SAFETY INSTRUCTIONS

To prevent injury and property damage, follow these instructions. Incorrect operation due to ignoring instructions will cause harm or damage. The seriousness of which is indicated by the following symbols.

DANGER
This symbol indicates the instant death or serious injury if you don't follow instructions
WARNING
This symbol indicates the possibility of death or serious injury

CAUTION
This symbol indicates the possibility of injury or damage to property

- The meaning of each symbol in this manual and on your equipment is as follows.

This is the safety alert symbol.
Read and follow instructions carefully to avoid dangerous situation.
This symbol alerts the user to the presence of "dangerous voltage" inside the product that might cause harm or electric shock.

- After reading this manual, keep it in the place that the user always can contact easily.
\square This manual should be given to the person who actually uses the products and is responsible for their maintenance.

© WARNING

- Do not remove the cover while power is applied or the unit is in operation.
Otherwise, electric shock could occur.
- Do not run the inverter with the front cover removed.

Otherwise, you may get an electric shock due to high voltage terminals or charged capacitor exposure.

- Do not remove the cover except for periodic inspections or wiring, even if the input power is not applied.
Otherwise, you may access the charged circuits and get an electric shock.
- Wiring and periodic inspections should be performed at least 10 minutes after disconnecting the input power and after checking the DC link voltage is discharged with a meter (below DC 30V). Otherwise, you may get an electric shock.
- Operate the switches with dry hands.

Otherwise, you may get an electric shock.

- Do not use the cable when its insulating tube is damaged.

Otherwise, you may get an electric shock.

- Do not subject the cables to scratches, excessive stress, heavy loads or pinching.
Otherwise, you may get an electric shock.

1
 CAUTION

- Install the inverter on a non-flammable surface. Do not place flammable material nearby.
Otherwise, fire could occur.
- Disconnect the input power if the inverter gets damaged.

Otherwise, it could result in a secondary accident and fire.

- Do not touch the inverter while the input power is applied or after removed. It will remain hot for a couple of minutes.
Otherwise, you may get bodily injuries such as skin-burn or damage.
- Do not apply power to a damaged inverter or to an inverter with parts missing even if the installation is complete.
Otherwise, electric shock could occur.
- Do not allow lint, paper, wood chips, dust, metallic chips or other foreign matter into the drive.
Otherwise, fire or accident could occur.

OPERATING PRECAUTIONS

(1) Handling and installation
\square Handle according to the weight of the product.Do not stack the inverter boxes higher than the number recommended.Install according to instructions specified in this manual.
\square Do not open the cover during delivery.
\square Do not place heavy items on the inverter.Check the inverter mounting orientation is correct.Do not drop the inverter, or subject it to impact.
\square Use the ground impedance of 100 ohm or less for 200 V Class and 10 ohm or less for 400 V class.
\square Take protective measures against ESD (Electrostatic Discharge) before touching the pcb for inspection or installation.
\square Use the inverter under the following environmental conditions:

	Ambient temp.	-10~40 ${ }^{\circ} \mathrm{C}$ (non-freezing)
	Relative humidity	90\% RH or less (non-condensing)
	Storage temp.	$-20 \sim 65{ }^{\circ} \mathrm{C}$
	Location	Protected from corrosive gas, combustible gas, oil mist or dust
	Altitude, Vibration	Max. $1,000 \mathrm{~m}$ above sea level, Max. $5.9 \mathrm{~m} / \mathrm{sec}^{2}$ (0.6 G) or less
	Atmospheric pressure	$70 \sim 106 \mathrm{kPa}$

(2) Wiring
\square Do not connect a power factor correction capacitor, surge suppressor, or RFI filter to the output of the inverter.
\square The connection orientation of the output cables $\mathrm{U}, \mathrm{V}, \mathrm{W}$ to the motor will affect the direction of rotation of the motor.
\square Incorrect terminal wiring could result in the equipment damage.
\square Reversing the polarity ($+/-$) of the terminals could damage the inverter.
\square Only authorized personnel familiar with LS inverter should perform wiring and inspections.
\square Always install the inverter before wiring. Otherwise, you may get an electric shock or have bodily injury.
(3) Trial run
$\square \quad$ Check all parameters during operation. Changing parameter values might be required depending on the load.
$\square \quad$ Always apply permissible range of voltage to the each terminal as indicated in this manual. Otherwise, it could lead to inverter damage.
(4) Operation precautions
$\square \quad$ When the Auto restart function is selected, stay away from the equipment as a motor will restart suddenly after an alarm stop.
$\square \quad$ The Stop key on the keypad is valid only when the appropriate function setting has been made. Prepare an emergency stop switch separately.
\square If an alarm reset is made with the reference signal present, a sudden start will occur. Check that the reference signal is turned off in advance. Otherwise an accident could occur.
\square Do not modify or alter anything inside the inverter.
\square Motor might not be protected by electronic thermal function of inverter.
\square Do not use a magnetic contactor on the inverter input for frequent starting/stopping of the inverter.
\square Use a noise filter to reduce the effect of electromagnetic interference. Otherwise nearby electronic equipment may be affected.In case of input voltage unbalance, install AC reactor. Power Factor capacitors and generators may become overheated and damaged due to potential high frequency noise transmitted from inverter.
$\square \quad$ Use an insulation-rectified motor or take measures to suppress the micro surge voltage when driving 400 V class motor with inverter. A micro surge voltage attributable to wiring constant is generated at motor terminals, and may deteriorate insulation and damage motor.
\square Before operating unit and prior to user programming, reset user parameters to default settings.
$\square \quad$ Inverter can easily be set to high-speed operations, Verify capability of motor or machinery prior to operating unit.
$\square \quad$ Stopping torque is not produced when using the DC-Break function. Install separate equipment when stopping torque is needed.
(5) Fault prevention precautions
\square Provide a safety backup such as an emergency brake which will prevent the machine and equipment from hazardous conditions if the inverter fails.
(6) Maintenance, inspection and parts replacement
\square Do not conduct a megger (insulation resistance) test on the control circuit of the inverter.
$\square \quad$ Refer to Chapter 8 for periodic inspection (parts replacement).
(7) Disposal
$\square \quad$ Handle the inverter as an industrial waste when disposing of it.
(8) General instructions

Many of the diagrams and drawings in this instruction manual show the inverter without a circuit breaker, a cover or partially open. Never run the inverter like this. Always place the cover with circuit breakers and follow this instruction manual when operating the inverter.
(9) UL Marking

1. Short Circuit Rating

"Suitable For Use On A Circuit Capable Of Delivering Not More Than Table1 RMS Symmetrical

Table 1. RMS Symmetrical Amperes for iS5 series.

Model	Rating
SV008iS5-2, SV008iS5-4, SV015iS5-2, SV015iS5-4, SV022iS5-2, SV022iS5-4,	$5,000 \mathrm{~A}$
SV037iS5-2, SV037iS5-4,SV055iS5-2, SV055iS5-4, SV075iS5-2, SV075iS5-4,	
SV110iS5-2, SV110iS5-4, SV150iS5-2, SV150iS5-4,SV185iS5-2, SV185iS5-4,	
SV220iS5-2, SV220iS5-4, SV3005iS5-2, SV300iS5-4, SV370iS5-2, SV370iS5-4	
SV450iS5-2, SV450iS5-4, SV550iS5-2, SV550iS5-4, SV750iS5-4,	$10,000 \mathrm{~A}$

2. OVERLOAD PROTECTION

IOLT: IOLT(inverter Overload Trip) protection is activated at 150% of the inverter rated current for 1 minute and greater.
OLT : Inverter shuts off its output when inverter output current exceeds its overload trip level for overload trip time. OLT is selected when FU1-56 is set to "Yes" and activated at 120% of FU1-57 [Motor rated current] for 60 sec set in FU1-58.

3. OVER SPEED PROTECTION

"Not Provided With Overspeed Protection".

4.Risk of Electric Shock

More than one disconnect switch may be required to de-energize the equipment before servicing.

CONTENTS

SAFETY INSTRUCTIONS
USER SELECTION GUIDE (IS5 SPECIFICATIONS) 3
CHAPTER 1 - INSTALLATION 6
1.1 Inspection 6
1.2 Environmental Conditions 6
1.3 Mounting 6
1.4 Other Precautions 7
1.5 Dimensions 8
1.6 Basic Wiring 13
1.7 Power Terminals 14
1.8 Control Terminals. 19
CHAPTER 2 - OPERATION 23
2.1 Parameter Groups 23
2.2 LCD Keypad 24
2.3 7-Segment Keypad 28
2.4 Operation Method. 32
2.5 Operating Example 33
CHAPTER 3 - VARIOUS FUNCTION SETTING \& DESCRIPTION 38
3.1 Function Setting 38
3.2 Operation Example 46
CHAPTER 4 - QUICK-START PROCEDURES 51
4.1 Operating using keypad 52
4.2 Operation using Control Terminals 53
4.3 Operation using Keypad and Control Terminals 54
CHAPTER 5 - PARAMETER LIST 56
5.1 Drive Group [DRV]. 56
5.2 Function 1 Group [FU1] 58
5.3 Function 2 Group [FU2] 60
5.4 Input/Output Group [//O] 64
5.5 External Group [EXT] 70
5.6 Communication Group [COM] 74
5.7 Application Group [APP] 75
5.8 Sub-Board Selection Guide According To Function 77
CHAPTER 6 - PARAMETER DESCRIPTION 79
6.1 Drive group [DRV] 79
6.2 Function 1 Group [FU1] 87
6.3 Function 2 Group [FU2] 99
6.4 Input/Output Group [//O] 118
6.5 External Group [EXT] 136
6.6 Application Group [APP] 145
CHAPTER 7- OPTIONS 153
7.1 Sub-A board 155
7.2 Sub-B Board 157
7.3 Sub-C Board (Isolated) 161
7.4 Communication option boards 163
7.5 Keypad 165
7.6 DB Resistors 167
7.7 DB (Dynamic Brake) Unit 175
CHAPTER 8 - TROUBLESHOOTING \& MAINTENANCE 181
8.1 Fault Display 181
8.2 Fault Remedy 183
8.3 Troubleshooting 185
8.4 How to Check Power Components 186
8.5 Maintenance 187
8.6 Daily and Periodic Inspection Items 188
APPENDIX A - FUNCTIONS BASED ON USE 189
APPENDIX B - PARAMETERS BASED ON APPLICATION 190
APPENDIX C- PERIPHERAL DEVICES 192
DECLARATION OF CONFORMITY 194

USER SELECTION GUIDE (iS5 SPECIFICATIONS)

230V Class (1 ~ 30HP)

Model Number (SV xxx iS5-2)		008	015	022	037	055	075	110	150	185	220
Motor Rating ${ }^{1}$	HP	1	2	3	5	7.5	10	15	20	25	30
	kW	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22
Output Ratings	Capacity ${ }^{\text {[}}$ [VVA]	1.9	3.0	4.5	6.1	9.1	12.2	17.5	22.9	28.2	33.5
	FLA [A]	5	8	12	16	24	32	46	60	74	88
	Frequency	$0 \sim 400 \mathrm{~Hz}$ (Sensorless Vector Control: $0 \sim 300 \mathrm{~Hz}$, Sensored Vector Control: $0 \sim 120 \mathrm{~Hz}$)									
	Voltage	$200 \sim 230 \mathrm{~V}^{3}$									
Input Ratings	Voltage	3 Phase, $200 \sim 230 \mathrm{~V}$ ($\pm 10 \%$)									
	Frequency	$50 \sim 60 \mathrm{~Hz}(\pm 5 \%)$									
Dynamic Braking4	Braking Circuit	On Board		On Board		Optional (DB Resistor)		Optional (DB Resistor)			
	Max. Braking Torque	100\%		100\%		$20 \% \text {, }$ Continuous		100\%			
	Max. Continuous Baking Time	5 seconds		5 seconds				15 seconds			
	Max. Duty	3 \% ED		2 \% ED				10 \% ED			
	eight [kg]	4.7	4.7	4.8	4.9	7.7	7.7	13.9	14.4	20	20

230V Class (40~75HP)

Model Number (SV xxx iS5-2)		300	370	450	550
Motor	HP	40	50	60	75
Rating ${ }^{1}$	kW	30	37	45	55
Output Ratings	Capacity ${ }^{\text {[}}$ [VVA]	46	55	68	84
	FLA [A]	122	146	180	220
	Frequency	$0 \sim 400 \mathrm{~Hz}$ (Sensorless Vector Control: 0~300Hz, Sensored Vector Control: $0 \sim 120 \mathrm{~Hz}$)			
	Voltage	200~230 V ${ }^{\text {a }}$			
Input Ratings	Voltage	3 Phase, $200 \sim 230 \mathrm{~V}(\pm 10 \%)$			
	Frequency	$50 \sim 60 \mathrm{~Hz}$ ($\pm 5 \%$)			
Dynamic Braking ${ }^{4}$	Braking Circuit	Optional (Braking Unit, Resistor)			
	Max. Braking Torque	20\%, Continuous			
	Max. Continuous Baking Time				
	Max. Duty				
Weight [kg]		42	42	61	61

[^0]460/480 V Class (1 ~ 30HP)

Model Number (SV xxx iS5-4)		008	015	022	037	055	075	110	150	185	220
Motor	HP	1	2	3	5	7.5	10	15	20	25	30
Rating ${ }^{1}$	kW	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22
Output Ratings	Capacity ${ }^{\text {[}}$ [VVA]	1.9	3.0	4.5	6.1	9.1	12.2	18.3	22.9	29.7	34.3
	FLA [A]	2.5	4	6	8	12	16	24	30	39	45
	Frequency	$0 \sim 400 \mathrm{~Hz}$ (Sensorless Vector Control: $0 \sim 300 \mathrm{~Hz}$, Sensored Vector Control: $0 \sim 120 \mathrm{~Hz}$)									
	Voltage	$380 \sim 460 \mathrm{~V}, 380 \sim 480 \mathrm{~V} 3$									
Input Ratings	Voltage	3 Phase, $380 \sim 460 \mathrm{~V}(\pm 10 \%)$, $380 \sim 480 \mathrm{~V}(\pm 10 \%)$ (Special type available from '2004) ${ }^{5}$									
	Frequency	$50 \sim 60 \mathrm{~Hz}$ ($\pm 5 \%$)									
Dynamic Braking4	Braking Circuit	On Board		On Board		Optional (DB Resistor)		Optional (DB Resistor)			
	Max. Braking Torque	100\%		100\%				100\%			
	Max. Continuous Baking Time	5 seconds		5 seconds		Continuous		15 seconds			
	Max. Duty	3 \% ED		2 \% ED				10 \% ED			
	Veight [kg]	4.7	4.7	4.8	4.9	7.7	7.7	13.9	14.4	20	20

460/480 V Class (40~100HP)

Model Number (SV xxx iS5-4)		300	370	450	550	750
Motor Rating	HP	40	50	60	75	100
	kW	30	37	45	55	75
Output Ratings	Capacity ${ }^{\text {2 }}$ [kVA]	45	56	68	82	100
	FLA [A]	61	75	91	110	152
	Frequency	$0 \sim 400 \mathrm{~Hz}$ (Sensorless Vector Control: $0 \sim 300 \mathrm{~Hz}$, Sensored Vector Control: $0 \sim 120 \mathrm{~Hz}$)				
	Voltage	$380 \sim 460 \mathrm{~V}, 380 \sim 480 \mathrm{~V} 3$				
Input Ratings	Voltage	3 Phase, $380 \sim 460 \mathrm{~V}\left(\pm 10 \%\right.$), 380~480 V ($\pm 10 \%$) (Special type available from '2004) ${ }^{6}$				
	Frequency	$50 \sim 60 \mathrm{~Hz}(\pm 5 \%)$				
Dynamic Braking4	Braking Circuit	Optional (Braking Unit, Resistor)				
	Max. Braking Torque	20\%, Continuous				
	Max. Continuous Baking Time					
	Max. Duty					
Weight [kg]		45	45	63	63	68

[^1]| | Control Method | | V/F Control, Sensorless Vector Control, Sensored Vector Control (Velocity, Torque) Selectable |
| :---: | :---: | :---: | :---: |
| | Frequency Setting
 Resolution | | Digital Reference: 0.01 Hz (Below 100 Hz), 0.1 Hz (Over 100 Hz) Analog Reference: $0.03 \mathrm{~Hz} / 60 \mathrm{~Hz}$ |
| $\begin{aligned} & \text { D} \\ & \stackrel{y}{c} \\ & \stackrel{0}{2} \end{aligned}$ | Frequency Accuracy | | Digital: 0.01 \% of Max. Output Frequency Analog: 0.1 \% of Max. Output Frequency |
| | VIF Ratio | | Linear, Squared Pattern, User V/F |
| | Overload Capacity | | 150 \% of Rated Current for 1 Min., 200\% of Rated Current for 0.5 sec . (Characteristic is Inversely Proportional to Time) |
| | Torque Boost | | Manual Torque Boost ($0 \sim 15$ \%), Auto Torque Boost |
| | Operation Method | | Key / Terminal / Communication Operation |
| | Frequency Setting | | Analog: $0 \sim 10 \mathrm{~V} / 4 \sim 20 \mathrm{~mA}$ / Additional port for Sub-Board ($0 \sim 10 \mathrm{~V}$) Digital: Keypad |
| | | | Forward, Reverse |
| | | | Up to 8 Speeds can be Set (Use Multi-Function Terminal) |
| | | | $0 \sim 6,000$ sec, Up to 4 Types can be Set and Selected for Each Setting (Use Multi- Function Terminal). Accel/Decel Pattern: Linear, U-Curve, S-Curve |
| | Emergency Stop | | Interrupts the Output of Inverter |
| | Jog | | Jog Operation |
| | Auto Operation | | Operates from Internal Sequence by Setting Multi-Function Terminal (5 Way * 8 Step) |
| | Fault Reset | | Trip Status is Removed when Protection Function is Active |
| | Operating Status | | Frequency Detection Level, Overload Alarm, Stalling, Over Voltage, Under Voltage, Inverter Overheating, Running, Stop, Constant Speed, Inverter By-Pass, Speed Searching, AutoOperation Step, Auto-Operation Sequence |
| | Fault Output | | Contact Output (30A, 30C, 30B) - AC250V 1A, DC30V 1A |
| | O Indic | | Choose 1 from Output Frequency, Output Current, Output Voltage, DC Voltage, Output Torque (Output Voltage: $0 \sim 10 \mathrm{~V}$) |
| | Operation Function | | DC Braking, Frequency Limit, Frequency Jump, Second Function, Slip Compensation, Reverse Rotation Prevention, Auto Restart, Inverter By-Pass, Auto-Tuning, PID Control |
| $\left\lvert\, \begin{array}{\|l\|l\|} \hline \text { 흘 } \\ \text { Did } \end{array}\right.$ | Inverter Trip | | Over Voltage, Under Voltage, Over Current, Fuse Open, Ground Fault, Inverter Overheating, Motor Overheating, Output Phase Open, Overload Protection, External Fault 1, 2, Communication Error, Loss of Speed Command, Hardware Fault, Option Fault, Overspeed, M/C Fail etc. |
| | Inverter Alarm | | Stall Prevention, Overload Alarm, Temperature Sensor Fault |
| | Momentary Power Loss | | Auto Restart function activated when FU2-21 [Restart after fault reset] set to 1 (Yes) |
| | Keypad | Operation Information | Output Frequency, Output Current, Output Voltage, Frequency Value Setting, Operating Speed, DC Voltage, Output Torque |
| | | Trip Information | Indicates a Fault when the Protection Function activates, Retains Up to 5 Faults |
| | Ambient Temperature | | $-10^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F} \sim 104{ }^{\circ} \mathrm{F}\right)$, CE Certification: $41^{\circ} \mathrm{F} \sim 104^{\circ} \mathrm{F}\left(5^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}\right)$ |
| $\begin{aligned} & \stackrel{\rightharpoonup}{\mathbf{\omega}} \\ & \underline{E} \end{aligned}$ | Storage Temperature | | $-20^{\circ} \mathrm{C} \sim 65^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{F} \sim 149{ }^{\circ} \mathrm{F}\right)$ |
| 은 | Ambient Humidity | | Less Than 90% RH Max. (Non-Condensing), CE Certification: 5~85\% (Non-Condensing) |
| 害 | Altitude - Vibration | | Below $1,000 \mathrm{~m}$ or $3,300 \mathrm{ft}$ - Below $5.9 \mathrm{~m} / \mathrm{sec}^{2}(=0.6 \mathrm{~g})$ |
| Application Site | | | No Corrosive Gas, Combustible Gas, Oil Mist, or Dust |
| | ooling Meth | | Forced Air Cooling |

CHAPTER 1 - INSTALLATION

1.1 Inspection

- Inspect the inverter for any damage that may have occurred during shipping.
- Check the nameplate on the inverter. Verify the inverter unit is the correct one for the application. The numbering system for the inverter is as shown below.

1.2 Environmental Conditions

- Verify ambient condition for the mounting location.
- Ambient temperature should not be below $14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$ or exceed $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$.
- Relative humidity should be less than 90% (non-condensing).
- Altitude should be below $3,300 \mathrm{ft}(1,000 \mathrm{~m})$.
- Do not mount the inverter in direct sunlight and isolate it from excessive vibration.
- If the inverter is going to be installed in an environment with high probability of penetration of dust, it must be located inside watertight electrical boxes, in order to get the suitable IP degree.

1.3 Mounting

- The inverter must be mounted vertically with sufficient horizontal and vertical space between adjacent equipment ($A=$ Over $100 \mathrm{~mm}, B=O$ ver 50 mm). However, $A=O$ ver 500 mm and $B=200 \mathrm{~mm}$ should be obtained for inverters with 40 Hp and above.

1.4 Other Precautions

- Do not carry the inverter by the front cover.
- Do not install the inverter in a location where excessive vibration is present. Be cautious when installing on presses or moving equipment.
- The life span of the inverter is greatly affected by the ambient temperature. Install in a location where temperature are within permissible limits $\left(-10 \sim 40^{\circ} \mathrm{C}\right)$.
- The inverter operates at high-temperatures - install on a non-combustible surface.
- Do not install the inverter in high-temperature or high-humidity locations.
- Do not install the inverter in a location where oil mist, combustible gas, or dust is present. Install the inverter in a clean location or in an enclosed panel, free of foreign substance.
- When installing the inverter inside a panel with multiple inverters or a ventilation fan, use caution. If installed incorrectly, the ambient temperature may exceed specified limits.

- Install the inverter using screws or bolts to insure the inverter is firmly fastened.

UL Remark (File number: E124949):

"Only intended for use in an enclosure with maximum surrounding air temperature of $45^{\circ} \mathrm{C}$ " or equivalent: Models SV022iS5-2/4, SV037iS5-2/4, SV055iS5-4 (not -2), SV075iS5-4 (not -2), SV110iS5-2/4, SV150iS5-2/4, SV185iS5-2/4 and SV220iS5-2/4.

1.5 Dimensions

Frame \# 1: 1 ~ 5 HP
Frame \# 2: 7.5 ~ 10 HP

Frame	HP	Model Number	W1	W2	H1	H2	D1
Frame \# 1	1	SV008iS5-2/4	$\begin{gathered} 150 \\ (5.91) \end{gathered}$	$\begin{gathered} 130 \\ (5.12) \end{gathered}$	$\begin{gathered} 284 \\ (11.18) \end{gathered}$	$\begin{gathered} 269 \\ (10.69) \end{gathered}$	$\begin{aligned} & 156.5 \\ & (6.16) \end{aligned}$
	2	SV015iS5-2/4					
	3	SV022iS5-2/4					
	5	SV037iS5-2/4					
Frame \# 2	7.5	SV055iS5-2/4	$\begin{gathered} 200 \\ (7.87) \\ \hline \end{gathered}$	$\begin{gathered} \hline 180 \\ (7.09) \\ \hline \end{gathered}$	$\begin{gathered} 355 \\ (13.98) \end{gathered}$	$\begin{gathered} 340 \\ (13.39) \\ \hline \end{gathered}$	$\begin{array}{r} 182.5 \\ (7.19) \\ \hline \end{array}$
	10	SV075iS5-2/4					

- Frame \# 3: 15 ~ 20 HP
- Frame \# 4: 25 ~ 30 HP

mm (inches)

Frame	HP	Model Number	W1	W2	H1	H2	D1
Frame \#3	15	SV110iS5-2/4	250	230	385	370	201
	20	SV150iS5-2/4	(9.84)	(9.06)	(15.16)	(14.57)	(7.91)
Frame \#4 4	25	SV185iS5-2/4	304	284	460	445	234
	30	SV220iS5-2/4	(11.97)	(11.18)	(18.11)	(17.52)	(9.21)

- Frame \# 5: 40~50HP

Frame	HP	Model Number	W1	W2	H1	H2	(inches)
Frame \#5 510	40	SV300iS5-2/4	350	270	680	662	311
	50	SV370iS5-2/4	(13.78)	(10.63)	(28.77)	(26.06)	(12.25)

- Frame \# 6: 60~75HP(200V)

Frame	HP	Model Number	W1	W2	H1	H2	D1
Frame\# 6	60	SV450iS5-2	397	275	780	760.5	330
	75	SV550iS5-2	(15.63)	(10.83)	(30.71)	(29.94)	(12.99)

■ Frame \# 7: 60~100HP (400V)

Frame	HP	Model Number	W1	W2	H1	H2	D1
Frame \# 7	60	SV450iS5-4	$\begin{gathered} 375 \\ (14.76) \end{gathered}$	$\begin{gathered} 275 \\ (10.83) \end{gathered}$	$\begin{gathered} 780 \\ (30.71) \end{gathered}$	$\begin{gathered} 760.5 \\ (29.94) \end{gathered}$	$\begin{gathered} 330 \\ (12.99) \end{gathered}$
	75	SV550iS5-4					
	100	SV750iS5-4					

1.7 Power Terminals

■ Type A Configuration: $1 \sim 5 \mathrm{HP}(230 / 460 / 480 \mathrm{~V})$

DB Resistor integrated									
R	S	T	G	N	B 1	B	C	U	V

■ Type B Configuration: 7.5 ~ 10 HP (230/460/480V)

R	S	T	G	P	N	B 1	B 2	U	V	W

■ Type C Configuration: 15 ~ 30 HP (230/460/480V)

R	S	T	G	P1	P2	N	U	V	W

■ Type C Configuration: 15 ~ 30 HP (230/460/480V), Built-in DBU model

R	S	T	G	P1	B1	B2	U	V	W

■ Type D Configuration: 40~75 HP (230V), $40 \sim 100 \mathrm{HP}(460 / 480 \mathrm{~V})$

* Jumper should be removed to connect a DC reactor

Symbols	Functions
R	AC Line Voltage Input (3 Phase, 200 ~ 230VAC or 380 ~460/480 VAC)
S	Earth Ground
T	Positive DC Bus Terminal DB Unit (P-PT) Connection Terminals (DB Unit may be added when more braking duty (More than 30\%ED) is required)
G	External DC Reactor (P1-P2) and DB Unit (P2-N) Connection Terminals

"Suitable for use on a circuit capable of delivering not more than $10,000 \mathrm{rms}$ symmetrical amperes, 240 volts maximum for 230 V class models and 480 volts maximum for 460 V class models."

