 Program using the auto tunning function (TC module used) 1)System configuration

2) Initial Settings

(1) PID module

- A) Loop : Loop 0
- B) Control cycle : 50ms
- C) Forward/reverse action : Forward action
- D) SV value : 8000(700 ℃)
- E) Auto/Manual calculation selection : After synchronization, auto operation with P,I,D constants.

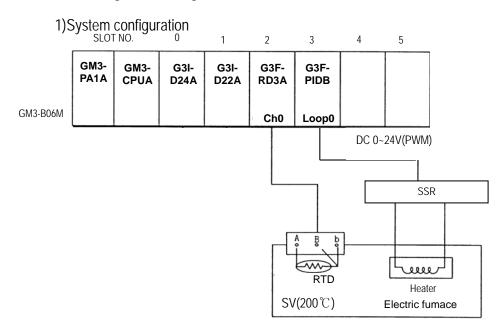
(2) A/D module

- A) Channel : 0
- B) Input sensor type : K TYPE(-200~1200 °C)

(3) D/A module

- A) Channel : 0
- B) Input data type : 0 ~ 16000

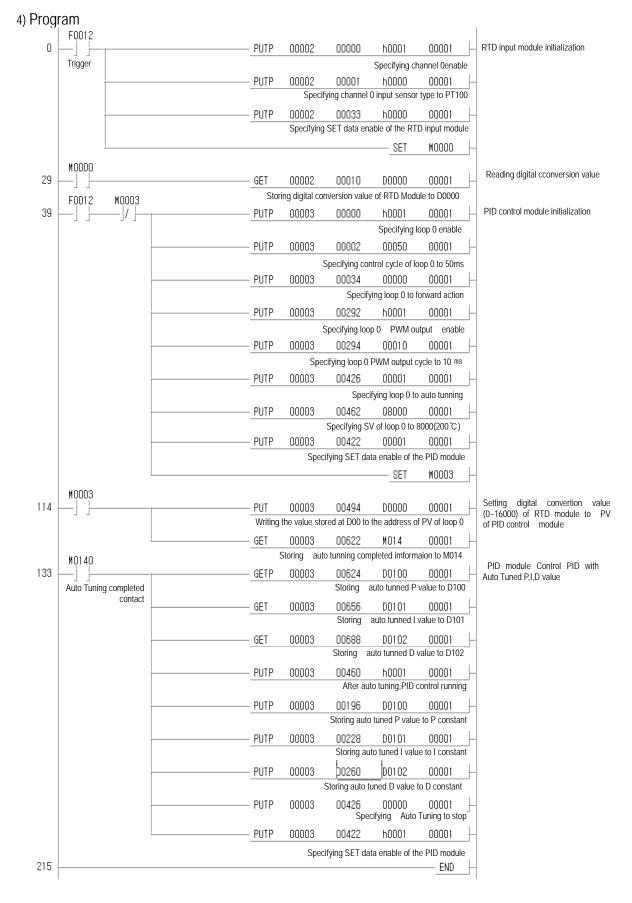
C) Output status when a channel is not used or CPU stops : Mid-value of the output range.


3) Descriptions of the program

- (1) The converted temperature value is transferred 0~16000 and input as a current value..
- (2) PID is set SV as 700°C and P,I,D constants are calculated by auto-tuning. PID control is executed with this calculated value.
- (3) PID calculated values are output to D/A module' ch0..