[^2]
1.7.1 Type A Configuration

As standard on the iS5 inverter, this type of configuration has internal dynamic braking resistor of $3 \% \mathrm{ED}$. When an application requires more braking duty, an external dynamic braking resistor may be connected instead of the internal resistor.

Figure 1 - Type A Dynamic Braking Resistor Installation

1.7.2 Type B Configuration

A Dynamic Braking Resistor or a Dynamic Braking Unit may be added to iS5 series inverters that have a Type B configuration power terminal strip.

Figure 2 - Type B Dynamic Braking Resistor Installation

Figure 3 - Type B Additional Dynamic Braking Unit and Resistor Installation

1.7.3 Type C Configuration

A Dynamic Braking Unit or a DC Bus Choke or both of them may be added to iS series inverters that have a Type A Configuration power terminal strip.

Jumper Between P1 and P2 Must Be Removed in Order to Install a DC Bus Choke.

Figure 4 - Type C Dynamic Braking Unit, DC Bus Choke Installation

Figure 5 - Type C Dynamic Braking Resistor

1.7.4 Type D Configuration

Figure 6-Type D Dynamic Braking Unit, DC Bus Choke Installation

\triangle WARNING

Normal stray capacitance between the inverter chassis and the power devices inside the inverter and AC line can provide a high impedance shock hazard. Do not apply power to the inverter if the inverter frame (Power terminal G) is not grounded.

1.7.5 Wiring Power Terminals

- Wiring Precautions

- The internal circuits of the inverter will be damaged if the incoming power is connected and applied to output terminals ($\mathrm{U}, \mathrm{V}, \mathrm{W}$).
- Use ring terminals with insulated caps when wiring the input power and motor wiring.
- Do not leave wire fragments inside the inverter. Wire fragments can cause faults, breakdowns, and malfunctions.
- For input and output, use wires with sufficient size to ensure voltage drop of less than 2%.
- Motor torque may drop of operating at low frequencies and a long wire run between inverter and motor.
- When more than one motor is connected to one inverter, total wire length should be less than 200 m (656ft). Do not use a 3-wire cable for long distances. Due to increased leakage capacitance between wires, over-current protective feature may operate or equipment connected to the output side may malfunction. (But for products of less than 3.7 kW , the wire length should be less than $50 \mathrm{~m}(146 \mathrm{ft})$.) In case of long wire length, it should be required to lower carrier frequency or use Micro Surge Filter.

Length between Inverter and Motor	Up to 50 m	Up to 100 m	More than 100 m
Allowable Carrier Frequency	Less than 15 kHz	Less than 5 kHz	Less than 2.5 kHz

- Connect only recommended braking resistor between the B1 and B2 terminals. Never short B1 and B2 terminals. Shorting terminals may cause internal damage to inverter.
- The main circuit of the inverter contains high frequency noise, and can hinder communication equipment near the inverter. To reduce noise, install line noise filters on the input side of the inverter.
- Do not use power factor capacitor, surge killers, or RFI filters on the output side of the inverter. Doing so may damage these components.
- Always check whether the LCD and the charge lamp for the power terminal are OFF before wiring terminals. The charge capacitor may hold high-voltage even after the power is disconnected. Use caution to prevent the possibility of personal injury.
- Grounding

- The inverter is a high switching device, and leakage current may flow. Ground the inverter to avoid electrical shock. Use caution to prevent the possibility of personal injury.
- Connect only to the dedicated ground terminal of the inverter. Do not use the case or the chassis screw for grounding.
- The protective earth conductor must be the first one in being connected and the last one in being disconnected.
- As a minimum, grounding wire should meet the specifications listed below. Grounding wire should be as short as possible and should be connected to the ground point as near as possible to the inverter.

Inverter Capacity	Grounding wire Sizes, AWG (mm ${ }^{2}$)	
	200V Class	400VClass
Below 3.7kW (5HP)	$12(3.5)$	$14(2)$
$5.5 \sim 7.5 \mathrm{~kW}(7.5 \sim 10 \mathrm{HP})$	$10(5.5)$	$12(3.5)$
11~15kW (15~20HP)	$6(14)$	$8(8)$
18.5~22kW (25~30HP)	$4(22)$	$6(14)$
$30 \sim 37 \mathrm{~kW}(40 \sim 50 \mathrm{HP})$	$4(22)$	$6(14)$
$45 \sim 75 \mathrm{~kW}(60 \sim 100 \mathrm{HP})$	$2(38)$	$4(22)$

- Wires and Terminal Lugs

Refer to the following table for wires, terminal lugs, and screws used to connect the inverter power input $(\mathrm{R}, \mathrm{S}, \mathrm{T})$ and output (U, V, W). Input and motor output terminal blocks are intended only for use with ring type connectors.

Inverter Capacity		Terminal Screw Size	Screw Torque ${ }^{9}$ (Kgf cm)/ lb-in	Ring Terminals		Wire ${ }^{10}$				
		mm^{2}				AWG				
		R,S,T		U,V,W	R,S,T	U,V,W	R,S,T	U,V,W		
$\begin{aligned} & 200 \mathrm{~V} \\ & \text { Class } \end{aligned}$	0.75~2.2kW(1~3HP)		M3.5	7.1~12.2 / 6.2~10.6	2-4	2-4	2	2	14	14
	3.7 kW (5HP)		M3.5	7.1~12.2 / 6.2~10.6	2-4	2-4	3.5	3.5	12	12
	5.5 kW (7.5HP)	M4	7.1~12.2 / 6.2~10.6	5.5-5	5.5-5	5.5	5.5	10	10	
	7.5 kW (10HP)	M4	7.1~12.2 / 6.2~10.6	14-5	8-5	14	8	6	8	
	11 kW (15HP)	M5	24.5~31.8 / 21.2~27.6	14-5	14-5	14	14	6	6	
	15 kW (20HP)	M5	24.5~31.8 / 21.2~27.6	22-6	22-6	22	22	4	4	
	18.5 kW (25HP)	M6	30.6~38.2 / 26.6~33.2	38-8	38-8	30	30	2	2	
	22 kW (30HP)	M6	30.6~38.2 / 26.6~33.2	38-8	38-8	38	30	2	2	
	30~37 kW (40~50HP)	M8	61.2~91.8 / 53.1~79.7	60-8	60-8	60	60	2/0	2/0	
	45~55 kW (60~75HP)	M10	89.7~122.0 / 77.9~105.9	100-10	100-10	100	100	4/0	4/0	
$\begin{aligned} & 400 \mathrm{~V} \\ & \text { Class } \end{aligned}$	$0.75 \sim 3.7 \mathrm{~kW}$ (1~5HP)	M3.5	7.1~12.2 / 6.2~10.6	2-4	2-4	2	2	14	14	
	5.5 kW (7.5HP)	M4	7.1~12.2 / 6.2~10.6	5.5-5	5.5-5	3.5	2	12	14	
	7.5 kW (10HP)	M4	7.1~12.2 / 6.2~10.6	14-5	8-5	3.5	3.5	12	12	
	11 kW (15HP)	M5	24.5~31.8 / 21.2~27.6	14-5	14-5	5.5	5.5	10	10	
	15 kW (20HP)	M5	24.5~31.8 / 21.2~27.6	22-6	22-6	14	8	6	8	
	18.5 kW (25HP)	M6	30.6~38.2 / 26.6~33.2	38-8	38-8	14	8	6	8	
	22 kW (30HP)	M6	30.6~38.2 / 26.6~33.2	38-8	38-8	22	14	4	6	
	30~37 kW (40~50HP)	M8	61.2~91.8 / 53.1~79.7	38-8	38-8	22	22	4	4	
	45~55 kW (60~75HP)	M8	61.2~91.8 / 53.1~79.7	38-8	38-8	38	38	2	2	
	75 kW (100HP)	M8	61.2~91.8 / 53.1~79.7	60-8	60-8	60	60	2/0	2/0	

- Power and Motor Connection

Power supply must be connected to the R, S, and T terminals.
Connecting it to the U, V, and W terminals causes internal damages to the inverter. Arranging the phase sequence is not necessary.

Motor should be connected to the U, V, and W terminals.
If the forward command (FX) is on, the motor should rotate counter clockwise when viewed from the load side of the motor. If the motor rotates in the reverse, switch the U and V terminals.

[^3]
1.8 Control Terminals

Type		Symbol	Name	Description
		P1, P2, P3	Multi-Function Input $1,2,3$	Used for Multi-Function Input Terminal. (Factory default is set to "Multi-Step Frequency 1, 2, 3".)
		FX	Forward Run Command	Forward Run When Closed and Stopped When Open.
		RX	Reverse Run Command	Reverse Run When Closed and Stopped When Open.
		JOG	Jog Frequency Reference	Runs at Jog Frequency when the Jog Signal is ON. The Direction is set by the FX (or RX) Signal.
		BX	Emergency Stop	When the BX Signal is ON the Output of the Inverter is Turned Off. When Motor uses an Electrical Brake to Stop, BX is used to Turn Off the Output Signal. When BX Signal is OFF (Not Turned Off by Latching) and FX Signal (or RX Signal) is ON, Motor continues to Run. $\$ \hline & & RST & Fault Reset & Used for Fault Reset. \hline & & CM & Sequence Common & Common Terminal for Contact Inputs. \hline & \multirow{5}{*}{} & NC & - & Not Used. \hline & & VR & Frequency Setting Power $(+12 \mathrm{~V})$ & Used as Power for Analog Frequency Setting. Maximum Output is +12 V , 100 mA . \hline & & V1 & Frequency Reference (Voltage) & Used for 0-10V Input Frequency Reference. Input Resistance is $20 \mathrm{~K} \Omega$.
		1	Frequency Reference (Current)	Used for 4-20mA Input Frequency Reference. Input Resistance is 250Ω.
		5G	Frequency Setting Common Terminal	Common Terminal for Analog Frequency Reference Signal and FM (For Monitoring).
	$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{0} \\ & \hline \end{aligned}$	FM	Analog Output ($0 \sim 12 \mathrm{~V}$) (For External Monitoring)	Outputs One of the Following: Output Frequency, Output Current, Output Voltage, DC Link Voltage, and Torque. Default is set to Output Frequency. Maximum Output Voltage and Output Current are $0-12 \mathrm{~V}$ and $1 \mathrm{~mA}, 500 \mathrm{~Hz}$.
	$\begin{aligned} & \dot{0} \\ & \stackrel{\pi}{C} \\ & 0 \end{aligned}$	$\begin{aligned} & 30 A \\ & 30 C \\ & 30 B \end{aligned}$	Fault Contact Output	Activates when Protective Function is Operating. AC250V, 1A or less; DC30V, 1A or less. Fault: 30A-30C Closed (30B-30C Open) Normal: 30B-30C Closed (30A-30C Open)
		AXA, AXC	Multi-Function Output Relay	Use After Defining Multi-Function Output Terminal. AC250V, 1A or less; DC30V, 1A or less.

*Tightening torque of control terminal blocks
TER $1-140 \mathrm{kgf} \mathrm{cm} /(93.5 \mathrm{in}-\mathrm{lb}) \quad$ TER $2-8 \mathrm{Kgf} \mathrm{cm} /(5.3 \mathrm{in}-\mathrm{lb})$

1.8.1 Wiring Control Terminals

- Wiring Precautions

- CM and 5G terminals are insulated to each other. Do not connect these terminals with each other and do not connect these terminals to the power ground. Terminal 5G is indicated as CM from 30kW inverters and has the same potential as CM (Sequence Common Terminal).
- Use shielded wires or twisted wires for control circuit wiring, and separate these wires from the main power circuits and other high voltage circuits.
- It is recommended to use the cables of $1.25 \mathrm{~mm}^{2}$ (22 AWG) for connection to the control circuit terminals.

- Control Circuit Terminal

- The control input terminal of the control circuit is ON when the circuit is configured to the current flows out of the terminal, as shown in the following illustration. CM terminal is the common terminal for the contact input signals.

\triangle CAUTION

Do not apply voltage to any control input terminals (FX, RX, P1, P2, P3, JOG, BX, RST, CM).

1.8.2 Keypad Connection

Connect keypad to the keypad connector as illustrated below. The LCD output will not be displayed on the keypad if the keypad is not connected properly.

Chapter 1 - Installation

Notes:

CHAPTER 2- OPERATION

The iS5 series inverter has seven parameter groups separated according to their applications as indicated in the following table.
The iS5 series inverter provides two kinds of keypad. One is of 32-character alphanumeric LCD keypad and the other is of 7-Segment LED keypad.

2.1 Parameter Groups

Parameter Group	LCD Keypad (Upper left Corner)	7-segment Keypad (LED is lit)	Description		
Drive Group	DRV	'DRV' LED	Command Frequency, Accel/Decel Time etc. Basic Parameters		
Function 1 Group	FU1	'FU1' LED	Max. Frequency, Amount of Torque Boost etc. Basic Related Parameters		
Function 2 Group	FU2	'FU2' LED	Frequency Jumps, Max./Min. Frequency Limit etc. Basic Application Related Parameters		
Input / Output Group	I/O	'//O' LED	Multi-Function Terminal Setting, Auto Operation etc. Parameters needed for Sequence Operation		
Sub-Board Group	EXT	'EXT' LED	Displayed when Sub-Board is Installed.		
Option Group	COM	'/O' + 'EXT' LED	Displayed when Option Board is Installed.		
Application Group	APP	'FU2' + '//O' + 'EXT'			
LED					Traverse, MMC (Multi-Motor Control), Draw etc.
:---					
Application Related Parameters					

Refer to the function descriptions in chapter 6 for detailed description of each group.

2.2 LCD Keypad

LCD keypad can display up to 32 alphanumeric characters, and various settings can be checked directly from the display. The following is an illustration of the keypad.

2.2.1 LCD Keypad Display

Displays	Description
1) Parameter Group	Displays the parameter group. There are DRV, FU1, FU2, I/O, EXT, COM, APP groups.
2) Run/Stop Source	Displays the source of motor Run and Stop K: Run/Stop using FWD, REV buttons on keypad T: Run/Stop using control terminal input FX, RX O: Run/Stop via option board
3) Frequency Setting Source	Displays the source of command frequency setting K : Frequency setting using keypad V: Frequency setting using V1 ($0 \sim 10 \mathrm{~V}$) or V1 + I terminal I: Frequency setting using I ($4 \sim 20 \mathrm{~mA}$) terminal U: Up terminal input when Up/Down operation is selected D: Down terminal input when Up/Down operation is selected S: Stop status when Up/Down operation is selected O : Frequency setting via Option board X: Frequency seting via Sub board J : Jog terminal input 1~8: Step frequency operation * During Auto operation, 2) and 3) display the 'sequence number/step'.
4) Output Current	Displays the Output Current during operation.
5) Parameter Code	Displays the code of a group. Use the $\mathbf{\triangle}$ (Up), $\mathbf{\nabla}$ (Down) key to move through 0~99 codes.
6) Operating Status	Displays the operation information. STP: Stop Status FWD: During Forward operation REV: During Reverse operation DCB: During DC Braking LOP: Loss of Reference from Option Board (DPRAM fault) LOR: Loss of Reference from Option Board (Communication network fault) LOV: Loss of Analog Frequency Reference (V1: 0~10V) LOI: Loss of Analog Frequency Reference (I: 4~20mA) LOS: Loss of Reference from Sub-Board
7) Drive Output Frequency Command Frequency	Displays the Output Frequency during run. Displays the Command Frequency during stop.

2.2.2 Procedure for Setting Data (LCD Keypad)

1. Press [MODE] key until the desired parameter group is displayed.
2. Press [$\mathbf{\Delta}$] or [$\mathbf{\nabla}$] keys to move to the desired parameter code. If you know the desired parameter code, you can set the code number of each parameter group in "Jump code", except DRV group.
3. Press [PROG] key to go into the programming mode, the cursor starts blinking.
4. Press [SHIFT/ESC] key to move the cursor to the desired digit.
5. Press [$\mathbf{\Delta}$] or [\mathbf{V}] keys to change the data.
6. Press [ENT] key to enter the data. The cursor stops blinking.

■ Note: Data cannot be changed when:

1) The parameter is not adjustable during the inverter is running. (Refer to the function table in Chapter 5) or 2) Parameter Lock function is activated in FU2-94 [Parameter Lock].

2.2.3 Parameter Navigation (LCD Keypad)

The parameter group moves directly to DRV group by pressing [SHIFT/ESC] key in any parameter code.

2.3 7-Segment Keypad

Run Button is used to run the drive. The motor direction is set in DRV 13.

The Run LED blinks when the drive Accels or Decels.

Stop Button is used to stop the drive from running.
Reset Button is used to reset Faults.
The LED blinks when there is a fault.

* Parameter Group Display LEDs - When parameter code is located on DRV 20, DRV 21, DRV 22 and DRV 23, respectively by rotating the encoder knob, the parameter group display LEDs of DRV, FUN1, FUN2, I/O, EXT blink.

LED	Parameter Group	Description
DRV	Drive Group	Lit in Drive group.
FU1	FUNCTION 1 Group	Blinks when the parameter code is located on DRV 20 [FUN1]. Lit when FUNCTION 1 group is selected.
FU2	FUNCTION 2 Group	Blinks when the parameter code is located on DRV 21 [FUN2]. Lit when FUNCTION 2 group is selected.
I/O	Input/Output Group	Blinks when the parameter code is located on DRV 22 [I/O]. Lit when Input/Output group is selected.
EXT	Sub-Board Group	Blinks when the parameter code is located on DRV 23 [EXT]. Lit when Sub-Board group is selected. This group appears only when a Sub-Board is installed.
I/O + EXT	Option Group	Blinks when the parameter code is located on DRV 24 [EXT]. Lit when Option group is selected. This group appears only when an Option Board is installed.
FU2 + I/O + EXT	Application Group	Blinks when the parameter code is located on DRV 25 [FUN2].

2.3.1 7-Segment Keypad Display

Display	Description
1) Parameter Group	Displays the parameter groups of DRV, FU1, FU2, I/O, EXT, COM, APP groups. Each LED is lit when its parameter group is selected and blinks when the parameter code is located on DRV 20, DRV 21, DRV 22, DRV 23, DRV 24, and DRV 25.
2) Parameter Code and Operating Status	Displays the code of a group. Rotate the encoder knob to move through 0~99 codes. Displays the operation information. [First digit] F: Forward operation r: Reverse operation [Second digit] d: DC Braking J: Jog Terminal Input 1~8: Step Frequency Input (Displays the Step of the Auto operation) [Two digits] - mark the reference is lost. PL: Loss of Reference from the Option Board (DPRAM fault) rL: Loss of Reference from the Option Board (Communication network fault) vL: Loss of Analog Frequency Reference (V1: 0~10V) IL: Loss of Analog Frequency Reference (I: 4~20mA) XL: Loss of Reference from the Sub-Board
3) Output Frequency, Command Frequency	Displays the Output Frequency during run. Displays the Command Frequency during stop.

2.3.2 Procedure for Setting Data (7-Segment Keypad)

■ In DRV Group:

1. Rotate the encoder knob until the desired parameter code is displayed.
2. Press [PROG/ENT] key to go into the programming mode, then the display blinks.
3. Press [SHIFT/ESC] key to move the cursor to the desired digit.
4. Rotate the encoder knob to change the data.
5. Press [PROG/ENT] key to enter the changed data.

- In FUN1 Group:

1. Rotate the encoder knob until parameter code ' 20 ' is displayed in drive group.
2. Press [PROG/ENT] key to go into the FUN1 group.
3. Rotate the encoder knob until the desired parameter code is displayed.
4. Press [PROG/ENT] key to go into the programming mode, then the display blinks.
5. Press [SHIFT/ESC] key to move the cursor to the desired digit.
6. Rotate the encoder knob to change the data.
7. Press [PROG/ENT] key to enter the changed data.

- In FUN2 Group:

1. Rotate the encoder knob until parameter code ' 21 ' is displayed in drive group.
2. Go to step 2 of 'In FUN1 Group' above, and follow the rest procedure.

- In I/O Group:

1. Rotate the encoder knob until parameter code ' 22 ' is displayed in drive group.
2. Go to step 2 of 'In FUN1 Group' above, and follow the rest procedure.

2.3.3 Parameter Navigation (7-Segment Keypad)

The parameter group moves directly to DRV group by pressing [SHIFT/ESC] key in any parameter code.

2.4 Operation Method

The iS5 has several operation methods as shown below.

Operation Method	Function	Function Setting
Operation using Keypad	Run/Stop command and frequency are set only through the keypad.	DRV 03: Keypad DRV 04: Keypad-1 or -2
Operation using Control Terminals	Closing FX or RX terminal performs Run/Stop. Frequency reference is set through V1 or I or V1+I terminal.	DRV 03: Fx/Rx-1 or -2 DRV 04: V1 or I or V1+1
Operation using both Keypad and Control Terminals	Run/Stop is performed by the keypad. Frequency reference is set through the V1 or I or V1+I terminal.	DRV 03: Keypad-1 or -2 DRV 04: V1 or I or V1+I
	Closing FX or RX terminal performs Run/Stop. Frequency reference is set through the keypad.	DRV 03: Fx/Rx-1 or -2 DRV 04: Keypad-1 or -2
Operation using Option Board	Operation using option board. The iS5 has five option boards and three sub-boards. Option Boards: RS485, Device-Net, F-Net, ProfiBus and ModBus Sub-Boards: Sub-A Board, Sub-B Board, Sub-C Board (Please refer to 'Chapter 7 - Options' for more information.)	

2.5 Operating Example

2.5.1 Operation via Control terminal + Keypad

Setting: DRV-03 [Drive Mode (Run/Stop method)] = 1 (Fx/Rx-1)
DRV-04 [Frequency Mode (Freq. setting method)] 0 (Keypad-1)

- With above setting, Freq setting via terminal \& Run/Stop via Keypad disabled

1. Check the LCD display when Power ON. Otherwise, change the setting indicated above.

DRV	T/K	0.0 A
00	STP	0.00 Hz

2. Turn the $F X$ (or $R X$) terminal $O N$. Then $F W D$ (or REV) LED will be lit.
```
DRV T/K 0.0 A
00 FWD 0.00Hz
```

3. When setting the Ref. Freq to 60 Hz using PROG/ENT/SHIFT, Δ keys, motor will rotate at 60 Hz . FWD (or REV) LED will be flickering during Acceleration/ Deceleration.

4. Turn Fx (or Rx) terminal Off. Then Stop LED will be lit.
```
DRV T/K 0.0 A
00 STP 60.00Hz
```

Note) To enable Run/Stop via keypad \& Freq setting via control terminal...
Setting: DRV-03 [Drive Mode (Run/Stop method)] = 0 (Keypad)
DRV-04 [Frequency Mode (Freq. setting method)] 2 (V1)

\section*{	Operation
Example (1)	\quad Freq Setting via Keypad + Run/Stop via Terminal (FX/RX)}

[Operation condition]

-. Control mode: V/F control
-. Ref. Frequency: $50[\mathrm{~Hz}]$ setting via keypad
-. Accel/Decel time: Accel - 10 [Sec], Decel - 20 [Sec]
-. Drive mode: Run/Stop via FX/RX terminal

Step	Parameter setting	Code	Description
1	Control Mode Selection	FU2-39	Set it to 0 \{V/F\}.
2	Drive Mode	DRV-3	Set it to 1 Fx/Rx-1.
3	Frequency Mode	DRV-4	Set it to 0 Keypad-1.
4	$50[H z] ~ f r e q ~ c o m m a n d ~$ setting	DRV-0	Set freq command 50[Hz] via Keypad.
5	Accel/Decel time	DRV-2 DRV-3	Set Accel time to 10 [Sec] in DRV-2. Set Decel time to 20 [Sec] in DRV-3.
6	Terminal FX	Motor starts to rotate in Forward direction at 50Hz with Accel time $10[s e c] ~ w h e n ~ F X ~ t e r m i n a l ~ i s ~ t u r n e d ~ O N . ~$ Motor decelerates to stop with Decel time 25[sec] when FX terminal is turned OFF.	
7	Terminal RX	When RX terminal is turned ON motor starts to rotate in Reverse direction at 50[Hz] with Accel time 10 [Hz]. When it is OFF, motor decelerates to stop with Decel time 20 [Sec].	

2.5.2 Operation via Control Terminal

Setting: DRV-03 [Drive Mode (Run/Stop method)] = 1 (Fx/Rx-1)
DRV-04 [Frequency Mode (Freq. setting method)] $\mathbf{2}$ (V1)

1. Check the LCD display when Power ON. Otherwise, change the setting indicated above.

DRV	T/V	0.0 A
00	STP	0.00 Hz

2. Turn the FX (or RX) terminal ON . Then FWD (or REV) LED will be lit.

DRV	T/V	0.0 A
00	FWD	0.00 Hz

3. Set the frequency using V1 (Potentiometer). Output freq (60Hz)., Rotating direction (FWD or REV) and output current (5 A) will be displayed on the LCD.
```
DRV T/V 5.0 A
00 FWD 60.00Hz
```

4. Output freq value is decreasing when turning the potentiometer counterclockwise. Inverter output stops at 0.00 Hz and motor is stopped.

DRV	T/V	0.0 A
00	FWD	0.00 Hz

5. Turn FX (or RX) terminal OFF.

DRV	T/V	0.0 A
00	STP	0.00 Hz

Operation
 Example (2)

Analog Voltage Input (V1) + Operation via Terminal (FX/RX)

[Operation condition]

-. Control mode: V/F control
-. Reference Frequency: $50[\mathrm{~Hz}]$ analog input via V1 (Potentiometer)
-. Accel/Decel time: Accel - 10 [Sec], Decel - 20 [Sec]
-. Drive mode: Run/Stop via FX/RX terminal

Step	Parameter setting	Code	Description
1	Control Mode Selection	FU2-39	Set it to 0 \{V/F\}.
2	Drive Mode	DRV-3	Set it to 1 Fx/Rx-1.
3	Frequency Mode	DRV-4	Set it to 2 V1 Analog input.
4	$50[H z] ~ f r e q ~ c o m m a n d ~$ setting	DRV-0	Set freq command 50[Hz] via V1 (potentiometer).
5	Accel/Decel time	DRV-2 DRV-3	Set Accel time to 10 [Sec] in DRV-2. Set Decel time to 20 [Sec] in DRV-3.
6	Terminal FX	Motor starts to rotate in Forward direction at 50Hz with Accel time $10[s e c] ~ w h e n ~ F X ~ t e r m i n a l ~ i s ~ t u r n e d ~ O N . ~$ Motor decelerates to stop with Decel time 20[sec] when FX terminal is turned OFF.	
7	Terminal RX	When RX terminal is turned ON motor starts to rotate in Reverse direction at 50[Hz] with Accel time 10 [Hz]. When it is OFF, motor decelerates to stop with Decel time 20 [Sec].	

2.5.3 Operation via Keypad

```
Setting: DRV-03 [Drive Mode (Run/Stop method)] = 0 (Keypad)
    DRV-04 [Frequency Mode (Freq. setting method)] = 0 (Keypad-1)
```

1. Check the LCD display when Power ON. Otherwise, change the setting indicated above.

DRV	K/K	0.0 A
00	STP	0.00 Hz

2. Set the Ref. Freq to 60 Hz using PROG/ENT/SHIFT, Δ keys. Setting freq is displayed during stop.

DRV	K/K	0.0 A
00	STP	60.00 Hz

3. When pressing FWD/REV key, motor starts running and output freq and output current are displayed.

DRV	K/K	5.0 A
00	FWD	60.00 Hz

4. Press STOP/RESET key. Then motor decelerates to stop. Setting freq 60 Hz is displayed.
```
DRV K/K 0.0 A
00 STP 60.00Hz
```


CHAPTER 3 - VARIOUS FUNCTION SETTING \& DESCRIPTION

3.1 Function Setting

3.1.1 Basic function parameter setting

It is the basic function setting. All settings are factory defaults unless users make change. It is recommended to use factory setting value unless the parameter change is necessary.

1) Common parameter setting

The following table shows common parameter setting that should be checked before use but making change does not affect inverter control type.

Parameter Name	Code	Description
Motor Selection	FU2-30	Selects motor and voltage rating suitable to the desired inverter.
Motor parameters	Basic parameter value setting when selecting the motor rating. FU2-31~36 Note: If there is any discrepancy between parameter preset value and the actual motor parameter value, change the parameter value according to the actual motor.	
Drive Mode	DRV-3	Operation via Keypad, Fx/Rx-1, Fx/Rx-2 setting
Frequency or Torque Mode	DRV-4	Frequency/Torque setting parameter It automatically changes to torque mode when FU2 39- [Control mode] is set to Sensorless_T, Vector_TRQ.
Accel/Decel time setting	DRV-1, DRV-2	Accel/Decel time setting

2) V/f control

FU2-39 [Control mode] is set to 0 (V/F) as factory setting. Operation via V/F control can be performed after common parameter settings are done and the followings are set.

Parameter Name	Code	Description
Starting freq.	FU1-22	Set frequency to start the motor.
Torque boost	FU1-26	Manual or Auto torque boost settable in this parameter
Torque boost value	FU1-27, FU1-28	If FU1-26 [torque boost] is set to manual, user sets the desired value and the direction in code FU1-27 and 28.

3) V/F + PG control

If FU2-39 [control mode] is set to V/F with PG (encoder) feedback using SUB-B board, the control type is automatically changed to V/F + PG. The following parameters should be set accordingly to enable PG feedback using SUB-B board.

Parameter Name	Code	Description
Usage of Pulse Input Signal	EXT-12	Defines the use of pulse input signal with SUB-B mounted. This parameter should be set to 1 \{Feed-back\}.
Pulse Signal Input Selection	EXT-15	Three types of input signal settable; $(\mathrm{A}+\mathrm{B}), \mathrm{A},-(\mathrm{A}+\mathrm{B})$
Encoder Pulse Number	EXT-16	Defines the number of encoders of the motor.
P-Gain for 'Sub-B' I-Gain for 'Sub-B'	EXT-22, EXT-23	PI gains for PI controller during PG operation
Slip Frequency for 'Sub-B' Board	EXT-24	Set as a percent of FU2-32 [Rated Motor Slip].

4) Slip compensation

Operation is done via Slip compensation if FU2-39 is set to 1 \{Slip compen\}. This control keeps motor speed constant regardless of load change.

5) Auto-tuning of motor constant

This parameter enables auto-tuning of the motor constants. If set to 1 \{All mode\}, tuning type varies according to what control mode is set in [FU2-39]. Auto-tuning can be done in two ways - one is motor non-rotation mode, the other is motor rotation mode.
(1) Auto-tuning by non-rotation mode: Rs+Lsigma
(2) Auto-tuning by rotation mode: All, Enc Test, Tr

Before performing Auto-tuning, set motor rating, motor parameter in common setting and select the desired control mode in FU2-39 [control mode selection]. However, when auto-tuning parameters related to encoder, detail functions settings of vector control should be pre-defined. If Enc Test, Tr and control mode are set to vector control, Sub-B board should be mounted.

Parameter Name	Code	Description
Auto-tuning	FU2-40	No, All, Rs+Lsigma, Enc Test, Tr
Parameter value display	FU2-34, FU2-41 ~ 44	Tuned value monitoring (No-load current, stator/rotor resistance, leakage inductance, rotor filter time constant)

FU2-40	Description
No	Motor constants calculation disabled.
All	All constants can be measured in this code but different constants are tuned according to control mode; For V/F, Slip compen, Sensorless_S, Sensorless_T: (No-load current, stator resistance, leakage inductance, stator inductance available) Note: Only no-load current can be calculated during V/F and Slip compensation. For Vector_SPD, Vector_T: (No-load current, stator resistance, leakage inductance, stator inductance, encoder test, rotor filter time constant)
Rs+Lsigma	Calculates stator resistance, leakage inductance.
Enc Test	Calculates the encoder status.
Tr	Calculates Rotor filter time constant.

6) Sensorless vector control

Set FU2-39 to 2 \{Sensorless_S\} or 3 \{Sensorless_T\} to enable Sensorless vector control. It is strongly recommended to perform Auto-tuning for Sensorless before starting Sensorless control in order to maximize performance. Two types of Sensorless vector control are available; Sensorless_S or Sensorless_T.

Parameter Name	Code	Description
Control mode selection	FU2-39	Select Sensorless_S or Sensorless_T.
P, I gain for sensorless control	FU2-45, FU2-46	Set gain for Sensorless_S control.
Starting freq	FU1-22	Starting freq of the motor

7) Vector control

Set FU2-39 to 4 \{Vector_SPD\} or 5 \{Vector_TRQ\} to enable Vector control. Encoder should be installed to the motor with Sub-B board in the inverter to start this control.

Parameter Name	Code	Description
Usage of Pulse Input Signal	EXT-12	Defines the method of pulse input with SUB-B board mounted. Vector control setting is valid only after this parameter is set to 1 \{Feed-back\}.
Pulse Input Signal Selection	EXT-15	3 types of pulse input: (A+B), A, -(A+B)
Encoder Pulse Number	EXT-16	Enters the pulse number of encoder in the motor.

Before selecting Vector control mode, encoder setting should be done as indicated above. If the parameter value of actual motor is set in common setting, execute Auto-tuning before selecting vector control mode.

Parameter Name	Code	Description
Control Mode Selection	FU2-39	Selects Vector_SPD or Vector_TRQ.
Forward/ Reverse Torque Limit	EXT-27, EXT-28	Sets the FWD/REV limit to the torque current.
P-Gain/ I-Gain for (Sensored) Vector_SPD	EXT-25, EXT-26	Sets P/I Gain for Vector_SPD control.
Speed Limit setting	EXT-50, EXT-51 EXT-52, EXT-53	Sets speed limit for Vector_TRQ.
Zero Speed Detection Level/ Bandwidth	EXT-54, EXT-55	Sets on/off of Multi-function output terminal relay when the motor speed reaches to 0.
Torque Detection Leve//Bandwidth	EXT-56, EXT-57	Detects certain level/bandwidth of Torque.

3.1.2 Advanced function setting

SV-iS5 inverter features advanced function parameters to maximize efficiency and performance of the motor. It is recommended to use as factory setting unless parameter value change is necessary.

1) V/F control

Parameter Name	Code	Description
V/F Pattern	FU1-29	Use it according to load characteristics. If User V/F is selected, user can select the optimum output V/F characteristic for the application and load characteristics in [FU1-30]~[FU1-37].
Dwell operation	FU2-07	Fsed to output torque in an intended direction. Inverter stops acceleration for the preset [FU2-08] Dwell time while running at Dwell frequency [FU2-07] and starts acceleration at commanded frequency. Setting [FU2-08] Dwell time to 0 disable the Dwell operation.
Frequency jump	FU2-11~16	When it is desired to avoid resonance attributable to the natural frequency of a mechanical system, these parameters allow resonant frequencies to be jumped. Up to three areas can be set, with the jump frequencies set to either the top or bottom point of each area. To enable the function, set [FU2-10] to 'Yes' and set the value in [FU2- 11]~[FU2-16].
S-curve Accel/Decel		
pattern	FU2-17/ FU2-18	This pattern has an effect on the prevention of cargo collapse on conveyor etc and reduction in an acceleration/ deceleration shock.

2) Sensorless vector control

Related parameters for starting in Sensorless vector control when FU2-39 [Control Mode Selection] is set to 2 \{Sensorless_S\}

Status	Code	Description
When starting	FU1-14	Pre-excitation time setting
	I/012~14 EXT2~4	Multi-function input terminal P1- P6 define

3) Vector control [Vector_SPD, Vector_TRQ]

Related parameters for running/ stopping in Vector control when FU2-39 [Control Mode Selection] is set to 4 \{Vector_SPD\}

Status	Code	Description
When starting	FU1-14	Pre-excitation time setting
	I/012~14 EXT2~4	Multi-function input terminal P1- P6 define
	FU1-16	Pre-excitation current setting
When stopping	FU1-15	Hold time at a stop setting
	FU1-7	Stopping method selection

This parameter can limit the over-speeding (motor running above limit level) of the motor when FU2-39 [Control mode] is set to 5 \{Vector_TRQ\}.

Parameter Name	Code	Description
Speed limit level / bias / gain	EXT-50 \sim EXT-53	Function to limit the speed and change reference torque value according to speed

4) Parameters to monitor motor and inverter status

Parameter Name	Code	Description
Output current/ motor speed	DRV-8~9	Displays output current and motor rpm.
DC link voltage	DRV-10	Displays DC link voltage.
User display selection (Voltage and watt)	DRV-11 FU2-73	Either output voltage or power selected in FU2-73 is displayed in DRV11.
Reference/ Feedback frequency display	DRV-15	Displays Reference/ Feedback frequency display.
Fault display	DRV-14	Displays the current inverter fault.

5) Parameter initialize

Parameter Name	Code	Description
Software version	FU2-79	Displays the inverter software version.
Parameter Read/Write/litialize/Lock	FU2-91 FU2-92 FU2-93 FU2-94	[FU2-91], [FU2-92]: Copying parameters from other inverter [FU2-93]: Initializing parameters to factory setting values [FU2-94]: Parameter write disabled

Note: Motor parameters (FU2-31~37, FU2-41~44) are back to factory setting once Parameter Read/Writie is executed.
6) Protection \& Trip level setting

Parameter Name	Code	Description
Electronic thermal	FU1-50 FU1-51 FU1-52 FU1-53	Protection of the motor from overheating without the use of external thermal relay. Refer to parameter descriptions for more detail.
Overload alarm and trip	FU1-54, FU1-55 FU1-56, FU1-57 FU1-58	Warning alarm outputs and displays the trip message when overcurrent above the threshold value keeps on.
Stall prevention	FU1-59, FU1-60	Set the output current level at which the output freq will be adjusted to prevent the motor from stoping due to over- current etc. it activates during accel/ constant speed/ decel to prevent the motor stall.

7) Starting / Accel/ Decel / Stopping pattern setting

Parameter Name	Code	Description
Accel/Decel pattern	FU1-05 FU1-06	5 types of Accel/ Decel pattern: 'Linear', 'S-curve', 'U- curve','Minimum', 'Optimum' settable according to appplication and load characteristic. If 'S-curve' is selected, the desired value of [FU2-17], [FU2-18] is settable.
Stopping method	FU1-07	3 types of stopping method 'Decel', 'DC-brake', 'Free-run' selectable. If 'DC-brake' is selected, the desired value of [FU1-8]~ [FU1-11] is settable.
Starting DC Injection Braking Voltage/ Time	FU1-12 FU1-13	The motor accelerates after the preset [FU1-12] for the preset [FU1-13] is applied. Starting DC injection braking is inactive when the value is set to 0 in control mode other than V/F and Slip compensation.
Frequency Limit selection	FU1-23 FU1-24 FU1-25	Limits the active frequency. Inverter operates at the freq range between upper freq limit [FU1-25] and bottom freq limit [FU1-24] and higher/ lower freq value is entered, it is automatically replaced by limit value. Setting range: [FU1- 20] Maximum freq to [FU1-21] Base freq.
Dynamic braking	FU2-75 FU2-76	Select the DB resistor mode when the regenerative load. Is connected. Refer to DBU manual for more details.

8) Operation-starting method

Parameter Name	Code	Description
Starting method	$\begin{aligned} & \text { FU2-20 } \\ & \text { FU2-21 } \\ & \text { FU2-26 } \\ & \text { FU2-27 } \end{aligned}$	Motor starting method: [FU2-20]: Power-on run, [FU2-21] Restart after Fault Reset, [FU2-26] Number of Auto Restart Attempt [FU2-27] Delay Time Before Auto Restart See parameter description for more details.
Speed Search Selection	$\begin{aligned} & \hline \text { FU2-22 } \\ & \text { FU2-23 } \\ & \text { FU2-24 } \\ & \text { FU2-25 } \end{aligned}$	Speed search function is available during Accel, trip, instant power failure, restart after fault reset and auto restart. See parameter description for more details.

3.1.3 Application function setting

1) PID operation

The inverter can be used to exercise process control, e.g. flow rate, air volume or pressure via PID feedback control.

Parameter Name	Code	Description
PID control setting	FU2-41~ FU2-60	Parameters for PID control setting

2) Jog and Multi-speed operation

Parameter Name	Code	Description
Multi function input terminal setting	I/O-12 ~ 14 EXT2 ~ 4	If I/O-12 ~ 14 are set to Speed-H, Speed-M, Speed-L, multi- speed operation up to speed 7 is available.
Filter time constant for input terminal	$1 / 0-17$	Effective for eliminating noise in the freq. setting circuit
Speed reference value	DRV-05 ~ 7 $1 / 0-21 \sim$ I/O-24	Speed reference value for each step setting
Accel/Decel time setting for each step	$1 / 0-25 \sim 38$	Accel/Decel time for each step setting
Jog freq.	$1 / 0-20$	Jog freq for jog operation setting

Speed-H	Speed-M	Speed-L	JOG	Speed Signal	Parameter value
0	0	0	0	Speed 0	DRV-00
X	X	X	1	Jog freq.	1/0-20
0	0	1	0	Speed -1	DRV-05
0	1	0	0	Speed-2	DRV-06
0	1	1	0	Speed - 3	DRV-07
1	0	0	0	Speed -4	I/O-21
1	0	1	0	Speed -5	1/0-22
1	1	0	0	Speed -6	1/0-23
1	1	1	0	Speed -7	1/0-24

3) Auto sequence operation

If I/O-50 [Auto (Sequence) Operation selection] is set to 1 \{Auto-A\} or 2 \{Auto-B\}, up to 5 sequences can be set with max of 8 steps (speed) in each sequence. Therefore, max 40 operating steps can be made. Two different types of auto sequence (A, B) operation are available.

Parameter Name	Code	Description
Auto operation setting	$I / 0-50 \sim 84$	Sets 8 steps and 5 sequences (Max).

4) $2^{\text {nd }}$ motor operation

$2^{\text {nd }}$ function setting is required to run the two motors by one inverter by exchange. If the terminal defined for $2^{\text {nd }}$ function signal input is turned $\mathrm{ON}, 2^{\text {nd }}$ motor operation is valid.

Parameter Name	Code	Description
Multi-function input terminals setting	I/O-12~14	
EXT2 ~ 4	$2^{\text {nd }}$ motor operation is available with Multi-function input terminals P1 \sim P3 or P4 ~ 6 set to $7\left\{2^{\text {nd }}\right.$ Func $\}$.	
Parameter setting for $2^{\text {nd }}$ motor operation	FU2-81 \sim FU2-90	Setting parameters necessary to operate 2nd as base freq., Accel/Decl time, Stall.

5) Energy-saving operation

FU1-39 [Energy Save Level] tunes the inverter output voltage to minimize the inverter output voltage during during constant speed operation. Appropriate for energy-saving applications such as fan, pump and HVAC.

3.2 Operation Example

Control mode: V/F control
-. Frequency command: $50[\mathrm{~Hz}]$ analog input via V1 terminal
-. Accel/Decel time: Accel - 15 [Sec], Decel - 25 [Sec]
-. Drive mode: Run/Stop via FX/RX terminal

[Wiring]

Step	Parameter setting	Code	Description
1	Control Mode Selection	FU2-39	Set it to 0 \{V/F\}.
2	Drive Mode	DRV-3	Set it to Fx/Rx-1.
3	Frequency Mode	DRV-4	Set V1 Analog input value in frequency mode.
4	$50[H z] ~ f r e q ~ c o m m a n d ~$ setting	DRV-0	Set freq command 50[Hz] via V1 (potentiometer).
5	Accel/Decel time	DRV-2 DRV-3	Set Accel time to 15 [Sec] in DRV-2. Set Decel time to 25 [Sec] in DRV-3.
6	Terminal FX	Motor starts to rotate in Forward direction at 50Hz with Accel time 15 [sec] when FX terminal is turned ON. Motor decelerates to stop with Decel time 25[sec] when FX terminal is turned OFF.	
7	Terminal RX	When RX terminal is turned ON motor starts to rotate in Reverse direction at 50[Hz] with Accel time 15 [Hz]. When it is OFF, motor decelerates to stop with Decel time 25 [Sec].	

Operation example (2)	(V/F + PG) Control + Operation (Run/Stop) via Keypad		
[Operation condition] -. Control mode: V/F + PG control -. Frequency command: $50[\mathrm{~Hz}]$ Digital input via Keypad - Accel time: $15[\mathrm{sec}]$, Decel time: 25 [sec] -. Drive mode: Run/Stop via Keypad -. Wiring block diagram when an Open Collector- type encoder is used.			
[Wiring]			
Step	Parameter setting	Code	Description
1	Control Mode Selection	FU2-39	Set it to 0 \{V/F\}.
2	Drive mode	DRV-3	Set it to 0 \{KeyPad\}.
3	Frequency Mode	DRV-4	Set it to 0 \{KeyPad-1\}.
4	Digital Command Frequency setting	DRV-0	Press PROG key on the keypad to set 50 Hz
5	Accel/Decel time setting	$\begin{aligned} & \hline \text { DRV-2 } \\ & \text { DRV-3 } \end{aligned}$	Accel time: set DRV-2 to $15[\mathrm{sec}]$ Decel time: set DRV-3 to 25[sec]
6	Sub-B board setting	$\begin{aligned} & \text { EXT-12 } \\ & \text { EXT-15 } \\ & \text { EXT-16 } \end{aligned}$	Set EXT-12 [Usage of Pulse Input Signal] to 1 \{Feed-back\} and set EXT-15 and EXT-16 after checking encoder rating on the nameplate.
7	FWD Operation		Motor runs at $50[\mathrm{~Hz}]$ in forward direction with Accel time $15[\mathrm{sec}]$ by PG control when pressing FWD key on the keypad. Motor decelerates to stop with Decel time $25[\mathrm{sec}]$ when pressing Stop key.
8	REV Operation		Motor runs at $50[\mathrm{~Hz}]$ in reverse direction with Accel time $15[\mathrm{sec}]$ by PG control when pressing REV key on the keypad. Motor decelerates to stop with Decel time $25[\mathrm{sec}]$ when pressing Stop key.

[Operation condition] -. Control mode: V/F control $-.1^{\text {st }}$ motor $+2^{\text {nd }}$ motor Operation by exchange using [2nd Func] (Values can be set differently) -. Frequency command: Using Multi-step operation (1st motor $--50[\mathrm{~Hz}]$ as main speed, $2^{\text {nd }}$ motor $--20[\mathrm{~Hz}]$ with P 1 temminal set as multi- step operation) -. Accel/Decel time: $1^{\text {st }}$ motor --- Accel time: $15[\mathrm{Sec}]$, Decel time: 25 [Sec] $2^{\text {nd }}$ motor --- Accel time: 30[Sec], Decel time: 40 [Sec] -. Drive mode: Run/Stop via FXIRX				
[Wiring]				
Step		Parameter setting	Code	Description
1	Contro	1 Mode Selection	FU2-39	Set it to 0 \{V/F\}.
2	Drive	mode	DRV-3	Set it to Fx/Rx-1.
3	Frequ	ency Mode setting	DRV-4	Set it to 0 \{keypad-1\}. ${ }^{\text {st }}$ motor freq setting
4	Multi-	unction input terminal P2	I/0-13	Set P2 to 2nd Func.
5	Multi-	unction input terminal P1	I/0-12	Set P1 to Speed-L. $2^{\text {nd }}$ motor freq setting
6	Freq	seting for 1 1st motor	DRV-0	Set it to 50[Hz].
7	$\begin{aligned} & \text { Accel/ } \\ & \text { motor } \end{aligned}$	Decel time setting for 1 st	DRV-1, DRV-2	Set Accel/Decel time to $15[\mathrm{sec} / 25[\mathrm{sec}]$.
8	Freq	setting for $2^{\text {nd }}$ motor	DRV-5	Set it to 10[Hz].
9	$\begin{array}{\|l\|} \hline \text { Accell } \\ \text { motor } \end{array}$	Decel time setting for $2^{\text {nd }}$	FU2-81/82	Set Accel/Decel time to 30[sec]/50[sec].
10	${ }^{\text {st }}$ mo	tor operation		Set it as main motor by turning P1, P2, output relay OFF. Run the motor in FWD/REV direction using FXIRX terminal.
11	$2^{\text {nd }}$ m	tor operation		Set 2nd motor parameters by turning terminal P2 ON. Change the freq setting to $20[\mathrm{~Hz}]$ by turning terminal P 1 ON . Change $2^{\text {nd }}$ motor terminal by turning output relay ON . Run the motor in FWD/REV direction by terminal FX/RX.