4) Program

8.2.3 Program using PWM


- 2) Initial value
 - (1) PID module
 - A) Loop : 0
 - B) Control cycle : 50ms
 - C) Forward/reverse action : Forward action
 - D) SV: 8000(200 ℃)
 - E) PID constants: P,I,D constants by Auto-tuning
 - F) Auto calculation/manual calculation : Auto In case that RTD doesn't have an error.
 - G) Output :PWM
 - H) Output cycle:10 ms

(2) RTD module

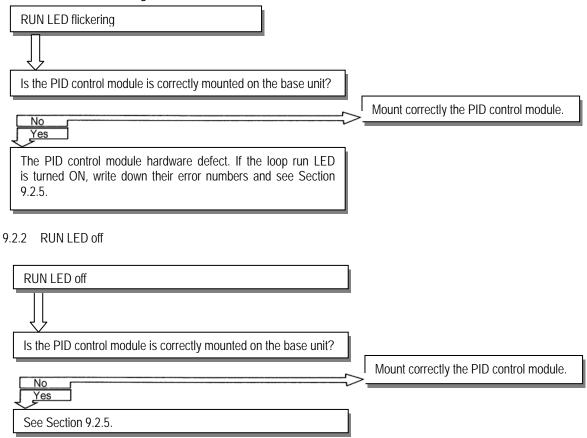
- A) Channel : 0
- B) RTD module's sensor : Pt100
- C) Input temperature range: 200~600 °C (SCAL:0~16000)
- 3) Program description
 - (1) RTD module detects the heater's temperature with Pt100 and the detected value is changed to the digital value.

Manual – In case that RTD has an error.

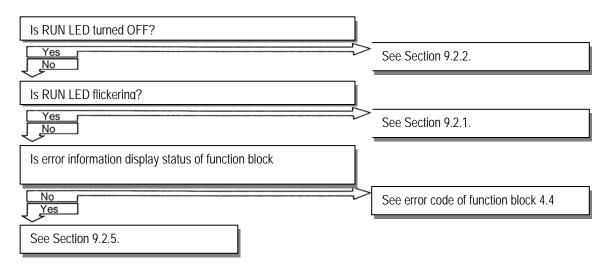
(2) SV value is set as 8000(Temperature 200°C) and PID is executed with auto-tuned P,I,D If PID module has an error (by RTD module's disconnection) PID is run with SV(0).

Chapter 9. TROUBLESHOOTING

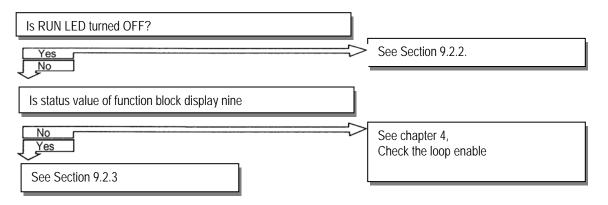
The followings explain errors that could occur during operating the PID control module and their troubleshooting.


9.1 Errors indicated by RUN LED flickering

Errors indicated by PID control module RUN LED flickering are given below.


RUN LED Status	Error Type	Remark
Turn on	Normal operation	
Flickering	WDT Error	
(cycle: 0.2 sec)	System Error	
	Buffer Memory Error	

9.2 Troubleshooting procedure


9.2.1 RUN LED flickering

9.2.3 Unreadable processing result of PID control module

9.2.4 Run LED of enabled loops off

9.2.5 PID control module hardware defect

PID c	or	ntrol	module	hardwa	are	defect.
Conta	ct	the	nearest	agency	or	service
station	۱.					

Warranty

1. Warranty Period

The product purchased will be guaranteed for a period of 18 months upon manufactured.

2. Warranty Coverage

Against the defect found during the Warranty Period specified above, this product will be repaired or exchanged partially. However, please understand that such cases as described below will be excluded from the Warranty Coverage.

- (1) If the defect is caused by unsuitable condition, environment and treatment or other reason than specified in the user's manual.
- (2) If the defect is caused by other parts than LS product.
- (3) If the product is remodeled or repaired by others than LS or its designated service center
- (4) If the product is used with other procedures than originally intended.
- (5) If the defect is caused by a reason unexpected under the scientific and technical standard when released from LS.
- (6) If the defect is caused by a natural calamity or fire which LS is not responsible for.
- 3. Since the warranty details above are to guarantee the PLC unit only, the customers are strongly recommended to use the product after due consideration of safety for system configuration or product application.