Operation Example (4)	Sensorless_S Control + Multi-speed operation + Analog output (FM)		
[Operation condition] -. Control mode: Sensorless Speed control -. Frequency command: Multi-function input from SUB-A and 8 step speed operation (Multi-speed $7+$ Jog freq 1) -. Accel time: 5 [Sec], Decel time: 5 [Sec] -. Drive mode: Run/Stop and speed output via terminal FX/RX			
[Wiring]			
Step	Parameter setting	Code	Description
1	Control Mode Selection	FU2-39	Set it to Sensorless_S.
2	Drive mode	DRV-3	Set it to FXIRX-1.
3	Multi-function input	EXT-2 ~ 4	Set P3, P4, P5 to Speed-L, Speed-M, Speed-H.
4	FM (Frequency Meter) Output Selection	I/0-40	Set it to Frequency output.
5	FM Output Adjustment	1/0-41	$\begin{aligned} \hline \text { Output } V= & 10 \mathrm{~V} \times \text { output freq } \times \text { output gain }(\text { ex100\% }) / \\ & (\text { Max freq } \times 100) \end{aligned}$
6	Terminal FX		Motor runs in forward direction at the set freq via P3, 4, 5 if Fx terminal is ON . Motor decelerates to stop with Decel time 5 [sec] if FX terminal is OFF.
7	Terminal RX		Motor runs in reverse direction at the set freq via P3, 4, 5 if RX terminal is ON . Motor decelerates to stop with Decel time 5 [sec] if RX terminal is OFF.

Operation
 Example (5)

Vector_SPD Control

[Operation condition]

-. Control Mode: Vector_SPD Control, -. Encoder specification: Pulse number (1024), Line Drive type
-. Freq command: set $55[\mathrm{~Hz}]$ via KPD-1
-. Accel/Decel time: Accel - 15 [sec], Decel - 25 [sec], -. Drive mode: Run/Stop via terminal FX/RX

[Wiring]

Step	Parameter setting	Code	Description
1	Motor related setting	FU2-30~ ~ FU2-36	Set motor capacity, pole number, rated voltage/ current/slip and efficiency.
2	Encoder related setting	EXT-12 EXT-15 EXT-16	Set EXT-12 to Feed-back, EXT-1 to A+B. Set EXT-16 to 1024.
3	Control Mode Selection	Fu2-39	Encoder related setting should be done before setting control mode to Vector_SPD.
4	Auto-tuning	FU2-40	Auto-tuning starts when set to ALL. Read the encoder manual carefully to clear the error if the messages "Enc Err", "Enc Rev" are displayed.
5	Accel/Decel time setting	DRV-2 DRV-3	Accel time: set 15[Sec] Decel time: set 25[Sec]
6	Drive mode	DRV-3	Set it to FX/RX-1. DRV-4 DRV-4 to KPD-1 and press the Prog key to set 55 [Hz] in Drv-
8	FX/RX terminal	Motor runs with Accel time 15 [Sec] at 55 [Hz] if FX/RX terminal is turned ON. Motor decelerates to stop with Decel time 25 [Sec] if FX/RX terminal is turned OFF.	

CHAPTER 4 - QUICK-START PROCEDURES

These Quick-Start Up instructions are for those applications where:

- The user wants to get the iS5 inverter started quickly.
- The factory-preset values are suitable for the user application.

The factory-preset values are shown on the 'Chapter 5 - Parameter List'. The iS5 inverter is configured to operate a motor at 60 Hz (base frequency). If the application requires coordinated control with other controllers, it is recommended the user become familiar with all parameters and features of the inverter before applying AC power.

1. Mounting the inverter (mount the inverter as described in '1.3 Mounting')

- Install in a clean, dry location.
- Allow a sufficient clearance around top and sides of inverter.
- The ambient temperature should not exceed $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$.
- If two or more inverters are installed in an enclosure, add additional cooling.

2. Wiring the inverter (connect wiring as described in '1.7 Power Terminals')

- AC power should be turned OFF.
- Verify the AC power matches the nameplate voltage.
- Remove the screw on the bottom front cover of the inverter for terminal board access (For terminal board access on 15~30HP inverters you must disconnect the keypad cable from the inverter and fully remove the cover).
4.1 Operating using keypad

1. Apply AC power.
2. LCD: Press [\mathbf{A}] key three times.

7-Seg: Rotate the encoder knob until '03' is displayed.
3. LCD: Press [PROG] key. 7-Seg: Press [PROG/ENT] key.
4. LCD: Press [\mathbf{V}] key one time. 7-Seg: Rotate the encoder knob left.
5. LCD: Press [PROG] key.

7-Seg: Press [PROG/ENT] key.
6. Press [PROG/ENT] key.
7. LCD: Press [PROG] key.

7-Seg: Press [PROG/ENT] key.
8. LCD: Press [SHIFT/ESC] key and press [$\mathbf{\Delta}$] key to increase the command frequency.
7-Seg: Rotate the encoder knob right to change the command frequency. The changing digit moves by pressing the [SHIFT/ESC] key.
9. LCD: Press [ENT] key to save the data.
7-Seg: Press [PROG/ENT] key to save the data.
10. LCD: Press [FWD] or [REV] key to start motor.
7-Seg: Press [RUN] key to start motor.
11. Press [STOP/RESET] key to stop motor.

LCD Display

DRV T $/ \mathrm{K}$	0.0 A	
00	STP	0.00 Hz

DRV	Drive mode
03	Fx/Rx-1

DRV 03	Drive mode Fx/Rx-1

DRV	Drive mode
03	Keypad

DRV K/K	0.0 A	
00	STP	60.00 Hz

The FWD or REV LED starts blinking. The STOP/RESET LED starts blinking.

7-Segment Display

The DRV LED is ON.

The DRV LED is turned ON.

The PROG/ENT LED turned ON.

The PROG/ENT LED is turned ON.

M E E M M M M M M

The PROG/ENT LED is turned ON.

F 50.0

The RUN LED starts blinking. To change the motor running direction, change DRV 13 to '1'.

The STOP/RESET LED starts blinking.

4.2 Operation using Control Terminals

1. Install a potentiometer on terminals

V1, VR, 5 G and connect wiring as
LCD Display
shown below.

2. Apply AC power.
3. Confirm that the DRV 03 is set at 'Fx/Rx-1'.
4. LCD: Press [$\mathbf{\Delta}$] key to move DRV 04.

7-Seg: Rotate encoder knob until '04' is displayed.
5. LCD: Press [PROG] key.

7-Seg: Press [PROG/ENT] key.
6. LCD: Press [$\mathbf{\Delta}$] key and set at 'V1'. 7-Seg: Rotate encoder knob and set at '2'.
7. LCD: Press [ENT] key.

7-Seg: Press [PROG/ENT] key.
8. Press [SHIFT/ESC] key.
9. Set the frequency by rotating the potentiometer.
10. Close the FX or RX contact to run the motor.
11. Open the FX or RX contact to stop the motor.

DRV T $/ \mathrm{K}$	0.0 A
00	STP

DRV Drive mode	
03	Fx/Rx-1

DRVV	Freq mode
04	Keypad-1

DRV	Freq mode
04	Keypad-1

DRV	Freq mode
04	V1

DRVT/V	0.0 A
00	STP

DRV T T/V	0.0 A	
00	STP	60.00 Hz

The FWD or REV LED starts blinking.

The STOP/RESET LED starts blinking.

7-Segment Display

F FMF MiN
 The DRV LED is ON.

114

The PROG/ENT LED is turned ON.

The PROG/ENT LED is turned ON.

The PROG/ENT LED is turned OFF

The RUN LED starts blinking.

The STOP/RESET LED starts blinking

4.3 Operation using Keypad and Control Terminals

4.3.1 Frequency set by External Source and Run/Stop by Keypad

1. Install a potentiometer on terminals V1, VR, 5G and connect wiring as shown below left.

When a ' 4 to 20 mA ' current source is used as the frequency reference, use terminals I and 5 G as shown below.

2. Apply AC power.

$\mathrm{DRV} / \mathrm{K}$		0.0 A
00	STP	0.00 Hz

3. LCD: Press [$\mathbf{\Delta}$] key to move DRV 03.

7-Seg: Rotate encoder knob until ' 03 ' is displayed.
4. LCD: Press [PROG] key.

7-Seg: Press [PROG/ENT] key.

7-Seg: Rotate encoder knob and set at ' 0 '.
6. LCD: Press [ENT] key.

7-Seg: Press [PROG/ENT] key.

DRV	Drive mode
03	Keypad

DRV	Freq mode
04	V1

H1

The PROG/ENT LED is turned ON.
F
EDME M

The RUN LED starts blinking.
To change the motor running direction, change DRV 13 to ' 1 '.

4.3.2 Frequency set by Keypad and Run/Stop by External Source.

LCD Display

7-Segment Display

1. Connect wiring as shown below.

2. Apply AC power.

DRVT/K	0.0 A	
00	STP	0.00 Hz

The DRV LED is ON.
3. Confirm that the DRV 03 is set at 'Fx/Rx-1'.

DRV 03	Drive mode Fx/Rx-1

II
1
4. Confirm that the DRV 04 is set at 'Keypad-1'.

DRV	Freq mode 04
Keypad-1	

14

5

5. Press [SHIFT/ESC] key.

DRVT/K	0.0 A
00	STP

E
Firir

DRVV Cmd.	freq
00	0.00 Hz

7. LCD: Set the frequency using [SHIFT/ESC] and [$\mathbf{\Delta}$] key.
7-Seg: Set the frequency by rotating the encoder knob.
8. LCD: Press [ENT] key to save the data. 7-Seg: Press [PROG/ENT] key to save the data.

```
\begin{tabular}{|ll|}
\hline DRVV Cmd. & freq \\
00 & 60.00 Hz \\
\hline
\end{tabular}
```


DRV T/V	0.0 A
00	STP

9. Close the FX or RX contact to run the motor. The FWD or REV LED starts blinking. The RUN LED starts blinking.
10. Open the FX or RX contact to stop the motor.
[^4]
CHAPTER 5 - PARAMETER LIST

5.1 Drive Group [DRV]

Code	Description	Keypad Display		Setting Range		Units	Factory Default	Adj. During Run	Page	
		LCD	7-Segment	LCD	7-Segment					
DRV-0011	Command Frequency or Command Torque (Output Frequency/ Torque during motor run, Reference Frequency/ Torque during motor stop) Output Current (LCD)	Cmd. freq or Cmd. Trq	$\begin{gathered} \text { F or r } \\ \text { (DRV-13) } \end{gathered}$	0 to FU1-20 (Max. freq)		0.01	0.00 [Hz]	Yes	79	
DRV-01	Acceleration Time	Acc. time	01	0 to 6000		0.1	20.0 [sec]	Yes	80	
DRV-02	Deceleration Time	Dec. time	02	0 to 6000		0.1	$30.0[\mathrm{sec}]$	Yes	81	
DRV-03	Drive Mode (Run/Stop Method)	Drive mode	03	Keypad	0	-	Fx/Rx-1	No	81	
				Fx/Rx-1	1					
				Fx/Rx-2	2					
DRV-04	Frequency Mode or Torque Mode (Frequency/Torque setting Method)	Freq mode or Torque mode	04	Keypad-1	0	-	Keypad-1	No	82	
				Keypad-2	1					
				V1	2					
				1	3					
				V1+1	4					
DRV-05	Step Frequency 1	Step freq-1	05	0 to FU1-20 (0 to Max. freq)		0.01	$10.00[\mathrm{~Hz}]$	Yes	83	
DRV-06	Step Frequency 2	Step freq-2	06			$20.00[\mathrm{~Hz}]$				
DRV-07	Step Frequency 3	Step freq-3	07			$30.00[\mathrm{~Hz}]$				
DRV-08	Output Current	Current	08	Load Current in RMS			-	[A]	-	84
DRV-09	Motor Speed	Speed	09	Motor Speed in rpm			-	[rpm]	-	84
DRV-10	DC link Voltage	DC link Vtg	10	DC Link Voltage inside inverter		-	[V]	-	84	
DRV-11	User Display Selection	User disp	11	Selected in FU2-73 (User Disp)		-	-	-	84	
DRV-12	Fault Display	Fault	12	-	-	-	None nOn	-	84	
DRV-13	Motor Direction Set	Not displayed in LCD keypad	13	Not available	$\begin{gathered} \hline 0 \text { [Forward] } \\ \hline 1 \text { [reverse] } \end{gathered}$	-	0	Yes	85	
DRV-14	Target/Output Frequency Display	Tar/Out Freq.	14	-	-	-	0.00 [Hz]	Yes	85	
DRV-1512	Reference/Feedback Frequency Display	Ref/Fbk Freq.	15	-	-	-	0.00 [Hz]	Yes	85	
DRV-16	Speed Unit Selection	Hz/Rpm Disp	16	Hz disp Rpm disp	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	-	-	Yes	85	
DRV-20	FU1 Group Selection	Not displayed in LCD keypad	20	Not available	Press [PROG/ENT] key	-	1	Yes	85	
DRV-21	FU2 Group Selection		21						85	
DRV-22	I/O Group Selection		22						85	
DRV-23 ${ }^{13}$	EXT Group Selection		23						85	

[^5]| Code | Description | Keypad Display | | Setting Range | | Units | Factory Default | Adj. During Run | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | LCD | 7-Segment | LCD | 7-Segment | | | | |
| DRV-24 | COM Group Selection | | 24 | | | - | 1 | Yes | 85 |
| DRV-25 | APP Group Selection | | 25 | | | - | 1 | Yes | 85 |

5.2 Function 1 Group [FU1]

Code	Description	Keypad Display		Setting Range		Units	Factory Default	Adj. During Run	Page
		LCD	7-Segment	LCD	7-Segment				
FU1-00	Jump to Desired Code \#	Jump code	Not displayed	1 to 99	Not available	1	1	Yes	87
FU1-03	Run Prevention	Run Prev.	03	None Forward Prev Reverse Prev	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$	-	None	No	87
FU1-05	Acceleration Pattern	Acc. pattern	05	Linear S-curve U-curve Minimum Optimum	$\begin{aligned} & \hline 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	-	Linear	No	87
FU1-06	Deceleration Pattern	Dec. pattern	06	Linear S-curve U-curve Minimum Optimum	$\begin{aligned} & \hline 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	-	Linear	No	87
FU1-07	Stop Mode	Stop mode	07	Decel DC-brake Free-run	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$	-	Decel	No	88
FU1-0814	DC Injection Braking Frequency	DcBr freq	08	FU1-22 to	[Hz]	0.01	$5.00[\mathrm{~Hz}]$	No	
FU1-09	DC Injection Braking On-delay Time	DcBIk time	09	0 to 6		0.01	0.1 [sec]	No	
FU1-10	DC Injection Braking Voltage	DcBr value	10	0 to 20		1	50 [\%]	No	89
FU1-11	DC Injection Braking Time	DcBr time	11	0 to 60		0.1	1.0 [sec]	No	
FU1-12	Starting DC Injection Braking Voltage	DcSt value	12	0 to 20		1	50 [\%]	No	
FU1-13	Starting DC Injection Braking Time	DcSt time	13	0 to 60		0.1	0.0 [sec]	No	90
FU1-14	Pre-excitation Time	PreExTime	14	0 to 60		0.1	1.0 [sec]	No	90
FU1-15	Hold Time	Hold Time	15	0 to 100		1	1000 [ms]	No	91
FU1-16	Pre-excitation Current	Flux Force	16	100 to 5	[\%]	0.1	100.0 [\%]	No	91
FU1-20	Maximum Frequency	Max freq	20	40 to 40		0.01	$60.00[\mathrm{~Hz}]$	No	
FU1-21	Base Frequency	Base freq	21	30 to F		0.01	$60.00[\mathrm{~Hz}]$	No	91
FU1-22	Starting Frequency	Start freq	22	0.01 to	[Hz]	0.01	0.50 [Hz]	No	
FU1-23	Frequency Limit selection	Freq limit	23	$\begin{aligned} & \text { No } \\ & \text { Yes } \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	-	No	No	92
FU1-2415	Low Limit Frequency	F-limit Lo	24	0 to F		0.01	$0.50[\mathrm{~Hz}]$	Yes	92
FU1-25	High Limit Frequency	F-limit Hi	25	FU1-24 to	U1-20	0.01	60.00 [Hz]	No	
FU1-26	Manual/Auto Torque Boost Selection	Torque boost	26	Manual Auto	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	-	Manual	No	92

[^6]| Code | Description | Keypad Display | | Setting Range | | Units | Factory Default | Adj. During Run | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | LCD | 7-Segment | LCD | 7-Segment | | | | |
| FU1-27 | Torque Boost in Forward Direction | Fwd boost | 27 | 0 to 15 [\%] | | 0.1 | 2.0 [\%] | No | |
| FU1-28 | Torque Boost in Reverse Direction | Rev boost | 28 | 0 to 15 [\%] | | 0.1 | 2.0 [\%] | No | |
| FU1-29 | Volts/Hz Pattern | V/F pattern | 29 | Linear
 Square
 User V/F | $\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$ | - | Linear | No | 93 |
| FU1-3016 | User V/F - Frequency 1 | User freq 1 | 30 | 0 to FU1-20 | | 0.01 | $15.00[\mathrm{~Hz}]$ | No | |
| FU1-31 | User V/F - Voltage 1 | User volt 1 | 31 | 0 to 100 [\%] | | 1 | 25 [\%] | No | |
| FU1-32 | User V/F - Frequency 2 | User freq 2 | 32 | 0 to FU1-20 | | 0.01 | $30.00[\mathrm{~Hz}]$ | No | |
| FU1-33 | User V/F - Voltage 2 | User volt 2 | 33 | 0 to 100 [\%] | | 1 | 50 [\%] | No | |
| FU1-34 | User V/F - Frequency 3 | User freq 3 | 34 | 0 to FU1-20 | | 0.01 | $45.00[\mathrm{~Hz}]$ | No | |
| FU1-35 | User V/F - Voltage 3 | User volt 3 | 35 | 0 to 100 [\%] | | 1 | 75 [\%] | No | |
| FU1-36 | User V/F - Frequency 4 | User freq 4 | 36 | 0 to FU1-20 | | 0.01 | $60.00[\mathrm{~Hz}]$ | No | |
| FU1-37 | User V/F - Voltage 4 | User volt 4 | 37 | 0 to 100 [\%] | | 1 | 100 [\%] | No | |
| FU1-38 | Output Voltage
 Adjustment | Volt control | 38 | 40 to 110 [\%] | | 0.1 | 100.0 [\%] | No | 94 |
| FU1-39 | Energy Save Level | Energy save | 39 | 0 to 30 [\%] | | 1 | 0 [\%] | Yes | 94 |
| FU1-50 | Electronic Thermal Selection | ETH select | 50 | $\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$ | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | - | No | Yes | 95 |
| FU1-51 ${ }^{17}$ | Electronic Thermal Level for 1 Minute | ETH 1 min | 51 | FU1-52 to 200 [\%] | | 1 | 180 [\%] | Yes | |
| FU1-52 | Electronic Thermal Level for Continuous | ETH cont | 52 | 50 to FU1-51 (Maximum 150\%) | | 1 | 120 [\%] | Yes | |
| FU1-53 | Electronic Thermal Characteristic Selection (Motor Type) | Motor type | 53 | Self-cool
 Forced-cool | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | - | Self-cool | Yes | |
| FU1-54 | Overload Warning Level | OL level | 54 | 30 to 150 [\%] | | 1 | 150 [\%] | Yes | |
| FU1-55 | Overload Warning Hold Time | OL time | 55 | 0 to 30 [sec] | | 0.1 | 10.0 [sec] | Yes | 96 |
| FU1-56 | Overload Trip Selection | OLT select | 56 | $\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$ | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | - | Yes | Yes | |
| FU1-57 | Overload Trip Level | OLT level | 57 | 30 to 200 [\%] | | 1 | 180 [\%] | Yes | |
| FU1-58 | Overload Trip Delay Time | OLT time | 58 | 0 to 60 [sec] | | 1 | 60.0 [sec] | Yes | |
| FU1-59 | Stall Prevention Mode Selection | Stall prev. | 59 | $\begin{gathered} 000 \text { to } 111 \\ \text { (Bit Set) } \end{gathered}$ | | bit | 000 | No | 97 |
| FU1-60 | Stall Prevention Level | Stall level | 60 | 30 to 250 [\%] | | 1 | 180 [\%] | No | |
| FU1-99 | Return Code | Not displayed | 99 | Not available | 1 | - | 1 | - | 98 |

[^7]
5.3 Function 2 Group [FU2]

Code	Description	Keypad Display		Setting Range		Units	Factory Default	Adj. During Run	Page
		LCD	7-Segment	LCD	7-Segment				
FU2-00	Jump to desired code \#	Jump code	Not displayed	1 to 99	Not available	1	1	Yes	99
FU2-01	Previous Fault History 1	Last trip-1	01	By pressing [PROG] and [$\mathbf{\Delta}$] key, the frequency, current, and operational status at the time of fault can be seen.		-	None	-	99
FU2-02	Previous Fault History 2	Last trip-2	02						
FU2-03	Previous Fault History 3	Last trip-3	03						
FU2-04	Previous Fault History 4	Last trip-4	04						
FU2-05	Previous Fault History 5	Last trip-5	05						
FU2-06	Erase Fault History	Erase trips	06	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	-	No	Yes	
FU2-07	Dwell Frequency	Dwell freq	07	FU1-22 to FU1-20		0.01	$5.00[\mathrm{~Hz}]$	No	100
FU2-08	Dwell Time	Dwell time	08	0 to 10 [sec]		0.1	$0.0[\mathrm{sec}]$	No	
FU2-10	Frequency Jump Selection	Jump freq	10	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	-	No	No	100
FU2-11 ${ }^{18}$	Jump Frequency 1 Low	Jump lo 1	11	0 to FU2-12		0.01	$10.00[\mathrm{~Hz}]$	Yes	
FU2-12	Jump Frequency 1 High	Jump Hi 1	12	FU2-11 to FU1-20		0.01	$15.00[\mathrm{~Hz}]$	Yes	
FU2-13	Jump Frequency 2 Low	Jump lo 2	13	0 to FU2-14		0.01	$20.00[\mathrm{~Hz}]$	Yes	
FU2-14	Jump Frequency 2 High	Jump Hi 2	14	FU2-13 to FU1-20		0.01	25.00 [Hz$]$	Yes	
FU2-15	Jump Frequency 3 Low	Jump lo 3	15	0 to FU2-16		0.01	$30.00[\mathrm{~Hz}]$	Yes	
FU2-16	Jump Frequency 3 High	Jump Hi 3	16	FU2-15 to FU1-20		0.01	35.00 [Hz$]$	Yes	
FU2-17	Start Curve for S-Curve Accel/Dedel Pattern	Start Curve	17	0 to 100 [\%]		1	40\%	No	101
FU2-18	End Curve for S-Curve Accel/Dedel Pattern	End Curve	18	0 to 100 [\%]		1	40\%	No	101
FU2-19	Input/Output Phase Loss Protection	Trip select	19	00 to 11 (Bit Set)		-	00	Yes	101
FU2-20	Power ON Start Selection	Power-on run	20	No Yes	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	-	No	Yes	101
FU2-21	Restart after Fault Reset	RST restart	21	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	-	No	Yes	102
FU2-22	Speed Search Selection	Speed Search	22	$\begin{gathered} 0000 \text { to } 1111 \\ (\text { Bit Set) }) \\ \hline \end{gathered}$		-	0000	No	102
FU2-23	Current Limit Level During Speed Search	SS Sup-Curr	23	80 to 200 [\%]		1	150 [\%]	Yes	
FU2-24	P Gain During Speed Search	SS P-gain	24	0 to 9999		1	100	Yes	
FU2-25	I Gain During speed search	SS I-gain	25	0 to 9999		1	200	Yes	
FU2-26	Number of Auto Restart Attempt	Retry number	26	0 to 10		1	0	Yes	103
FU2-27	Delay Time Before Auto Restart	Retry Delay	27	0 to 60 [sec]		0.1	1.0 [sec]	Yes	103
FU2-28	Speed Search Hold Time	SS blk time	28	0 to 60 [sec]		0.1	$1.0[\mathrm{sec}]$	No	104
FU2-30	Rated Motor Selection	Motor select	30	0.75 kW	0	-	19	No	104

[^8]| Code | Description | Keypad Display | | Setting Range | | Units | Factory Default | Adj. During Run | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | LCD | 7-Segment | LCD | 7-Segment | | | | |
| | | | | 1.5kW
 2.2kW
 3.7 kW
 5.5 kW
 7.5kW
 11.0kW
 15.0kW
 18.5kW
 22.0 kW
 30.0 kW
 37.0 kW
 45.0 kW
 55.0 kW
 75.0 kW | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | | | | |
| FU2-31 | Number of Motor Poles | Pole number | 31 | 2 to | | 1 | 4 | No | 104 |
| FU2-32 | Rated Motor Slip | Rated-Slip | 32 | 0 to10 | | 0.01 | | No | 104 |
| FU2-33 | Rated Motor Current (RMS) | Rated-Curr | 33 | 1 to 20 | | 1 | | No | 104 |
| FU2-34 | No Load Motor Current (RMS) | Noload-Curr | 34 | 0.5 to 2 | | 1 | 20 | No | 104 |
| FU2-35 | Motor Rated Voltage | Motor Volt | 35 | $180 . .46$ | | | | No | 104 |
| FU2-36 | Motor Efficiency | Efficiency | 36 | 70 to 100 | | 1 | | No | 104 |
| FU2-37 | Load Inertia | Inertia rate | 37 | 0 to | | 1 | 0 | No | 104 |
| FU2-38 | Carrier Frequency | Carrier freq | 38 | 1 to 15 | | 1 | $5[\mathrm{kHz}]$ | Yes | 106 |
| FU2-39 | Control Mode Selection | Control mode | 40 | VIF
 Slip comp
 Sensorless_S
 Sensorless_T
 Vector_SPD
 Vector_TRQ | $\begin{aligned} & \hline 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & \hline \end{aligned}$ | - | V/F | No | 106 |
| FU2-40 | Auto Tuning | Auto tuning | 41 | $\begin{gathered} \text { No } \\ \text { All } \\ \text { Rs + Lsigma } \\ \text { Enc Test } \\ \text { Tr } \\ \hline \end{gathered}$ | $\begin{aligned} & \hline 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$ | - | No | No | 108 |
| FU2-41 ${ }^{21}$ | Stator Resistance of Motor | Rs | 42 | 0 to (depend on | 2-30) [ohm] | 0.001 | 22 | No | |
| FU2-42 | Leakage Inductance of Motor | Lsigma | 44 | 0 to (depend on | 2-30) [mH] | 0.001 | | No | |
| FU2-43 | Stator Inductance of Motor | Ls | 43 | 0 to (depend on | $2-30)[\mathrm{mH}]$ | | | No | |

[^9]| Code | Description | Keypad Display | | Setting Range | | Units | Factory Default | Adj. During Run | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | LCD | 7-Segment | LCD | 7-Segment | | | | |
| FU2-44 | Rotor Time Constant | Tr | 44 | 0 to (depend on FU2-30) [mS] | | | | No | |
| FU2-45 | P Gain for Sensorless Control | SL P-gain | 45 | 0 to 32767 | | 1 | 1000 | Yes | 109 |
| FU2-46 | I Gain for Sensorless Control | SL I-gain | 46 | 0 to 32767 | | 1 | 100 | Yes | 109 |
| FU2-47 | PID Operation Selection | Proc PI mode | 47 | $\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$ | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | - | No | No | 110 |
| FU2-48 ${ }^{23}$ | PID F Gain | PID F-gain | 48 | 0 to 999.9 [\%] | | 0.1 | 0 [\%] | Yes | 110 |
| FU2-49 | PID Auxiliary Reference
 Mode Selection | Aux Ref Mode | 49 | None | 0 | - | None | No | |
| | | | | Keypad-1 | 1 | | | | |
| | | | | Keypad-2 | 2 | | | | |
| | | | | V1 | 3 | | | | |
| | | | | 1 | 4 | | | | |
| | | | | V2 | 5 | | | | |
| FU2-50 | PID Output Direction Selection | PID Out Dir | 50 | Target freq. | 0 | - | Target freq. | No | |
| FU2-51 | PID Feedback Signal Selection | PID F/B | 51 | $\begin{gathered} \hline \text { I } \\ \text { V1 } \\ \text { V2 } \end{gathered}$ | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$ | - | 1 | No | |
| FU2-52 | P Gain for PID Control | PID P-gain | 52 | 0 to 9 | | 0.1 | 1.0 [\%] | Yes | |
| FU2-53 | I Gain for PID Control | PID I-time | 53 | 0 to | | 0.1 | 10.0 [sec] | Yes | 110 |
| FU2-54 | D Gain for PID Control | PID D-time | 54 | 0 to 10 | [sec$]$ | 0.1 | 0.0 [msec] | Yes | |
| FU2-55 | High Limit Frequency for PID Control | PID limit-H | 55 | 0 to 30 | [Hz] | 0.01 | 60.00 [Hz] | Yes | |
| FU2-56 | Low Limit Frequency for PID Control | PID limit-L | 56 | 0 to 30 | [Hz] | 0.01 | $0.00[\mathrm{~Hz}]$ | Yes | |
| FU2-57 | PID Output Inversion | PID Out Inv. | 57 | $\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$ | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | - | No | No | |
| FU2-58 | PID Output Scale | PID Out Scale | 58 | 0.1 to | [\%] | 0.1 | 100 [\%] | No | 111 |
| FU2-59 | PID P2 Gain | PID P2-gain | 59 | 0 to 9 | | 0.1 | 100 [\%] | No | |
| FU2-60 | P Gain Scale | P-gain Scale | 60 | 0 to | | 0.1 | 100 [\%] | No | |
| FU2-69 | Accel/Decel Change Frequency | Acc/Dec ch F | 69 | 0 to | | | $0.00[\mathrm{~Hz}]$ | No | 114 |
| FU2-70 | Reference Frequency for Accel and Decel | Acc/Dec freq | 70 | Max freq
 Delta freq | $\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$ | - | Max freq | No | 114 |
| FU2-71 | Accel/Decel Time Scale | Time scale | 71 | $\begin{gathered} 0.01[\mathrm{sec}] \\ 0.1[\mathrm{sec}] \\ 1[\mathrm{sec}] \\ \hline \end{gathered}$ | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$ | 0.01 | 0.1 [sec] | Yes | 114 |
| FU2-72 | Power On Display | PowerOn disp | 72 | | | 1 | 0 | Yes | 114 |
| FU2-73 | User Display Selection | User disp | 73 | Voltage
 Watt | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | - | Voltage | Yes | 115 |
| FU2-74 | Gain for Motor Speed Display | RPM factor | 74 | 1 to | | 1 | 100 [\%] | Yes | 115 |

[^10]| Code | Description | Keypad Display | | Setting Range | | Units | Factory Default | $\begin{array}{\|c\|} \hline \text { Adj. } \\ \text { During } \\ \text { Run } \\ \hline \end{array}$ | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | LCD | 7-Segment | LCD | 7-Segment | | | | |
| FU2-75 | DB (Dynamic Braking) Resistor Mode Selection | DB mode | 75 | None
 Int. DB-R
 Ext. DB-R | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$ | - | Int. DB-R | Yes | 115 |
| FU2-7624 | Duty of Dynamic Braking Resistor | DB \%ED | 76 | 0 to | | 1 | 10 [\%] | Yes | 115 |
| FU2-79 | Software Version | S/W version | 79 | | | - | - | - | 116 |
| FU2-8125 | $2^{\text {nd }}$ Acceleration Time | 2nd Acc time | 81 | 0 to 600 | [sec] | 0.1 | $5.0[\mathrm{sec}]$ | Yes | |
| FU2-82 | $22^{\text {nd }}$ Deceleration Time | 2nd Dec time | 82 | 0 to 600 | [sec] | 0.1 | 10.0 [sec] | Yes | |
| FU2-83 | $2^{\text {nd }}$ Base Frequency | 2nd BaseFreq | 83 | 30 to | | 0.01 | $60.00[\mathrm{~Hz}]$ | No | |
| FU2-84 | $2^{\text {nd }} \mathrm{V} / \mathrm{F}$ Pattern | 2nd V/F | 84 | Linear
 Square
 User V/F | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$ | - | Linear | No | |
| FU2-85 | 2nd Forward Torque Boost | 2nd F-boost | 85 | 0 to 1 | | 0.1 | 2.0 [\%] | No | |
| FU2-86 | $2^{\text {nd }}$ Reverse Torque
 Boost | 2nd R-boost | 86 | 0 to | | 0.1 | 2.0 [\%] | No | 116 |
| FU2-87 | 2nd Stall Prevention Level | 2nd Stall | 87 | 30 to | | 1 | 150[\%] | No | |
| FU2-88 | $2^{\text {nd }}$ Electronic Thermal Level for 1 minute | 2nd ETH 1min | 88 | FU2-89 to | [\%] | 1 | 150 [\%] | Yes | |
| FU2-89 | $2^{\text {nd }}$ Electronic Thermal Level for continuous | 2nd ETH cont | 89 | $50 \text { to } \mathrm{F}$ (Maximu | $\begin{aligned} & 2-88 \\ & 150 \%) \\ & \hline \end{aligned}$ | 1 | 100 [\%] | Yes | |
| FU2-90 | $2^{\text {nd }}$ Rated Motor Current | 2nd R-Curr | 90 | 1 to 2 | | 0.1 | 3.6 [A] | No | |
| FU2-91 | Read Parameters into Keypad from Inverter | Para. Read | 91 | $\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$ | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | - | No | No | |
| FU2-92 | Write Parameters to Inverter from Keypad | Para. Write | 92 | $\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$ | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | - | No | No | 16 |
| FU2-93 | Initialize Parameters | Para. Init | 93 | No All Groups DRV FU1 FU2 I/O EXT | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & \hline \end{aligned}$ | - | No | No | 117 |
| FU2-94 | Parameter Write
 Protection | Para. Lock | 94 | | | 1 | 0 | Yes | 117 |
| FU2-99 | Return Code | Not displayed | 99 | Not available | [PROG/ENT]
 or
 [SHIFT/ESC] | - | 1 | Yes | 117 |

Note: FU2-41, 42, 43, 44, 45, 46 not displayed when FU2-39 is set to V/f or Slip compen.

[^11]
5.4 Input/Output Group [/O]

Code	Description	Keypad Display		Setting Range		Units	Factory Default	Adj. During Run	Page
		LCD	7-Segment	LCD	7-Segment				
1/0-00	Jump to Desired Code\#	Jump code	Not displayed	1 to 99	Not available	1	1	Yes	118
1/0-01	Filtering Time Constant for V1 Signal Input	V1 filter	01	0 to 999		1	10 [ms]	Yes	
1/0-02	V1 Input Minimum Voltage	V1 volt x1	02	0 to		0.01	0.00 [V]	Yes	
1/0-03	Frequency Corresponding to V1 Input Minimum Voltage	$\begin{aligned} & \text { V1 freq y1/ } \\ & \text { V1 [\%] y1 } \end{aligned}$	03	$\begin{array}{r} 0 \text { to } \mathrm{FU} \\ 0-15 \end{array}$		0.01	$\left\lvert\, \begin{array}{r} 0.0[\mathrm{~Hz}] \\ 0[\%] \end{array}\right.$	Yes	118
I/0-04	V1 Input Maximum Voltage	V1 volt x2	04			0.01	10.00 [V]	Yes	
1/0-05	Frequency Corresponding to V1 Input Maximum Voltage	$\begin{aligned} & \text { V1 freq y2/ } \\ & \text { V1 [\%] y2 } \end{aligned}$	05			0.01	$\left\|\begin{array}{c} 60.00[\mathrm{~Hz}] \\ 100[\%] \end{array}\right\|$	Yes	
1/0-06	Filtering Time Constant for I Signal Input	I filter	06	0 to 999	[ms]	1	10 [ms]	Yes	
1/0-07	I Input Minimum Current	1 curr x1	07	0 to 20		0.01	$4.00[\mathrm{~mA}]$	Yes	
1/0-08	Frequency Corresponding to I Input Minimum Current	I freq $\mathrm{y} 1 /$ I [\%] y1	08			0.01	$\left\lvert\, \begin{array}{r} 0.0[\mathrm{~Hz}] \\ 0[\%] \end{array}\right.$	Yes	
1/0-09	I Input Maximum Current	1 curr x2	09	0 to 20		0.01	20.00 [mA]	Yes	
1/0-10	Frequency Corresponding to I Input Maximum Current	$\begin{gathered} \text { I freq y2/ } \\ \text { \| [\%] y2 } \end{gathered}$	10			0.01	$\begin{gathered} 60.00[\mathrm{~Hz}] \\ 100[\%] \end{gathered}$	Yes	118
1/0-11	Criteria for Analog Input Signal Loss	Wire broken	11	None half of x 1 below x1	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$	-	None	Yes	119
1/0-12	Multi-Function Input Terminal 'P1' Define	P1 define	12	Speed-L Speed-M Speed-H XCEL-L XCEL-M XCEL-H Dc-brake 2nd Func Exchange - Reserved - Up Down 3-Wire Ext Trip-A Ext Trip-B iTerm Clear Open-loop Main-drive		-	Speed-L	Yes	120

Code	Description	Keypad Display		Setting Range		Units	Factory Default	Adj. During Run	Page	
		LCD	7-Segment	LCD	7-Segment					
				Analog hold	18					
				XCEL stop	19					
				P Gain2	20					
				SEQ-L	21					
				SEQ-M	22					
				SEQ-H	23					
				Manual	24					
				Go step	25					
				Hold step	26					
				Trv Off.Lo	27					
				Trv Off. Hi	28					
				Interlock1	29					
				Interlock2	30					
				Interlock3	31					
				Interlock4	32					
				Speed-X	33					
				Reset	34					
				BX	35					
				JOG	36					
				FX	37					
				RX	38					
				Ana Change	39					
				Pre excite	40					
				Spd/Trq	41					
				ASR P/PI	42					
I/0-1	Multi-function Input	P2 define	13	Same as Above					120	
1/0-13	Terminal 'P2' Define	P2 define	13				Speed-M	Yes		
	Multi-function Input									
1/0-14	Terminal 'P3' Define	P3 define	14			-	Speed-H	Yes		
1/0-15	Terminal Input Status	In status	15	000000000 to 111111111		-	-	-	126	
1/0-16	Terminal Output Status	Out status	16	0000 to 1111		-	-	-		
1/0-17	Filtering Time Constant for Multi-Function Input Terminals	Ti Filt Num	17	2 to 50		1	15	Yes	126	
1/0-20	Jog Frequency Setting	Jog freq	20	0 to FU1-20		0.01	$10.00[\mathrm{~Hz}]$	Yes	126	
1/0-21	Step Frequency 4	Step freq-4	21			$40.00[\mathrm{~Hz}]$	Yes	126		
1/0-22	Step Frequency 5	Step freq-5	22			$50.00[\mathrm{~Hz}]$	Yes			
1/0-23	Step Frequency 6	Step freq-6	23			$40.00[\mathrm{~Hz}]$	Yes			
1/0-24	Step Frequency 7	Step freq-7	24			$30.00[\mathrm{~Hz}]$	Yes			
1/0-25	Acceleration Time 1 for Step Frequency	Acc time-1	25	0 to 6000 [sec]			0.1	20.0 [sec]	Yes	127
1/0-26	Deceleration Time 1 for Step Frequency	Dec time-1	26	0 to 6000 [sec]			0.1	20.0 [sec]	Yes	
1/0-27	Acceleration Time 2	Acc time-2	27	0 to 6000 [sec]			0.1	30.0 [sec]	Yes	
1/0-28	Deceleration Time 2	Dec time-2	28	0 to 6000 [sec]			0.1	30.0 [sec]	Yes	
1/0-29	Acceleration Time 3	Acc time-3	29	0 to 6000 [sec]		0.1	40.0 [sec]	Yes		

Code	Description	Keypad Display		Setting Range		Units	Factory Default	$\begin{array}{\|c\|} \hline \text { Adj. } \\ \text { During } \\ \text { Run } \\ \hline \end{array}$	Page
		LCD	7-Segment	LCD	7-Segment				
1/0-30	Deceleration Time 3	Dec time-3	30	0 to 6000	[sec]	0.1	40.0 [sec]	Yes	
1/0-31	Acceleration Time 4	Acc time-4	31	0 to 6000	[sec]	0.1	50.0 [sec$]$	Yes	
1/0-32	Deceleration Time 4	Dec time-4	32	0 to 6000	[sec]	0.1	50.0 [sec]	Yes	
1/0-33	Acceleration Time 5	Acc time-5	33	0 to 6000	[sec]	0.1	40.0 [sec]	Yes	
1/0-34	Deceleration Time 5	Dec time-5	34	0 to 6000	[sec$]$	0.1	40.0 [sec$]$	Yes	
1/0-35	Acceleration Time 6	Acc time-6	35	0 to 600	[sec]	0.1	30.0 [sec]	Yes	
1/0-36	Deceleration Time 6	Dec time-6	36	0 to 6000	[sec]	0.1	30.0 [sec]	Yes	
1/0-37	Acceleration Time 7	Acc time-7	37	0 to 6000	[sec]	0.1	20.0 [sec]	Yes	
1/0-38	Deceleration Time 7	Dec time-7	38	0 to 6000	sec]	0.1	20.0 [sec]	Yes	
1/0-40	FM (Frequency Meter) Output Selection	FM mode	40	Frequency Current Voltage DC link Vtg Torque	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	-	Frequency	Yes	128
1/0-41	FM Output Adjustment	FM adjust	41	10 to 2		1	100 [\%]	Yes	
1/0-42	Frequency Detection Level	FDT freq	42	0 to FU		0.01	30.00 [Hz]	Yes	
1/0-43	Frequency Detection Bandwidth	FDT band	43	0 to FU		0.01	10.00 [Hz]	Yes	
1/0-44	Multi-Function Auxiliary Contact Output Define (AXA, AXC)	Aux mode	44	FDT-1 FDT-2 FDT-3 FDT-4 FDT-5 OL IOL Stall OV LV OH Lost Command Run Stop Steady INV line COMM line Ssearch Step pulse Seq pulse Ready Trv. ACC Trv. DEC MMC Zspd Dect Torq Dect		-	Run	Yes	129

Code	Description	Keypad Display		Setting Range		Units	Factory Default	Adj. During Run	Page
		LCD	7-Segment	LCD	7-Segment				
1/0-45	Fault Output Relay Setting (30A, 30B, 30C)	Relay mode	45	$\begin{gathered} 000 \text { to } 111 \\ \text { (Bit Set) } \\ \hline \end{gathered}$		-	010	Yes	133
1/0-4626	Inverter Number	Inv No.	46	1 to 31		1	1	Yes	133
I/0-47	Baud Rate	Baud rate	47	1200 bps 2400 bps 4800 bps 9600 bps 19200 bps	$\begin{aligned} & \hline 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	-	9600 bps	Yes	133
I/0-48	Operating selection at Loss of Freq. Reference	Lost command	48	None FreeRun Stop	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	-	None	Yes	133
1/0-49	Waiting Time after Loss of Freq. Reference	Time out	49	0.1 to 120 [sec]		0.1	1.0 [sec]	Yes	
1/0-50	Auto (Sequence) Operation selection	Auto mode	50	None Auto-A Auto-B	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$	-	None	No	134
I/0-51	Sequence Number Selection	Seq select	51	1 to 5		1	1	Yes	
1/0-52	The Number of Steps of Sequence Number \#	Step number	52	1 to 8		1	2	Yes	
1/0-5327	1st Step Frequency of Sequence 1	Seq1 / 1F	53	0.01 to FU1-20		0.01	11.00 [Hz]	Yes	135
I/0-54	Transient Time to ${ }^{\text {st }}$ Step of Sequence 1	Seq1 / 1T	54	0.1 to 6000 [sec]		0.1	1.1 [sec]	Yes	
I/0-55	Steady Speed Time at ${ }^{\text {st }}$ Step of Sequence 1	Seq1 / 1S	55	0.1 to 6000 [sec]		0.1	1.1 [sec]	Yes	
I/0-56	Motor Direction of 1 st Step of Sequence 1	Seq1 / 1D	56	Reverse Forward	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	-	Forward	Yes	
I/0-57	${ }^{\text {st }}$ Step Frequency of Sequence 2	Seq1 / 2F	57	0.01 to FU1-20		0.01	21.00 [Hz]	Yes	
I/0-58	Transient Time to ${ }^{\text {st }}$ Step of Sequence 2	Seq1 / 2T	58	0.1 to 6000 [sec]		0.1	1.1 [sec]	Yes	135
I/0-59	Steady Speed Time at ${ }^{\text {st }}$ Step of Sequence 2	Seq1 / 2S	59	0.1 to 6000 [sec]		0.1	1.1 [sec]	Yes	
1/0-60	Motor Direction of $1^{\text {st }}$ Step of Sequence 2	Seq1 / 2D	60	Reverse Forward	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	-	Forward	Yes	
1/0-85	Step Frequency 8	Step freq-8	85	0 to FU1-20		0.01	$20.00[\mathrm{~Hz}]$	Yes	126
1/0-86	Step Frequency 9	Step freq-9	86			$10.00[\mathrm{~Hz}]$	Yes		
1/0-87	Step Frequency 10	Step freq-10	87			20.00 [Hz]	Yes		
1/0-88	Step Frequency 11	Step freq-11	88			$30.00[\mathrm{~Hz}]$	Yes		
1/0-89	Step Frequency 12	Step freq-12	89			$40.00[\mathrm{~Hz}]$	Yes		

[^12]| Code | Description | Keypad Display | | Setting Range | | Units | Factory Default | Adj. During Run | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | LCD | 7-Segment | LCD | 7-Segment | | | | |
| 1/0-90 | Step Frequency 13 | Step freq-13 | 90 | | | | $50.00[\mathrm{~Hz}]$ | Yes | |
| 1/0-91 | Step Frequency 14 | Step freq-14 | 91 | | | | $40.00[\mathrm{~Hz}]$ | Yes | |
| 1/0-92 | Step Frequency 15 | Step freq-15 | 92 | | | | $30.00[\mathrm{~Hz}]$ | Yes | |
| 1/0-93 | Multi-Function Input Terminal 'RST' Define | RST define | 93 | Speed-L | 0 | | | | |
| | | | | Speed-M | 1 | | | | |
| | | | | Speed-H | 2 | | | | |
| | | | | XCEL-L | 3 | | | | |
| | | | | XCEL-M | 4 | | | | |
| | | | | XCEL-H | 5 | | | | |
| | | | | Dc-brake | 6 | | | | |
| | | | | 2nd Func | 7 | | | | |
| | | | | Exchange | 8 | | | | |
| | | | | - Reserved - | 9 | | | | |
| | | | | Up | 10 | | | | |
| | | | | Down | 11 | | | | |
| | | | | 3-Wire | 12 | | | | |
| | | | | Ext Trip-A | 13 | | | | |
| | | | | Ext Trip-B | 14 | | | | |
| | | | | iTerm Clear | 15 | | | | |
| | | | | Open-loop | 16 | | | | |
| | | | | Main-drive | 17 | | | | |
| | | | | Analog hold | 18 | | | | |
| | | | | XCEL stop | 19 | | | | |
| | | | | P Gain2 | 20 | | | | |
| | | | | SEQ-L | 21 | - | Reset | Yes | 120 |
| | | | | SEQ-M | 22 | | | | |
| | | | | SEQ-H | 23 | | | | |
| | | | | Manual | 24 | | | | |
| | | | | Go step | 25 | | | | |
| | | | | Hold step | 26 | | | | |
| | | | | Trv Off.Lo | 27 | | | | |
| | | | | Trv Off. Hi | 28 | | | | |
| | | | | Interlock1 | 29 | | | | |
| | | | | Interlock2 | 30 | | | | |
| | | | | Interlock3 | 31 | | | | |
| | | | | Interlock4 | 32 | | | | |
| | | | | Speed-X | 33 | | | | |
| | | | | Reset | 34 | | | | |
| | | | | BX | 35 | | | | |
| | | | | JOG | 36 | | | | |
| | | | | FX | 37 | | | | |
| | | | | RX | 38 | | | | |
| | | | | Ana Change | 39 | | | | |
| | | | | Pre excite | 40 | | | | |
| | | | | Spd/Trq | 41 | | | | |
| | | | | ASR P/PI | 42 | | | | |

Code	Description	Keypad Display		Setting Range		Units	Factory Default	Adj. During Run	Page	
		LCD	7-Segment	LCD	7-Segment					
1/0-94	Multi-Function Input Terminal 'BX' Define	$B X$ define	94	Same as Above		-	BX	Yes	120	
1/0-95	Multi-Function Input Terminal 'JOG' Define	JOG define	95			JOG	Yes	120		
1/0-96	Multi-Function Input Terminal 'FX' Define	FX define	96			FX	Yes	120		
1/0-97	Multi-Function Input Terminal 'RX' Define	RX define	97			RX	Yes	120		
1/0-99	Return Code	Not Displayed	99	Not available	[PROG/ENT] or [SHIFT/ESC]		-	1	Yes	

5.5 External Group [EXT]

EXT group appears only when the corresponding Sub-Board is installed.

Code	Description	Keypad Display		Setting Range		Units	Factory Default	$\begin{array}{\|c\|} \hline \text { Adj. } \\ \text { During } \\ \text { Run } \\ \hline \end{array}$	Page
		LCD	7-Segment	LCD	7-Segment				
EXT-00	Jump to Desired Code \#	Jump code	Not displayed	0 to 99	Not available	1	1	Yes	136
EXT-01	Sub Board Type Display	Sub B/D	01	None SUB-A SUB-B SUB-C SUB-D SUB-E SUB-F SUB-G SUB-H	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	-	None	Automa tically set	136
EXT-02	Multi-Function Input Terminal 'P4' Define	P4 define	02	Speed-L	0	-	XCEL-L	Yes	136
				Speed-M	1				
				Speed-H	2				
				XCEL-L	3				
				XCEL-M	4				
				XCEL-H	5				
				Dc-brake	6				
				2nd Func	7				
				Exchange	8				
				- Reserved -	9				
				Up	10				
				Down	11				
				3-Wire	12				
				Ext Trip-A	13				
				Ext Trip-B	14				
				iTerm Clear	15				
				Open-loop	16				
				Main-drive	17				
				Analog hold	18				
				XCEL stop	19				
				P Gain2	20				
				SEQ-L	21				
				SEQ-M	22				
				SEQ-H	23				
				Manual	24				
				Go step	25				
				Hold step	26				
				Trv Off.Lo	27				
				Trv Off. Hi	28				
				Interlock1	29				
				Interlock2	30				
				Interlock3	31				
				Interlock4	32				

Code	Description	Keypad Display		Setting Range		Units	Factory Default	Adj. During Run	Page
		LCD	7-Segment	LCD	7-Segment				
				Speed-X Reset BX JOG FX RX Ana Change Pre excite Spd/Trq ASR P/PI	$\begin{aligned} & 33 \\ & 34 \\ & 35 \\ & 36 \\ & 37 \\ & 38 \\ & 39 \\ & 40 \\ & 41 \\ & 42 \\ & \hline \end{aligned}$				
EXT-03	Multi-Function Input Terminal 'P5' Define	P5 define	03	Same as Above		-	XCEL-M	Yes	136
EXT-04	Multi-Function Input Terminal 'P6' Define	P6 define	04			-	XCEL-H	Yes	
EXT-05	V2 Mode Selection	V2 mode	05	None Override Reference	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$	-	None	No	137
EXT-06	Filtering Time Constant for V2 Input Signal	V2 filter	06	0 to 9999 [ms]		1	10 [ms]	Yes	
EXT-07	V2 Input Minimum Voltage	V2 volt x1	07	0 to V2 volt x2 [V]		0.01	0.00 [V]	Yes	
EXT-08	Frequency Corresponding to V2 Input Minimum Voltage	V2 freq y1	08	0 to FU1-20		0.01	$0.00[\mathrm{~Hz}]$	Yes	137
EXT-09	V2 Input Maximum Voltage	V2 volt x2	09	V2 volt x1 to 10 [V]		0.01	10.00 [V]	Yes	
EXT-10	Frequency Corresponding to V2 Input Maximum Voltage	V2 freq y2	10	0 to FU1-20		0.01	60.00 [Hz]	Yes	
EXT-12	Usage of Pulse Input Signal	F mode	12	None Feed-back Reference	$\begin{aligned} & \hline 0 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$	-	None	No	138
EXT-13	Real Speed Direction	RealSpdDir	13	Reverse Forward	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	-	-	-	138
EXT-14	Encoder Feedback Frequency	ENC FeedBack	14	* [Hz]		-	-	-	138
EXT-15	Pulse Input Signal Selection	F pulse set	15	$\begin{gathered} A+B \\ A \\ -(A+B) \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$	-	A+B	No	139
EXT-16	Encoder Pulse Number	F pulse num	16	10 to 4096		1	1024	No	139
EXT-17	Filtering Time Constant for Pulse Input Signal	F filter	17	0 to 9999 [ms]		1	10 [ms]	Yes	139
EXT-18	Pulse Input Minimum Frequency	F pulse $\times 1$	18	0 to 10 [kHz]		0.01	0.00 [kHz]	Yes	139

Code	Description	Keypad Display		Setting Range		Units	Factory Default	$\begin{array}{c\|} \hline \text { Adj. } \\ \text { During } \\ \text { Run } \end{array}$	Page
		LCD	7-Segment	LCD	7-Segment				
EXT-31	Multi-function Output Terminal 'Q2' Define	Q2 define	31	Same as Above		-	FDT-2	Yes	
EXT-32	Multi-function Output Terminal 'Q3' Define	Q3 define	32			-	FDT-3	Yes	
EXT-34	LM (Load Meter) Output Selection	LM mode	34	Frequency Current Voltage DC link Vtg Torque	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	-	Current	Yes	141
EXT-35	LM Output Adjustment	LM adjust	35	10 to 200 [\%]		1	100 [\%]	Yes	141
EXT-40	AM1 (Analog Meter 1) Output Selection	AM1 mode	40	Frequency Current Voltage DC link Vtg Torque	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	-	Frequency	Yes	141
EXT-41	AM1 Output Adjustment	AM1 adjust	41	10 to 200 [\%]		1	100 [\%]	Yes	
EXT-42	AM2 (Analog Meter 2) Output Selection	AM2 mode	42	Frequency Current Voltage DC link Vtg Torque	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	-	DC link Vtg	Yes	
EXT-43	AM2 Output Adjustment	AM2 adjust	43	10 to 200 [\%]		1	100 [\%]	Yes	
EXT-50	Speed Limit Level	Speed Limit	44	0 to 100 [\%]		0.1	100 [\%]	No	142
EXT-51	Speed Limit Bias	Speed Bias	45	0 to 200 [\%]		0.1	100 [\%]	No	
EXT-52	Speed Limit Gain	Speed Gain	46	1 to 10		1	1	No	
EXT-53	Speed Limit Direction	Speed Dir	47	Reverse Forward	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	-	Forward	No	
EXT-54	Zero Speed Detection Level	ZSD Level	48	0 to 120 [Hz$]$		0.01	$2[\mathrm{~Hz}]$	Yes	144
EXT-55	Zero Speed Detection Bandwidth	ZSD Band	49	0 to 5 [Hz]		0.01	1 [Hz]	Yes	
EXT-56	Torque Detection Level	TD Level	50	0 to 150 [\%]		0.1	100 [\%]	Yes	
EXT-57	Torque Detection Bandwidth	TD Band	51	0 to 10 [\%]		0.1	5 [\%]	Yes	144
EXT-99	Return Code	Not displayed	99	Not available		-	1	Yes	-

5.6 Communication Group [COM]

COM group appears only when the corresponding Option Boards are installed. Please refer to the option manual for detail.

Code	Description	Keypad Display		Setting Range		Units	Factory Default	$\begin{array}{\|c\|} \hline \text { Adj. } \\ \text { During } \\ \text { Run } \\ \hline \end{array}$	Page
		LCD	7-Segment	LCD	7-Segment				
COM-00	Jump to Desired Code \#	Jump code	Not displayed	0 to 99	Not available	1	1	Yes	
COM-01	Option Board Type	Opt B/D	01	None Device Net Synchro PLC-GF Profibus-DP Digital-In RS485 Modbus-RTU	$\begin{aligned} & \hline 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & \hline \end{aligned}$	-	None	Yes	
COM-02	Option Mode	Opt Mode	02	None Command Freq Cmd + Freq	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	-	None	No	
COM-03	Option Version	Opt Version	03	-	-	-	-	No	
COM-04	Binary Option Input Selection	D-In Mode	04	8 Bit Bin 8 BCD 1\% 8 BCD 1Hz 12 Bit Bin 12 BCD 0.1\% 12 BCD 0.1Hz 12 BCD 1 Hz	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & \hline \end{aligned}$	-	8 Bit Bin	No	
COM-05	Binary Input Filter Value	Digital Ftr	05	2-50		1	15	Yes	
COM-06	Input Torque Limit (Option)	Opt TrqLmt	06	None TrqLmt	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$		None	Yes	
COM-07	Control Mode Select (Option)	Opt CntlMode	07	$\begin{aligned} & \text { None } \\ & \text { Opt Control } \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$		None	No	
COM-10	Device Net ID	MAC ID	10	0-63		1	0	Yes	
COM-11	Device Net Communication Speed	Baud Rate	11	125 kbps 250 kbps 500 kbps	$\begin{aligned} & \hline 0 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$	-	125 kbps	Yes	
COM-12	Device Net Output Instance	Out Instance	12	$\begin{gathered} 20 \\ 21 \\ 100 \\ 101 \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	-	20	No	
COM-13	Device Net Input Instance	In Instance	13	$\begin{gathered} 70 \\ 71 \\ 110 \\ 111 \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	-	70	No	
COM-17	PLC Option Station Number	Station ID	17	0 to 63		1	1	Yes	
COM-20	Profibus ID	Profi MAC ID	20	0 to 127		1	1	Yes	
COM-30	Output Number	Output Num	30	0 to 8		1	3	Yes	

Code	Description	Keypad Display		Setting Range		Units	Factory Default	Adj. During Run	Page
		LCD	7-Segment	LCD	7-Segment				
COM-31	Output 1	Output 1	31	0000-57FF(HEX)			000A(HEX)	Yes	
COM-32	Output 2	Output 2	32	0000-57FF(HEX)			000E(HEX)	Yes	
COM-33	Output 3	Output 3	33	0000-57FF(HEX)			000F(HEX)	Yes	
COM-34	Output 4	Output 4	34	0000-57FF(HEX)			0000(HEX)	Yes	
COM-35	Output 5	Output 5	35	0000-57FF(HEX)			0000(HEX)	Yes	
COM-36	Output 6	Output 6	36	0000-57FF(HEX)			0000(HEX)	Yes	
COM-37	Output 7	Output 7	37	0000-57FF(HEX)			0000(HEX)	Yes	
COM-38	Output 8	Output 8	38	0000-57FF(HEX)			0000(HEX)	Yes	
COM-40	Input Number	Input Num	40	0 to 8		1	2	Yes	
COM-41	Input 1	Input 1	41	0000-57FF(HEX)			0005(HEX)	Yes	
COM-42	Input 2	Input 2	42	0000-57FF(HEX)			0006(HEX)	Yes	
COM-43	Input 3	Input 3	43	0000-57FF(HEX)			0000(HEX)	Yes	
COM-44	Input 4	Input 4	44	0000-57FF(HEX)			0000(HEX)	Yes	
COM-45	Input 5	Input 5	45	0000-57FF(HEX)			0000(HEX)	Yes	
COM-46	Input 6	Input 6	46	0000-57FF(HEX)			0000(HEX)	Yes	
COM-47	Input 7	Input 7	47	0000-57FF(HEX)			0000(HEX)	Yes	
COM-48	Input 8	Input 8	48	0000-57FF(HEX)			0000(HEX)	Yes	
COM-52	ModBus Option Selection	ModBus Mode	52	ModBus RTU			ModBus RTU	Yes	
COM-99	Return Code	Not displayed	99	Not available	[PROG/ENT] or [SHIFT/ESC]	-	1	Yes	

5.7 Application Group [APP]

Code	Description	Keypad Display		Setting Range		Units	Factory Default	Adj. During Run	Page
		LCD	7-Segment	LCD	7-Segment				
APP-00	Jump to Desired Code\#	Jump code	Not displayed	0 to 99	Not available	1	1	Yes	145
APP-01	Application Mode Selection	App Mode	01	None Traverse MMC DRAW	$\begin{aligned} & \hline 0 \\ & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	-	None	No	145
APP-0228	Traverse Amplitude	Trv. Amp	02	0.0 to 20.0 [\%]		0.1	0.0 [\%]	Yes	146
APP-03	Traverse Scramble Amplitude	Trv. Scr	03	0.0 to 50.0 [\%]		0.1	0.0 [\%]	Yes	146
APP-04	Traverse Accel Time	Trv Acc Time	04	0.1 to $6000[\mathrm{sec}]$		0.1	$2.0[\mathrm{sec}]$	Yes	146
APP-05	Traverse Decel Time	Trv Dec Time	05	0.1 to $6000[\mathrm{sec}]$		0.1	3.0 [sec$]$	Yes	146
APP-06	Traverse Offset (Hi) Setting	Trv Off Hi	06	0.0 to 20.0 [\%]		0.1	0.0 [\%]	Yes	147
APP-07	Traverse Offset (Lo) Setting	Trv Off Lo	07	0.0 to 20.0 [\%]		0.1	0.0 [\%]	Yes	147
APP-0889	Running Auxiliary Motor Number Display	Aux Mot Run	08	-		-	-	-	147

[^13]| Code | Description | Keypad Display | | Setting Range | | Units | Factory Default | Adj. During Run | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | LCD | 7-Segment | LCD | 7-Segment | | | | |
| APP-09 | Starting Aux. Motor Selection | Starting Aux | 09 | 1 to 4 | | 1 | 1 | Yes | 147 |
| APP-10 | Operation Time Display on Auto Change | Auto Op Time | 10 | - | | - | - | - | 147 |
| APP-11 | Start Frequency of Aux.
 Motor 1 | Start freq 1 | 11 | 0 to FU1-20 | | 0.01 | 49.99 [Hz] | Yes | |
| APP-12 | Start Frequency of Aux. Motor 2 | Start freq 2 | 12 | 0 to FU1-20 | | 0.01 | 49.99 [Hz] | Yes | |
| APP-13 | Start Frequency of Aux. Motor 3 | Start freq 3 | 13 | 0 to FU1-20 | | 0.01 | 49.99 [Hz] | Yes | |
| APP-14 | Start Frequency of Aux.
 Motor 4 | Start freq 4 | 14 | 0 to FU1-20 | | 0.01 | 49.99 [Hz] | Yes | |
| APP-15 | Stop Frequency of Aux.
 Motor 1 | Stop freq 1 | 15 | 0 to FU1-20 | | 0.01 | 15.00 [Hz] | Yes | |
| APP-16 | Stop Frequency of Aux.
 Motor 2 | Stop freq 2 | 16 | 0 to FU1-20 | | 0.01 | 15.00 [Hz] | Yes | |
| APP-17 | Stop Frequency of Aux.
 Motor 3 | Stop freq 3 | 17 | 0 to FU1-20 | | 0.01 | 15.00 [Hz]] | Yes | |
| APP-18 | Stop Frequency of Aux. Motor 4 | Stop freq 4 | 18 | 0 to FU1-20 | | 0.01 | 15.00 [Hz] | Yes | |
| APP-19 | Delay Time before Operating Aux Motor | Aux start DT | 19 | 0 to 9999 [sec] | | 0.1 | 60.0 [sec] | Yes | |
| APP-20 | Delay Time before Stopping Aux Motor | Aux stop DT | 20 | 0 to 9999 [sec] | | 0.1 | 60.0 [sec] | Yes | |
| APP-21 | The Number of Aux Motor | Nbr Aux's | 21 | 0 to 4 | | 1 | 4 | Yes | 148 |
| APP-22 | PID Bypass Selection | Regul Bypass | 22 | $\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$ | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | - | No | Yes | 148 |
| APP-23 | Sleep Delay Time | Sleep Delay | 23 | 0 to 9999 [sec] | | 0.1 | 60.0 [sec] | Yes | 149 |
| APP-24 | Sleep Frequency | Sleep Freq | 24 | 0 to FU1-20 | | 0.01 | $0.19[\mathrm{~Hz}]$ | Yes | 149 |
| APP-25 | Wake-Up Level | WakeUp Level | 25 | 0 to 100 [\%] | | 1 | 35.0 [\%] | Yes | 149 |
| APP-26 | Auto Change Mode Selection | AutoCh-Mode | 26 | 0 to 2 | | 1 | 1 | Yes | 149 |
| APP-27 | Auto Change Time | AutoEx-intv | 27 | 00:00 to 99:00 | | 00:01 | 72:00 | Yes | 150 |
| APP-28 | Auto Change Level | AutoEx-level | 28 | 0 to 100 [\%] | | 0.1 | 20 [\%] | Yes | |
| APP-29 | Inter-Lock Selection | Inter-lock | 29 | $\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$ | $\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$ | - | No | Yes | 150 |
| APP-30 | Feedback Freq/
 Percentage Display | Fbk/PER | 30 | [Hz]/ [\%] | - | | | | 150 |
| APP-31 | Actual Value Display | Prs | 31 | [Bar$]$ [Pa] | - | - | - | - | 151 |
| APP-32 | Pressure Display Scale | Scale Disp | 32 | 0 to 50000 | | - | 1000 | Yes | 151 |
| APP-3330 | Draw Mode Selection | Draw Mode | 33 | $\begin{gathered} \text { None } \\ \text { V1_Draw } \\ \text { I_Draw } \\ \text { V2_Draw } \\ \hline \end{gathered}$ | $\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$ | - | None | Yes | 151 |
| APP-34 | Draw Size Setting | DrawPerc | 34 | 0 to 150 [\%] | | 0.1 | 100 [\%] | Yes | 151 |

[^14]
5.8 Sub-Board Selection Guide According To Function

Code	Function Description	LCD Display	Sub-Board Type		
			SUB-A Board	SUB-B Board	SUB-C Board
EXT-02	Multi-function Input Terminal 'P4'	P4 define	-		-
EXT-03	Multi-function Input Terminal 'P5'	P5 define	\bigcirc		\bigcirc
EXT-04	Multi-function Input Terminal 'P6'	P6 define	\bullet		\bigcirc
EXT-05	V2 Mode Selection	V2 mode	\bigcirc		\bigcirc
EXT-06	Filtering Time Constant for V2 Input Signal	V2 filter	\bullet		-
EXT-07	V2 Input Minimum Voltage	V2 volt x1	\bullet		\bigcirc
EXT-08	Frequency Corresponding to V2 Input Minimum Voltage	V2 freq y1	\bullet		-
EXT-09	V2 Input Maximum Voltage	V2 volt x2	\bigcirc		\bigcirc
EXT-10	Frequency Corresponding to V2 Input Maximum Voltage	V2 freq y2	-		-
EXT-14	Usage for Pulse Input Signal	F mode		\bullet	
EXT-15	Pulse Input Signal Selection	F pulse set		-	
EXT-16	Encoder Pulse Selection	F pulse num		-	
EXT-17	Filtering Time Constant for Pulse Input Signal	F filter		-	
EXT-18	Pulse Input Minimum Frequency	F pulse $\times 1$		\bullet	
EXT-19	Frequency Output corresponding to Pulse Input Minimum Frequency	F freq y 1		\bullet	
EXT-20	Pulse Input Maximum Frequency	F pulse x2		-	
EXT-21	Frequency Output corresponding to Pulse Input Maximum Frequency	F freq y2		\bullet	
EXT-22	P-Gain for PG Option	PG P-gain		\bullet	
EXT-23	I-Gain for PG Option	PG I-gain		\bullet	
EXT-24	Slip Frequency for PG Option	PG Slip freq		\bullet	
EXT-30	Multi-function Output Terminal 'Q1'	Q1 define	\bullet		\bullet
EXT-31	Multi-function Output Teminal 'Q2'	Q2 define	\bullet		
EXT-32	Mult-function Output Terminal ' Q 3 '	Q3 define	\bullet		
EXT-34	LM (Load Meter) Output Selection	LM mode	\bullet		
EXT-35	LM Output Adjustment	LM adjust	\bullet		
EXT-40	AM1 (Analog Meter 1) Output Selection	AM1 mode			\bullet
EXT-41	AM1 Output Adjustment	AM1 adjust			\bullet
EXT-42	AM2 (Analog Meter 2) Output Selection	AM2 mode			\bigcirc
EXT-43	AM2 Output Adjustment	AM2 adjust			\bigcirc
EXT-50	Speed Limit Level	Speed Limit		\bullet	
EXT-51	Speed Limit Bias	Speed Bias		\bigcirc	
EXT-52	Speed Limit Gain	Speed Gain		\bullet	
EXT-53	Speed Limit Direction	Speed Dir		\bullet	
EXT-54	Zero Speed Detection Level	ZSD Level		\bullet	
EXT-55	Zero Speed Detection Bandwidth	ZSD Band		\bullet	
EXT-56	Torque Detection Level	TD Level		\bullet	
EXT-57	Torque Detection Bandwidth	TD Band		\bullet	

Notes:

CHAPTER 6 - PARAMETER DESCRIPTION

6.1 Drive group [DRV]

DRV-00: Command Frequency or Command Torquel Output Current (LCD)

* In Torque mode: LCD display - Cmd. Trq

$$
7 \text { Segment }-r(\text { Rpm })
$$

- In FU2-39 [Control Mode Selection], 4 (Sensorless_T) 6 (Vector_TRQ) is torque mode.
- DRV-00 [Command Frequency or Command Torque] has two functions.

1) Digital frequency setting

- When DRV-04 [Frequency or Torque Mode] is set to 0 (KeyPad-1) or 1 (KeyPad-2), command freq is not settable above FU1-20 [Maximum Frequency].

2) Monitoring function setting

- Command frequency displayed during stop
- Output current/frequency displayed during run.

Analog/digital frequency command setting in DRV-04 [Frequency or Torque Mode]:

- DRV-04 [Frequency or Torque Mode] is set to 2 (V1),3 (I) or 4 (V1+I), frequency command is set via I/O-01~10 [Analog Frequency command/Torque].
Refer to I/O-01~10 for detail description.
- DRV-16 [Speed Unit Selection] is set to 1 (Rpm), speed is displayed in Rpm.
- If FU2-39 is set to 4 (Sensorless_T) or 6
(Vector_TRQ), speed is displayed as the percent [\%] to the rated torque. Torque command is settable in DRV-04 [Frequency or Torque Mode].
* Factory default setting $=100[\%]$ (Up to 150[\%] settable)
- Setting the DRV-04 [Frequency or Torque Mode]

Note: In torque mode, speed unit is automatically displayed in [\%].

Setti ng	DRV-04	Parameter Name	Programming Description
0	KeyPad-1		1. In DRV-00, press the [PROG] key. 2. Enter the desired freq. 3. Press the [ENT] key to write the new value into memory.
1	KeyPad-2	Digital freq. command	1. In DRV-00, press the [PROG] key. 2. Press the [仓(Up)] or [\measuredangle (Down)] key to set the desired freq., while the inverter keeps running. 3. Press the [ENT] key to write the new value into memory.
2	V1	Analog freq. command	Control terminal "V1" Voltage analog input (0 to 10V) See the description of I/O-01~05.
3	I		Control terminal "l" Current analog input (4 to 20mA) See the description of I/O-06~10.
4	V1+1		Control terminal "V1"+"l" (0-10V/4-20mA) Analog input. See the description of I/O-01~10.

- Command Freq/Torque setting via "V1" input terminal when set DRV-04 [Frequency/Torque mode] to 2 (V1) or 4 (V1+I)

Code	Default setting	Setting range
$I / 0-01$	$10[\mathrm{msec}]$	$0 \sim 10000[\mathrm{msec}]$
$\mathrm{I} / \mathrm{O}-02$	$0[\mathrm{~V}]$	$0 \sim 10[\mathrm{~V}]$
$\mathrm{I} / \mathrm{O}-03$	$0[\mathrm{~Hz}]$	$0 \sim$ Max. freq
$\mathrm{I} / \mathrm{O}-04$	$10[\mathrm{~V}]$	$0 \sim 10[\mathrm{~V}]$
$\mathrm{I} / \mathrm{O}-05$	$60[\mathrm{~Hz}]$	$0 \sim$ Max freq

Code	Keypad Display	Parameter Name
I/O-01	V1 filter	Filter Time Constant for V1 Signal Input
I/O-02	V1 volt x1	V1 Input Minimum Voltage
I/O-03	V1 freq y1	Frequency Corresponding to V1 Input Minimum Voltage
I/O-04	V1 volt x2	V1 Input Maximum Voltage
I/O-05	V1 freq y2	Frequency Corresponding to V1 Input Maximum Voltage

(Important: Increase I/O-01-[Filter Time Constant for V1 Signal Input] if the V1 signal is affected by noise causing unstable operation. Increasing this value makes response time slower.

Set freq.

I/O-06~10 [Analog Current Input " | " Signal adjustment]

- Command Freq/Torque setting via "l" input terminal when set DRV-04 [Frequency/Torque mode] to 3 (I) or 4 (V1+1)

Code	Default setting	Setting range
I/O-06	$10[\mathrm{msec}]$	$0 \sim 10000[\mathrm{msec}]$
$/ / 0-07$	$4[\mathrm{~mA}]$	$0 \sim 20[\mathrm{~mA}]$
$\mathrm{I} / 0-08$	$0[\mathrm{~Hz}]$	$0 \sim$ Max. freq
$\mathrm{I} / \mathrm{O}-09$	$20[\mathrm{~mA}]$	$0 \sim 20[\mathrm{~mA}]$
$\mathrm{I} / 0-10$	$60[\mathrm{~Hz}]$	$0 \sim$ Max. freq

Code	Keypad display	Parameter Name
I/0-06	I filter	Filter time constant for I signal Input
I/0-07	I curr x1	I Input Minimum Current
I/0-08	I freq y1	Frequency Corresponding to I Input Minimum Current
I/0-09	I curr x2	I Input Maximum Current
I/0-10	I freq y2	Frequency Corresponding to I Input Maximum Current

(Important: Increase I/O-06-[Filter time constant for I signal Input] if the I signal is affected by noise causing unstable operation. Increasing this value makes response time slower.

Set freq

Related Functions: DRV-04 [Frequency or Torque Mode] DRV-16 [Speed Unit Selection] FU1-20 [Maximum Frequency] FU2-39 [Control Mode Selection] I/O-1~10 [Analog Frequency Command/Torque]

DRV-01: Acceleration Time

| DRV Acc.
 01 | time | |
| :--- | ---: | :---: | :---: |
| 0.0 | $\mathbf{0 1}$ | sec |

Factory Default:	20.0	$\mathbf{~ s e c}$

DRV-02: Deceleration Time

The inverter targets the FU2-70 when accelerating or decelerating. When the FU2-70 is set to "Maximum Frequency", the acceleration time is the time taken by the motor to reach FU1-20 from 0 Hz . The deceleration time is the time taken by the motor to reach 0 Hz from FU1-20 [Maximum Frequency].

When the FU2-70 is set to 'Delta Frequency', the acceleration and deceleration time is the time taken to reach a targeted frequency (instead the maximum frequency) from a frequency.

The acceleration and deceleration time can be changed to a preset transient time via multi-function inputs. By setting the multi-function inputs (P1, P2, P3) to 'XCEL-L', 'XCEL-M', 'XCEL-H' respectively, the Accel and Decel time set in I/O-25 to I/O-38 are applied according to the binary inputs of the P1, P2, P3.

Related Functions: FU1-20 [Max freq] FU2-70 [Reference freq. for Accel/Decel] FU2-71 [Accel/Decel time scale]
I/O-12 to I/O-14 [Multi-function input terminal P1, P2, P3] I/O-25 to $/ / 0-38$ [Acc/Dec time for step frequency]
FU2-70: Selects the frequency to be targeted for acceleration and deceleration. [Max Freq, Delta Freq]

- FU2-71: Selects the time scale. [0.01, 0.2, 1]
- $/ / 0-12$ to $/ / 0-14$: Sets the terminal function of P1, P2, P3 terminal inputs.
- $1 / 0-25$ to $/ / 0-38$: Presets the Accel/Decel time activated via multifunction inputs (P1, P2, P3)

Note: I/O-12 to I/O-14: Sets the terminal function of P1, P2, P3 terminal inputs.

Code	LCD display	Description	XCEL- H	XCEL- M	XCEL- L	Factory setting
DRV- 01	Acc time	Acc time 0	0	0	0	10 sec
DRV- 02	Dec time	Dec time 0	0	0	0	20 sec
I/O-25	ACC-1	Acc time 1	0	0	1	20 sec
I/O-26	DEC-1	Dec time 1	0	0	1	20 sec
I/O-27	ACC-2	Acc time 2	0	1	0	30 sec
I/O-28	DEC-2	Dec time 2	0	1	0	30 sec
I/O-29	ACC-3	Acc time 3	0	1	1	40 sec
I/O-30	DEC-3	Dec time 3	0	1	1	40 sec
I/O-31	ACC-4	Acc time 4	1	0	0	50 sec
I/O-32	DEC-4	Dec time 4	1	0	0	50 sec
I/O-33	ACC-5	Acc time 5	1	0	1	40 sec
I/O-34	DEC-5	Dec time 5	1	0	1	40 sec
I/O-35	ACC-6	Acc time 6	1	1	0	30 sec
I/O-36	DEC-6	Dec time 6	1	1	0	30 sec
I/O-37	ACC-7	Acc time 7	1	1	1	20 sec
I/O-38	DEC-7	Dec time 7	1	1	1	20 sec

FU2-71 [Accel/Decel time scale]

- Set the Accel / Decel time unit.

Setting	Unit	Description
0	0.01 sec	Minimum 0 sec settable Maximum 60 sec settable
1	0.1 sec	Minimum 0 sec settable Maximum 600 sec settable (Factory setting)
2	1 sec	Minimum 0 sec settable Maximum 6000 sec settable*

* Up to 6000 sec setting is available via LE-200 keypad.

DRV-03: Drive Mode (Run/Stop Method)

DRV 03	Drive mode Keypad

03
1

Factory Default:	$\mathrm{Fx} / \mathrm{Rx}-1$

Select the source of run/stop command.

Setting Range		Description
LCD	7-Seg	
Keypad	0	Run/Stop is controlled by Keypad.
Fx/Rx-1	1	Control Terminals FX, RX and 5G control Run/Stop. (Method 1)
Fx/Rx-2	2	Control Terminals FX, RX and 5G control Run/Stop. (Method 2)

[Drive Mode: 'Fx/Rx-1']

[Drive Mode: 'Fx/Rx-2']

DRV-04: Frequency or Torque Mode (Frequency / Torque Setting Method)

DRV Freq mode* 04 Keypad-1	$\mathbf{0 4}$

Factory Default:	Keypad-1	$\mathbf{0}$

* In Torque mode: LCD display: "Torque mode"

7 Segment: "04"

- If the DRV-04 [Frequency or Torque Mode] is set to 2 (V1), 3 (I), 4 (V1+I), see the description of $I / O-$ 01~10 [Analog Voltage/Current input signal adjustment].
- If FU2-39 is set to 4 (Sensorless_T) or 6 (Vector_TRQ), speed is displayed as the percent [\%] to the rated torque. Torque command is settable in DRV-04 [Frequency or Torque Mode].
- DRV-04 setting value is separately saved according to which control mode (Speed or Torque) is selected in FU2-39 [Control mode selection].

[Initial screen of Frequency Mode]
[Initial screen of Torque Mode]

Setting Range		Description
LCD	7-Seg	
Keypad-1	0	Frequency is set at DRV-00. The frequency is changed by pressing PROG key and entered by pressing ENT key. The inverter does not output the changed frequency until the ENT key is pressed.
Keypad-2	1	Frequency is set at DRV-00. Press PROG key and then by pressing the Δ, key, the inverter immediately outputs the changed frequency. Pressing the ENT key saves the changed frequency.
V1	2	Input the frequency reference $(0-10 \mathrm{~V})$ to the "V1" control terminal. Refer to the I/O01 to I/O-05 for scaling the signal.
1	3	Input the frequency reference ($4 \sim 20 \mathrm{~mA}$) to the "I" control terminal. Refer to the I/O-06 to I/O-10 for scaling the signal.
V1+1	4	Input the frequency reference ($0 \sim 10 \mathrm{~V}$, $4 \sim 20 \mathrm{~mA}$) to the "V1","I" control terminals. The ' $V 1$ ' signal overrides the ' 1 ' signal.

[Freq Mode: ' 'l']

[Freq Mode: 1 1+'l']

Related functions: DRV-00 [Digital Command Frequency or Command Torque]
FU2~39 [Control Mode Selection] 1/O-01~10 [Analog Voltage/Current input signal adjustment]

DRV-05 ~ DRV-07: Step Frequency 1 ~ 3

| DRV Step freq-2
 06 20.00 Hz | $\mathbf{0 6}$ | $\mathbf{2 0 . 0 0}$ |
| :--- | ---: | :---: | :---: |
| Factory Default: | 20.00 Hz | $\mathbf{2 0 . 0 0}$ |

DRV Step freq-3		07	30.00
	Hz		
Factory Default:	30.00	Hz	30.00

The inverter outputs preset frequencies set in these codes according to the multi-function terminals configured as 'Speed-L', 'Speed-M' and 'Speed-H'. The output frequencies are decided by the binary combination of P1, P2, P3 configured in I/O-12 to I/O-17. Refer to the following table for the preset frequency outputs.

Binary Combination of P1, P3			Output Frequency	Step Speed
Speed-L	Speed-M	Speed-H		
0	0	0	DRV-00	Speed 0
1	0	0	DRV-05	Speed 1
0	1	0	DRV-06	Speed 2
1	1	0	DRV-07	Speed 3

Output Frequency

Related Functions: I/O-12 to I/O-14 [Reference Inputs] //0-17 [Filtering Time Constant] I/O-21 to I/O-21 [Step Frequency 4~7]

- I/O-01 to I/O-10: Scaling the analog input signals (V1 and I) for frequency reference.
- I/O-17: Adjusts the response sensibility of the input terminal to eliminate contact noise.
- I/O-21 to I/O-24: Sets the step frequency from 4 to 7 .

Note: The frequency setting method of 'Speed 0' is decided by DRV-04.

DRV-08: Output Current

DRV Cur 08	ent 0.0 A	08	0.0
Factory Default:	0.0		0.0

This code displays the output current of the inverter in RMS.

DRV-09: Motor Speed

DRV 09	Speed		
	09	$\mathbf{0 r p m}$	

Factory Default: 0 rmp 0
This code displays the motor speed in RPM while the motor is running.
Use the following equation to scale the mechanical speed using FU2-74 [Gain for Motor Speed display] if you want to change the motor speed display to rotation speed ($\mathrm{r} / \mathrm{min}$) or mechanical speed ($\mathrm{m} / \mathrm{min}$).

Motor speed $=120$ * (F/P) * FU2-74
Where, $\mathrm{F}=$ Output Frequency and $\mathrm{P}=$ the Number of Motor Poles

This code displays the DC link voltage inside the inverter.

DRV-11: User Display Selection

DRV User disp 11 Out 0.0	$\mathbf{1 1}$	$\mathbf{0 . 0}$
Factory Default:	0.0 V	$\mathbf{0 . 0}$

This code displays the parameter selected in FU2-73 [User Display]. There are types of parameters in FU2-73: Voltage, Watt and Torque.

DRV-12: Fault Display

DRV 12	Fault None	$\mathbf{1 2}$
nOn		
Factory Default: None	nOn	

This code displays the current fault (trip) status of the inverter. Use the PROG, $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ key before pressing the RESET key to check the fault content(s), output frequency, output current, and whether the inverter was accelerating, decelerating, or in constant speed at the time of the fault occurred. Press the ENT key to exit. The fault content will be stored in FU2-01 to FU2-05 when the RESET key is pressed. For more detail, please refer to Chapter 7.
[Fault Contents]

Fault (Trip)	Keypad display	
	LCD	7-Segment
Over-Current 1	Over Current 1	OC
Over-Voltage	Over Voltage	OV
External Trip Input A	External-A	EXTA
Emergency Stop (Not Latched)	BX	BX
Low-Voltage	Low Voltage	LV
Fuse Open	Fuse Open	FUSE
Ground Fault	Ground Fault	GF
Over-Heat on Heat sink	Over Heat	OH
Electronic Thermal Trip	E-Thermal	ETH
Over-Load Trip	Over Load	OLT
Inverter H/W Fault - EEP Error - ADC Offset - WDOG Error - In-Phase Open	HW-Diag	HW
External Trip Input B	External-B	EXTB
Over-Current 2	Arm Short	ASHT
Option Error	Option	OPT
Output Phase Loss	Phase Open	PO
Inverter Over-Load	Inv. OLT	IOLT

Note: There are WDOG error, EEP error, and ADC Offset for the inverter Hardware Fault - the inverter will not reset when H/W fault occurs. Repair the fault before turning on the power.
Note: Only the highest-level fault will be displayed when multiple faults occur.

DRV-13: Motor Direction Set (7-Segment
Keypad)

Factory Default:
0

This code sets the motor direction when using the 7-
Segment keypad.

7-Segment Display	Description
0	Run to forward direction
1	Run to reverse direction

DRV-14: Command/Output Frequency Display (LCD Keypad)

DRV TAR	0.00 Hz	
14	OUT	0.00 Hz

Factory Default: 0.00 Hz
This code shows the Command (Target) Frequency set in DRVOO and inverter Output Frequency.

DRV-15: Reference/Feedback Frequency Display (LCD Keypad)

DRV		REF
15	FBK	0.00 Hz

Factory Default: 0.00 Hz

This code shows the Reference Frequency and
Feedback Frequency while PID operation.
This code appears only when 'PID' is selected in FU2-47.

DRV-16: Speed Unit Selection

DRV 16	$\mathrm{~Hz} / \mathrm{Rpm}$	Disp			
Hz			$\quad \mathbf{1 6}$	Factory Default:	Hz
:---:	:---:				

Set this parameter to $0[\mathrm{~Hz}]$ to display frequency, or to $1[\mathrm{Rpm}]$ to display speed.

Related Functions: Changing the $\mathrm{Hz} / \mathrm{Rpm}$ display affects the following parameter display.

- DRV-00, 05, 06, 07, 14
- FU1-20, 21,22, 24, 25, 32
- FU2-32
- $\quad \mathrm{I} O-03,05,08,10,20,21,22,23,24,42,43$
- EXT-08, 10

DRV-20: FU1 Group Selection (7-Segment keypad)

DRV-21: FU2 Group Selection

(7-Segment keypad)

DRV-22: I/O Group Selection

(7-Segment keypad)

DRV-23: EXT Group Selection (7-Segment keypad)

DRV-24: COM Group Selection (7-Segment keypad)

DRV-25: APP Group Selection (7-Segment keypad)

Select the desired group and press the PROG/ENT key to move into the desired group. The parameter in the group can be read and written after moving into the desired group.

Notes:

6.2 Function 1 Group [FU1]

FU1-00: Jump to Desired Code \#

FU1	Jump code
00	1

Factory Default: 1
Jumping directly to any parameter code can be accomplished by entering the desired code number. This code is available only with LCD keypad.

FU1-03: Run Prevention

FU1 03	Run prev. None	$\mathbf{0 3}$
Factory Default: \quad None	$\mathbf{0}$	

This function prevents reverse operation of the motor. This function may be used for loads that rotate only in one direction such as fans and pumps.

Setting Range		Description	
LCD	7-Seg		
None	0	Forward and Reverse run is available.	
Forward Prev	1	Forward run is prevented.	
Reverse Prev	2	Reverse run is prevented.	

FU1-05: Acceleration Pattern FU1-06: Deceleration Pattern

FU1 Acc. pattern 05 $\mathbf{~ L i n e a r ~}$	$\mathbf{0}$
Factory Default: \quad Linear	$\mathbf{0}$

FU1 Dec. pattern 06 Linear	$\mathbf{0 6}$	$\mathbf{0}$
Factory Default: \quad Linear	$\mathbf{0}$	

[Accel/Decel Pattern: 'Linear']

[Accel/Decel Pattern: 'S-curve’]

[Accel/Decel Pattern: 'U-curve']

FU1-07: Stop Mode

FU1	Stop mode
07	Decel

Factory Default: Decel 0

Sets the stopping method for the inverter.

Setting Range		Description
LCD	7-Seg	Inverter stops by the deceleration pattern.
Decel	0	Inverter stops with DC injection braking. Inverter outputs DC voltage when the Drequency reached the DC injection braking frequency set in FU1-08 during decelerating.
Free-run (Coast to stop)	2	Inverter cuts off its output immediately when the stop signal is commanded.

[Stop Mode: 'Decel']

[Stop Mode: ‘Dc-brake’]

[[Stop Mode: 'Free-run']

FU1-08: DC Injection Braking Frequency
FU1-09: DC Injection Braking On-delay Time
FU1-10: DC Injection Braking Voltage
FU1-11: DC Injection Braking Time

$\begin{array}{\|lc\|c} \hline \text { FUl DcBr freq } \\ 08 & 5.00 \mathrm{~Hz} & \mathbf{0 8} \\ \hline \end{array}$	5.00
Factory Default: $\quad 5.00 \mathrm{~Hz}$	5.00
FU1 DcBlk time 09 0.10 sec	0.10
Factory Default: 0.10 sec	0.10
FU1 $\ \mathrm{DcBr}$ value 10 $50 \%$$\quad \mathbf{1 0}$	50
Factory Default: 50 \%	50
FU1 DcBr time 11 1.0 sec 11	1.0
Factory Default: 1.0 sec	1.0

FU1-12: Starting DC Injection Braking Time
FU1-13: Staring DC Injection Braking Time
$\left.\begin{array}{|lr|c|c|}\hline \begin{array}{l}\text { FU1 } \\ 12\end{array} & \begin{array}{c}\text { DcSt }\end{array} & \begin{array}{c}\text { value } \\ 50\end{array} & \mathbf{1 2}\end{array}\right)$

Inverter holds the starting frequency for Starting DC Injection Braking Time. It outputs DC voltage to the motor for FU1-13 [Starting DC Injection Braking Time] with the FU1-12 [Starting DC Injection Braking Voltage] before accelerating.

[Starting DC Injection Braking Operation]

Related Functions: FU2-33 [Rated Current of Motor] FU2-33: the DC current is limited by this parameter.

Note: The DC injection braking function does not function when either FU1-12 or FU1-13 is set to " 0 ".
Note: FU1-12 [Starting DC Injection Braking Voltage] is also used as the DC Injection Braking Voltage for the multifunction input when the multifunction input is set to "DC braking".

FU1-14: Pre-excitation Time

FU1 14 PreExTime 1.0 sec
14

When you set ON to the operation command (FWD, REV), the inverter conducts pre-exciting automatically for the time specified by this parameter.

- After FU1-14 [Pre-excitation Time] elapses the inverter starts normal operation in the following graph.

Code	LCD display	Factory setting	Setting range
FU1-14	PreExTime	$1[\mathrm{sec}]$	$0 \sim 60[\mathrm{sec}]$

Related function: FU2-34 [No Load Motor Current (RMS)] FU1-16 [Pre-excitation Current]

FU1-15: Hold Time

| FU1
 15 | Hold Time
 1000 | $\mathbf{m s}$ |
| :--- | ---: | :---: | :---: |

Factory Default:	1000 ms	$\mathbf{1 0 0 0}$

To set the time to maintain holding torque at zero speed and stop the operation in a shortest time during Vector_SPD mode operation

- The inverter runs to maintain speed 0 for the hold time in Vector_SPD mode and decelerates to stop after the hold time elapse.

\rightarrow Operation method during Hold Time:
FU1-7 [Stop mode] Decel: zero speed control FU1-7 [Stop mode] DC-brake

FU1-16: Pre-excitation Current

FU1-16 [Pre-excitation Current] is applied during FU1-14. When the motor magnetic flux increases to match the rated magnetic flux, pre-excitation current starts to decrease. When the motor magnetic flux reaches to the rated magnetic flux, the pre-excitation current matches the rated pre-excitation current.

Code	LCD display	Factory setting	Setting range
FU1-16	Flux Force	$100[\%]$	$100 \sim 500[\%]$

Related Functions: FU2-34 [No Load Motor Current (RMS)] FU1-14 [Pre-excitation Time]

FU1-20: Maximum Frequency
 FU1-21: Base Frequency
 FU1-22: Starting Frequency

$\begin{array}{ll} \text { FU1 Max freq } \\ 20 & 60.00 \mathrm{~Hz} \end{array}$	20	60.00
Factory Default: 60.00		60.00
FU1 Base freq 21 60.00 Hz	21	60.00
Factory Default: 60.00	Hz	60.00
$\begin{array}{\|lrl} \text { FU1 Start freq } \\ 22 & 0.50 \mathrm{~Hz} \end{array}$	22	0.50
Factory Default: 0.50 Hz	Hz	0.50

FU1-20 [Maximum Frequency] is the maximum output frequency of the inverter. Make sure this maximum frequency does not exceed the rated speed of the motor. FU1-21 [Base Frequency] is the frequency where the inverter outputs its rated voltage. In case of using a 50 Hz motor, set this to 50 Hz .
FU1-22 [Starting Frequency] is the frequency where the inverter starts to output its voltage.

Note: If the command frequency is set lower than the starting frequency, inverter does not output voltage to motor.

FU1-23: Frequency Limit Selection

FU1-24: Low Limit Frequency
FU1-25: High Limit Frequency

FU1 Freq limit $23 \quad---$ No ---	$\mathbf{2 3}$	$\mathbf{0}$
Factory Default: No	$\mathbf{0}$	

| FU1 F-limit Lo
 24 | $\mathbf{2 4}$ | $\mathbf{0 . 5 0}$ |
| :--- | ---: | :---: | :---: |

Factory Default:	0.50 Hz	$\mathbf{0 . 5 0}$

FU1 F-limit Hi 25 60.00 Hz	$\mathbf{2 5}$	$\mathbf{6 0 . 0 0}$
Factory Default: $\quad 60.00 \mathrm{~Hz}$	$\mathbf{6 0 . 0 0}$	

FU1-23 selects the limits for the inverter operating frequency. If FU1-23 is set to 'Yes', inverter operates within the upper and lower limit setting. The inverter operates at the upper or the lower limit when the frequency reference is outside the frequency limit range.

[Freq. limit: 'Yes']

Note: Frequency limit does not work during accelerating and decelerating.

FU1-26: Manual/Auto Boost Selection

FU1-27: Torque Boost in Forward Direction FU1-28: Torque Boost in Reverse Direction

Fu1 Torque boost 26	$\mathbf{2 6}$			
Manual		$\quad \mathbf{0}$	Factory Default: \quad Manual	$\mathbf{0}$
:---	:---			

FU1 27	Fwd boost 2.0 2.0	$\mathbf{2 7}$	$\mathbf{2 . 0}$
Factory Default:	2.0%	$\mathbf{2 . 0}$	

| FU1
 28 | Rev boost |
| :--- | ---: | :--- | :--- |
| 2.0 | $\%$ |$\quad \mathbf{2 8} \quad \mathbf{2 . 0}$

Factory Default: $2.0 \% \quad \mathbf{2 . 0}$
This function is used to increase the starting torque at low speed by increasing the output voltage of the inverter. If the boost value is set too high than required, it may cause the motor flux to saturate, causing overcurrent trip. Increase the boost value when there is excessive distance between inverter and motor.
[Manual Torque Boost]: The forward and reverse torque boost is set separately in FU1-27 and FU1-28.
Note: The torque boost value is the percentage of inverter rated voltage.
Note: When FU1-29 [Volts/Hz Pattern] is set to 'User V/F', this function does not work.
Note: When FU2-40 [Control Mode] is set to 'Sensorless', the torque boost value is the rate per thousand of inverter rated voltage.
[Auto Torque Boost]: Inverter outputs high starting torque by automatic boosting according to the load.
Note: Auto torque boost is only available for the $1{ }^{\text {st }}$ motor. Manual torque boost must be used for the $2^{\text {nd }}$ motor.
Note: The auto torque boost value is added to the manual torque boost value.
Note: Auto torque boost is available only when FU2-40 [Control Mode] is set to 'V/F'.
Note: Conduct Auto tuning in FU2-41 [Auto tuning] to use Auto torque boost effectively.

[Constant Torque Loads: Conveyor, Moving Equip. etc.]

[Ascending and Descending Loads: Parking, Hoist etc.]
Related Functions: FU1-29 [Volts/Hz Pattern] FU2-40 [Control Mode selection]

FU1-29: Volts/Hz Pattern

FU1 V/F pattern 29 Linear	$\mathbf{2 9}$	$\mathbf{0}$
Factory Default: \quad Linear	$\mathbf{0}$	

This is the pattern of voltage/frequency ratio. Select the proper V/F pattern according to the load. The motor torque is dependent on this V/F pattern.
[Linear] pattern is used where constant torque is required. This pattern maintains a linear volts/frequency ratio from zero to base frequency. This pattern is appropriate for constant torque applications.
[Square] pattern is used where variable torque is required. This pattern maintains squared volts/hertz ratio. This pattern is appropriate for fans, pumps, etc.
[User V/F] pattern is used for special applications. Users can adjust the volts/frequency ratio according to the application. This is accomplished by setting the voltage and frequency, respectively, at four points between starting frequency and base frequency. The four points of voltage and frequency are set in FU1-30 through FU137.

[VIF Pattern: 'Linear']
Output Voltage

[V/F Pattern: ‘Square']
Output Voltage

[V/F Pattern: 'User V/F']

FU1-30 ~ FU1-37: User V/F Frequency and Voltage

$\left.\begin{array}{|l|c|c|}\hline \begin{array}{l}\text { FU1 User } \\ 30\end{array} & \begin{array}{r}\text { freq } \\ 15.00\end{array} & \mathbf{3 0}\end{array}\right)$

| FU1 User
 36 | freq
 60.00 | $\mathbf{H z}$ |
| :--- | :---: | :---: |$\quad \mathbf{3 6}$| $\mathbf{6 0 . 0 0}$ | |
| :--- | :--- |
| Factory Default: $\quad 60.00 \mathrm{~Hz}$ | $\mathbf{6 0 . 0 0}$ |

$\left.\begin{array}{|ll|l|l|}\hline \begin{array}{l}\text { FU1 User } \\ 37\end{array} & \begin{array}{l}\text { volt } \\ 100\end{array} & 4 & \mathbf{3 7}\end{array}\right)$

These functions are available only when 'User V/F' is selected in FU1-29 [V/F pattern]. Users can make the custom V/F pattern by setting four points between FU122 [Starting Frequency] and FU1-21 [Base Frequency].

[User V/F]

Note: When the 'User V/F' is selected, the torque boost of FU1-26 through FU1-28 is ignored.

Related Functions: FU1-21 [Base Frequency] FU1-22 [Starting Frequency] FU1-29 [Volts/Hz Pattern]

FU1-38: Output Voltage Adjustment

$\left.\begin{array}{|l|c|c|}\hline \begin{array}{l}\text { FUl Volt control } \\ 38\end{array} & \mathbf{3 8} & \mathbf{1 0 0} \\ \hline \text { Factory Default: } & 100.0\end{array}\right)$

This function is used to adjust the output voltage of the inverter. This is useful when using a motor with a lower rated voltage than the main input voltage. When this is set at 100%, inverter outputs its rated voltage.

Note: The inverter output voltage does not exceed the main input voltage, even though FU1-38 is set at 110%.

FU1-39: Energy Save Level

FU1 Energy	save
39	0

39

Factory Default:	0	$\mathbf{0}$

This function is used to reduce the output voltage in applications that do not require high torque and current at its steady speed. The inverter reduces its output voltage after accelerating to the reference frequency (steady speed) if the energy save level is set at 20%. This function may cause over-current trip due to the lack of output torque in a fluctuating load.
This function does not work with 0% set point value.

[When Energy Save Level is set at 20\%]
Note: This function is not recommended for a large load or for an application that need frequent acceleration and deceleration.
Note: This function does not work when 'Sensorless' is selected in FU2-40 [Control Mode].

FU1-50: Electronic Thermal (Motor ${ }^{2}{ }^{2}$) Selection FU1-51: Electronic Thermal Level for 1 Minute FU1-52: Electronic Thermal Level for
 Continuous
 FU1-53: Electronic Thermal Characteristic (Motor type) selection

These functions are to protect the motor from overheating without using additional thermal overload relay. Inverter calculates the temperature rising of the motor using several parameters and determines whether or not the motor is overheated. Inverter will turn off its output and display a trip message when the electronic thermal feature is activated.

Factory Default: No \quad O

This function activates the ETH parameters by setting 'Yes'.

$\begin{aligned} & \text { FU1 ETH 1 } \\ & 51 \end{aligned}$	$\begin{array}{r} 1 \mathrm{~min} \\ 180 \% \end{array}$	51	180
Factory Default:	180		180

This is the reference current when the inverter determines the motor has overheated. It trips in one
minute when 150% of rated motor current established in FU2-33 flows for one minute.

Note: The set value is the percentage of FU2-33 [Rated Motor Current].

FU1 ETH 52 $\mathbf{5 2}$ 120 $\%$
Factory Default: 120 $\mathbf{1 2 0}$

This is the current at which the motor can run continuously. Generally, this value is set to ' 100% ' and which means the rated motor current set in FU2-33. This value must be set less than FU1-52 [ETH 1 min].

Note: The set value is the percentage of FU2-33 [Rated Motor Current].

[Motor i2t Characteristic Curve]

$\begin{array}{lr} \text { FU1 } & \text { Moto } \\ 53 & \text { Sel } \end{array}$		53	0
Factory Default:	Self-cool		0

To make the ETH function (Motor $i^{2 t}$) work correctly, the motor cooling method must be selected correctly according to the motor.
[Self-cool] is a motor that has a cooling fan connected directly to the shaft of the motor. Cooling effects of a self-cooled motor decrease when a motor is running at low speeds. The motor current is derated as the motor speed decreases.
[Forced-cool] is a motor that uses a separate motor to power a cooling fan. As the motor speed changes, the cooling effect does not change.

[Load Current Derating Curve]

Note: Despite the motor current changing frequently due to load fluctuation or acceleration and deceleration, the inverter calculates the i2t and accumulates the value to protect the motor.

Related Functions: FU2-33 [Rated Motor Current]

FU1-54: Overload Warning Level FU1-55: Overload Warning Time

FU1 OL level 54	$\mathbf{5 4}$	$\mathbf{1 5 0}$
Factory Default: $\quad 150 \%$	$\mathbf{1 5 0}$	

The inverter generates an alarm signal when the output current has reached the FU1-54 [Overload Warning Level] for the FU1-55 [Overload Warning Time]. The alarm signal persists for the FU1-55 even if the current has become the level below the FU1-54.

Multi-function output terminal (AXA-AXC) is used as the alarm signal output. To output the alarm signal, set I/O 44 [Multifunction Auxiliary Contact Output] to 'OL'.
Note: Inverter is not tripped by this function.
Note: The set value is the percentage of FU2-33 [Rated Motor Current].

[Overload Warning]

> | Related Functions: | FU2-33 [Rated Motor Current] |
| :--- | :--- |
| | I/O-44 [Multi-function Auxiliary Contact |
| | Output] |

FU1-56: Overload Trip Selection

FU1-57: Overload Trip Level
FU1-58: Overload Trip Delay Time

FU1 OLT select 56 --- Yes ---	56	1
Factory Defaul: Yes		1
$\begin{array}{\|lc} \text { FU1 OLT level } \\ 57 & 180 \% \end{array}$	57	180
Factory Default: 180		180

$\begin{aligned} & \text { FU1 OLT } \\ & 58 \end{aligned}$	time 60.0 sec	58	60.0
Factory Default:	t: 60.0		60.0

Inverter cuts off its output and displays fault message when the output current persists over the FU1-57 [Overload Trip Level] for the time of FU1-58 [Overload Trip Time]. This function protects the inverter and motor from abnormal load conditions.

Note: The set value is the percentage of FU2-33 [Rated Motor Current].

[Overload Trip Operation]

Related Functions: FU2-33 [Rated Motor Current]

FU1-59: Stall Prevention Mode Selection (Bit set) FU1-60: Stall Prevention Level

FU1 Stall 59	prev. 000	$\mathbf{5 9}$

This bit set parameter follows the conventions used in I/O-15 and I/O-16 to show the ON (bit set) status.

FU1 Stall level 60	$\mathbf{6 0}$	$\mathbf{1 8 0}$
Factory Default:	180%	$\%$

This function is used to prevent the motor from stalling by reducing the inverter output frequency until the motor current decreases below the stall prevention level. This function can be selected for each mode of acceleration, steady speed, and deceleration via bit combination.

Note: The set value is the percentage of FU2-33 [Rated Motor Current].

FU1-59 [Stall Prevention Mode Selection]

Setting Range			FU1-59	Description
3rd bit	$2^{\text {nd }}$ bit	$1^{\text {st }}$ bit		
0	0	1	001	Stall Prevention during Acceleration
0	1	0	010	Stall Prevention during Steady Speed
1	0	0	100	Stall Prevention during Deceleration

When FU1-59 is set to '111', stall prevention works during accelerating, steady speed and decelerating.

Note: The acceleration and deceleration time may take longer than the time set in DRV-01, DRV-02 when Stall Prevention is selected.
Note: If stall prevention status persists, inverter may stop during acceleration.

Related Functions: FU2-33 [Rated Motor Current]

[Stall Prevention during Acceleration]

[Stall Prevention during Steady Speed]

[Stall Prevention during Deceleration]

FU1-99: Return Code (7-Segment Keypad)

	99	1
Factory Default:		$\mathbf{1}$

This code is used to exit a group when using a 7 segment keypad. After pressing PROG/ENT key, set the value to ' 1 ' and press the PROG/ENT key again to exit.

Related Functions:	FU2-99 [Return Code]
	$I / 0-99[$ Return Code]
	EXT-99 Return Code]
	COM-99 [Return Code]

6.3 Function 2 Group [FU2]

FU2-00: Jump to desired code \#

Factory Default: 1
Jumping directly to any parameter code can be accomplished by entering the desired code number. This code is available only with LCD keypad.

FU2-01: Previous Fault History 1
FU2-02: Previous Fault History 2
FU2-03: Previous Fault History 3
FU2-04: Previous Fault History 4
FU2-05: Previous Fault History 5
FU2-06: Erase Fault History

| FU2
 01 | Last trip-1
 None |
| :--- | :---: | $\mathbf{0 1}$| $\mathbf{0}$ |
| :---: |
| Factory Default: None |

This code displays up to five previous fault (trip) status of the inverter. Use the PROG, Δ and $\mathbf{\nabla}$ key before pressing the RESET key to check the fault content(s), output frequency, output current, and whether the inverter was accelerating, decelerating, or in constant speed at the time of the fault occurred. Press the ENT key to exit. The fault content will be stored in FU2-01 through FU2-05 when the RESET key is pressed. For more detail, please refer to Chapter 7.

[Fault Contents]

Fault (Trip)	Keypad Display	
	LCD	7-Segment
Over-Current 1	Over Current 1	OC
Over-Voltage	Over Voltage	OV
External Trip Input A	External-A	EXTA
Emergency Stop (Not Latched)	BX	BX
Low-Voltage	Low Voltage	LV
Fuse Open	Fuse Open	FUSE
Ground Fault	Ground Fault	GF
Over-Heat on Heat sink	Over Heat	OH
Electronic Thermal Trip	E-Thermal	ETH
Over-Load Trip	Over Load	OLT
Inverter H/W Fault - EEP Error - ADC Offset - WDOG Error - In-Phase Open	HW-Diag	HW
External Trip Input B	External-B	EXTB
Over-Current 2	Arm Short	ASHT
Option Error	Option	OPT
Output Phase Loss	Phase Open	PO
Inverter Over-Load	Inv. OLT	IOLT

Note: There are WDOG error, EEP error, and ADC
Offset for the inverter Hardware Fault, and the inverter will not reset when H/W fault occurs. Repair the fault before turning on the power.
Note: When multiple faults occur, only the highest-level fault will be displayed.

Related Functions:	DRV-12 [Fault Display] displays current fault status.

FU2 Erase trips 06 --- No ---	06	0
Factory Default: No		0

This function erases all fault histories of FU2-01 to FU05 from the memory.

FU2-07: Dwell Frequency
 FU2-08: Dwell Time

FU2 07	Dwell freq 5.00 Hz	$\mathbf{0 7}$

This function is used to output torque in an intended direction. It is useful in hoisting applications to get enough torque before a releasing mechanical brake. If the dwell time is set at ' 0 ', this function is not available. In dwell operation, the inverter outputs AC voltage not a DC voltage.

Note: DC Injection Braking does not output torque to an intended direction. It is just to hold the motor.
Note: Do not set the Dwell frequency above run frequency. Otherwise, it may lead to operation fault.

FU2-10 ~ FU2-16: Frequency Jump

FU2 Jump 10Jreq --- No	$\mathbf{1 0}$	$\mathbf{0}$
Factory Default:	No	$\mathbf{0}$

| FU2 | jump | Hi | 1 |
| :--- | ---: | :--- | :--- | :--- |
| 12 | 15.00 | Hz | |$\quad 12 \quad 15.00$

$\begin{array}{lrl} \text { FU2 } & \text { jump lo } 3 \\ 15 & 30.00 & \mathrm{~Hz} \end{array}$	15	30.00
Factory Default: 30.00	Hz	30.00
FU2 jump Hi 16 35.00 Hz	16	35.00
Factory Default: 35.00	Hz	35.00

To prevent undesirable resonance and vibration on the structure of the machine, this function locks out the potential resonance frequency from occurring. Three different jump frequency ranges may be set. This avoidance of frequencies does not occur during accelerating or decelerating. It only occurs during continuous operation.

Note: When the reference frequency is set inside the jump frequency, the output frequency goes to the frequency marked by " \bullet " symbol.
Note: If one frequency jump range is required, set all ranges to the same range.

FU2-17: Start Curve for S-Curve Accel/Decel Pattern
FU2-18: End Curve for S-Curve Accel/Decel Pattern

This parameter is used to adjust the Accel and Decel pattern when 'S-Curve' is selected in FU1-05 and FU106 respectively. To use this function, the Reference Frequency for Accel and Decel set in FU2-70 should be set to 'Delta freq'.

[S-Curve Adjustment]
Actual Accel Time $=$ DRV-01 $+($ DRV-01 *FU2-17)/2 + (DRV-01*FU2-18)/2

Actual Decel Time $=$ DRV-02 $+($ DRV-02 * FU2-17)/2 + (DRV-02*FU2-18)/2
Ex) If DRV-10: 1 sec, FU2-17: 40\%, FU2-18: 20\%,
Actual Accel Time $=1 \mathrm{sec}+\left(1 \sec ^{*} 0.4\right) / 2+\left(1 \sec ^{*} 0.2\right) / 2$
$=1.3 \mathrm{sec}$

FU2-19: Input/Output Phase Loss Protection (Bit Set)

FU2 ${ }^{\text {19 }}$ - Trip		19	00
Factory Default:	00		00

This function is used to cut the inverter output off in case of phase loss in either input power or inverter output.

FU2-19 [Phase Loss Protection Select]

Setting Range		FU2-19	Description
2nd bit	$1{ }^{\text {st }}$ bit		
0	0	00	Phase loss protection does not work
0	1	01	Protect inverter from output phase loss
1	0	10	Protect inverter from input phase loss
1	1	11	Protect inverter from input and output phase loss

Related Functions: FU2-22 to FU2-25 [Speed Search]

FU2-20: Power ON Start Selection

FU2 Power-on run $20 \quad---$ No ---	$\mathbf{2 0}$
Factory Default: \quad No	$\mathbf{0}$

If FUN-20 is set to 'No', restart the inverter by cycling the FX or RX terminal to CM terminal after power has been restored.
If FUN-20 is set to 'Yes', the inverter will restart after power is restored. If the motor is rotating by inertia at the time power is restored, the inverter may trip. To avoid this trip, use 'Speed Search' function by setting FU2-22 to ' 1 xxx'.

[Power ON Start: 'No']

Note: In case of using 'Power ON Start' to 'Yes', make sure to utilize appropriate warning notices to minimize the potential for injury or equipment damage.

Related Functions: FU2-22 ~ FU2-25 [Speed Search]

FU2-21: Restart After Fault Reset

Factory Default: No 0
If FU2-21 is set to 'Yes', inverter will restart after the RST (reset) terminal has been reset a fault.
If FU2-21 is set to 'No', restart the inverter by cycling the FX or RX terminal to CM terminal after the fault has been reset. If the motor is rotating by inertia at the time power is restored, the inverter may trip. To avoid this trip, use 'Speed Search' function by setting FU2-22 to 'xx1x'.

Note: In case of using 'Reset Restart' to 'Yes', make sure to utilize appropriate warning notices to minimize the potential for injury or equipment damage.

Related Functions: FU2-22 ~ FU2-25 [Speed Search]

FU2-22: Speed Search Selection (Bit Set) FU2-23: Current Limit Level During Speed Search

FU2-24: P Gain During Speed Search FU2-25: I Gain During Speed Search

$\begin{array}{\|lr} \hline \text { FU2 Speed } & \text { Search } \\ 22 & 0000 \end{array}$	22	0000
Factory Default: 0000		0000
$\begin{array}{lc} \text { FU2 SS Sup-Curr } \\ 23 & 150 \% \end{array}$	23	150
Factory Default: 150 \%		150

$\begin{array}{\|lc} \hline \text { FU2 } \downarrow \text { SS } P \text { P-gain } \\ 24 & 100 \end{array}$	24	100
Factory Default: 100		100
$\begin{array}{\|lr} \hline \text { FU2 } \downarrow \text { SS } & \text { I-gain } \\ 25 & 200 \end{array}$	25	200
Factory Default: 200		200

This function is used to permit automatic restarting after Power ON, Fault Reset, and Instant Power Failure without waiting for the motor to stop.
The speed search gain should be set after considering the inertia moment (GD2) and magnitude of torque of the load. FU2-37 [Load Inertia] must be set at the correct value to make this function operate correctly.

FU2-22 [Speed Search Select]

Setting Range				Description
$4^{\text {tr }}$ bit	3 rd bit	$2^{\text {nd }}$ bit	$1^{\text {st }}$ bit	
0	0	0	0	Speed search function does not work
0	0	0	1	Speed search during Accelerating
0	0	1	0	Speed search during a Fault Reset restarting (FU2-21) and Auto restarting (FU2-26)
0	1	0	0	Speed search during Instant Power Failure restarting.
1	0	0	0	Speed search during Power ON starting (FU2-20)

When FU2-22 is set to ' 1111 ', Speed Search works for all conditions.

FU2-22 [Speed Search Selection] selects the speed search function.

FU2-23 [Current Limit Level] is the current that the inverter limits its current rise during speed searching. (The set value is the percentage of FU2-33 [Rated Motor Current])

FU2-24 [P Gain] is the proportional gain used for speed search. Set this value according to load inertia set in FU2-37.

FU2-25 [I Gain] is the Integral gain used for speed search. Set this value according to load inertia set in FU2-37.

[Speed Search Operation]

Related Functions:	FU2-20 [Power ON Start]
	FU2-21 [Restart after Fault Reset]
	FU2-26 ~ FU2-27 [[uto Restart]
	FU2-30 ~ FU2-37 [Motor Parameters]

FU2-26: Number of Auto Restart Attempt FU2-27: Delay Time Before Auto Restart

This function is used to allow the inverter to reset itself for a selected number of times after a fault has occurred. The inverter can restart itself automatically when a fault occurs. To use the speed search function during auto restarting set FU2-22 to 'xx1x'. See FU2-22 ~ FU2-25. When an under voltage (LV) fault, inverter disable (BX)
or Arm short occurs, the drive does not restart automatically.

Note: Inverter decreases the retry number by one as a fault occurs. When restarted without a fault during 30 seconds, the inverter increases the retry number by one.

FU2-28: Speed search hold time

FU2 28	SS blk time 1.0 sec	$\mathbf{2 8}$

The inverter starts speed search function after the preset time t 1 elapses. Set the desired time for inverter to restart the previous operation using Speed search function. Speed search function [FU2-22] is activated automatically during exchanging function.

Code	Keypad display	Description	Factory setting	Setting Range
FU2-28	SS blk time	Speed search hold time during speed search	1 sec	$0 \sim 60 \mathrm{sec}$

Note: This parameter is not valid when low voltage (LV) fault or instant power loss (within 15 msec) occurs.

FU2-30: Rated Motor Selection
 FU2-31: Number of Motor Pole
 FU2-32: Rated Motor Slip
 FU2-33: Rated Motor Current
 FU2-34: No Load Motor Current
 FU2-36: Motor Efficiency FU2-37: Load Inertia

If you do not set these values, inverter will use its default values.

[Stator Resistance], FU2-43 [Rotor Resistance], and FU2-44 [Leakage Inductance].
If you know the motor parameters, set the values in the relevant codes for better control performance.

FU2 Pole 31	31	4
Factory Default:		4
This is used to display the motor speed. If you set this value to 2 , inverter will display 3600 rpm instead 1800 rpm at 60 Hz output frequency. (See motor nameplate)		
$\begin{array}{\|lr} \hline \text { FU2 } & \text { Rated-Slip } \\ 32 & 3.00 \mathrm{~Hz} \end{array}$	32	3.00
Factory Default: 3.00		3.00

This is used in 'Slip Compensation' control. If you set this value incorrectly, motor may stall during slip compensation control. (See motor nameplate)

| FU2
 33 | Rated-Curr |
| :--- | :--- | :--- |
| 3.6 A | |$\quad \mathbf{3 3} \quad 1 \mathbf{3 . 6}$

Factory Default: 3.6 A	$\mathbf{3 . 6}$
(This value is set according to the motor capacity set in FU2-30)	

This is very importance parameter that must be set correctly. This value is referenced in many other inverter parameters. (See motor nameplate)

FU2	
34	Noload-Curr

Factory Default: 1.8 A
1.8
(This value is set according to the motor capacity set in FU2-30)
This parameter is only displayed when 'Slip Compen' is selected in FU2-40 [Control Method].

This function is used to maintain constant motor speed.
To keep the motor speed constant, the output frequency varies within the limit of slip frequency set in FU2-32 according to the load current. For example, when the motor speed decreases below the reference speed (frequency) due to a heavy load, the inverter increases the output frequency higher than the reference frequency to increase the motor speed. The inverter increases or decreases the output by delta frequency shown below.

Output frequency $=$ Reference freq. + Delta freq.

| FU2
 35 | Motor | Volt |
| :--- | :---: | :---: | :---: |
| $\%$ | | |$\quad 35$

$\begin{array}{\|lr} \hline \text { FU2 Inertia rate } \\ 37 & 0 \end{array}$	37 0
Factory Default: 0	0
This parameter is used for Accel/Decel, optimum Acce For better control performa exact as possible.	orless control, minimum cel and speed search. this value must be set as

Set '0' for loads that has load inertia less than 10 times that of motor inertia.

Set '1' for loads that have load inertia about 10 times that of motor inertia.

FU2-38: Carrier Frequency

Code	LCD Display	Description	Setting	Setting range
FU2- 38	Carrier freq	Carrier Frequency	$5[\mathrm{kHz}]$	$1 \sim 15[\mathrm{kHz}]$

This parameter affects the audible sound of the motor, noise emission from the inverter, inverter termperature, and leakage current. If the ambient temperature where the inverter is installed is high or other equipment may be affected by potential inverter noise, set this value lower. If set above 10 kHz , use it by reducing $5 \%[1 \mathrm{kHz}]$ of the rated current. Setting Carrier freqeuncy set below $2.5[\mathrm{kHz}$ when the FU2-39 [Control mode selection] is set to Vector_SPD, Vector_TRQ could weaken the control performance.
Note) Max carrier frequency for inverters above $40 \mathrm{HP}(30 \mathrm{~kW})$ are indicated as below;

	200 V	400 V
$30 / 37 \mathrm{~kW}(40 / 50 \mathrm{HP})$	10 kHz	10 kHz
$45 / 55 \mathrm{~kW}(60 / 75 \mathrm{HP})$	8 kHz	8 kHz
$75 \mathrm{~kW}(100 \mathrm{HP})$	-	7 kHz

Max carrier frequency for DB integrated models
(11~22kW/15~30HP) is 10 kHz .

FU2-39: Control mode selection

FU2 Control mode 39	$\mathbf{3 9}$	$\mathbf{0}$
Vactory Default: $\quad \mathrm{V} / \mathrm{F}$		$\mathbf{0}$

- Selects the control mode of the inverter

FU2-40 setting	LCD Display	Description
0	V/F	V/F Control
1	Slip compen	Slip compensation
2	Sensorless_S	Sensorless vector control speed operation
3	Sensorless_T	Sensorless vector control torque operation
4	Vector_SPD	Vector control speed operation
5	Vector_TRQ	Vector control torque operation

Note: Setting Vector_SPD, Vector_TRQ is only valid when the inverter is equipped with SUB-B board and EXT-12 [F mode] is set to Feed-back. Vector control comprises of Vector_SPD, Vector_TRQ with Sensorless_S and Sensorless_T.

- V/F control:

This parameter controls the voltage/frequency ratio constant. It is recommended to use the torque boost function when a greater starting torque is required. Related function: FU1-26~28 [Torque boost]

- Slip compensation:

This function is used to maintain constant motor speed. To keep the motor speed constant, the output frequency varies within the limit of slip frequency set in FU2-32 according to the load current. For example, when the motor speed decreases below the reference speed (frequency) due to a heavy load, the inverter increases the output frequency higher than the reference frequency to increase the motor speed. The inverter increases or decreases the output by delta frequency shown below.

Delta freq = Rated slip * (Output current - Motor No load current) / rated current - Motor No load current)
Output freq $=$ Reference freq + Delta freq
Note: Motor parameters must be set correctly for optimal performance of control.
FU2-32~36 [Motor related parameters] is automatically determined by FU2-30 [Rated Motor selection]. Most suitable motor capacity corresponding inverter capacity is set as factory setting, but the following setting value can be adjusted if necessary.

Related parameter: FU2-30~37 [Motor related parameters]

Code	LCD Display	Description
FU2-30	Motor select	Select motor capacity
FU2-32	Rated-Slip	Motor rated slip (Hz)
FU2-33	Rated-Curr	Motor rated current (rms)
FU2-34	Noload-Curr	Motor no load current (rms)
FU2-36	Efficiency	Motor efficiency (\%)
FU2-37	Inertia rate	Motor inertia rate

- Sensorless_S (Sensorless vector speed control) Vector_SPD (Vector control speed) operation:
Use it when 1) high starting torque needed at low speed

2) load fluctuation is high 3) rapid response needed. To activate this function, set FU2-30~37 and FU2-39 properly.
If not using LG 220V/440V Class motor: Set Yes in FU240 [Auto tuning] first.
Vector SPD control is Only valid when Sub-B board is mounted (Speed-detecting Encoder installed to the motor).

Related Functions:	FU2-30~37 [Motor related parameters]
	FU2-41~44 [Motor constant]
	FU2-45~46 [P/I gain for Sensorless]
	EXT-25~26 [P/I gain for Vector_SPD],
	EXT-27~28 [Torque limit for Vector_SPD]

Conditions for Sensorless Vector Control

Conditions for sensorless control are as follows. If one of the following conditions is not satisfied, the inverter may malfunction with insufficient torque, irregular rotation, or excessive motor noise. It is recommended to use V/F control.
$\square \quad$ Use a motor capacity that is equal to or one horsepower lower than the inverter capacity.
$\square \quad$ Two different kinds of motor parameters can be set for one inverter, but use only one motor parameter in Sensorless control mode.
\square If the motor in use is not LG $220 \mathrm{~V} / 440 \mathrm{~V}$ Class motor or using $220 \mathrm{~V} / 380 \mathrm{~V}$ dual use motor, utilize the auto tuning feature in FU2-40 [Auto tuning] before starting.
$\square \quad$ Set appropriate values for the electronic thermal function, the overload limit function and the stall prevention. The set values should exceed 150% of the rated motor current.
\square When DRV-04 [Frequency Mode] is set to "V1", "I", or "V1+l", eliminate any potential noise influence with the frequency reference.
$\square \quad$ The number of the motor pole should be 2 pole, 4 pole, or 6 pole.
\square The distance between the inverter and the motor should not exceed 100m (328 ft).

Precautions When Using Sensorless Vector Control

\square Forced-cooling should be used for the motor when the average operating speed is under 20 Hz and more than 100% load is used constantly.
\square The motor may rotate 0.5% faster than the maximum speed if the motor temperature does not reach normal operating temperature.
\square Installing the DB (Dynamic Brake) braking unit option can improve the performance during regeneration for systems with frequent acceleration and deceleration operations.
$\square \quad$ Utilize the auto-tuning feature when the motor reaches normal temperature (average temperature where the motor normally operates).
$\square \quad$ Output torque may be reduced when an output filter option is used between the inverter and the motor.
\square If the speed is unstable when the FU2-38 [Carrier Frequency Selection] is set to a value more than 10 kHz , change the setting to $5 \sim 10 \mathrm{kHz}$.
\square Over current fault can occur if the FU2-41 [Stator Resistance (Rs)] is set to a value more than twice the auto tuned value
\square Max setting range is 300 Hz .

Detail Tuning Method for Sensorless Vector Control

\square Adjust the FU2-34 [No Load Motor Current (RMS)] value larger or smaller by 5% units if the current is larger or smaller than that of V/F control with small load.
\square Adjust the FU2-32 [Rated Motor Slip] value larger or smaller by 5% units if the speed is faster or slower than that of V/F control with small load.

- Sensorless_T(Sensorless Vector Torque) Operation:
All settings are the same as Sensorless_S except using torque reference for torque control.
- Vector_TRQ (Vector control torque) Operation: All settings are the same as Vector_SPD except using torque reference for torque control.

FU2-40 ~ 44 [Auto tuning]

$\begin{array}{\|ll} \hline \text { FU2 Auto tuning } \\ 40 & -- \text { No }--- \end{array}$	40	0
Factory Default: NO		0
FU2 Rs $*$ 41 0.171 ohm	41	0.171
Factory Default: 0.17	ohm	0.171
$\begin{array}{\|lr} \hline \text { FU2 } & \text { Lsigma * } \\ 42 & 3.34 \mathrm{mH} \end{array}$	42	3.34

Note: * These values are automatically entered according to the FU2-30 [Rated motor selection]. The above values are displayed when FU2-30 is set to 5 (7.5 kW).

- The auto tuning function automatically measures the motor parameters needed for control selected in FU2-39[Control mode selection] such as stator resistance, rotor resistance, leakage inductance, no-load current and Encoder feedback frequency. The motor does not rotate during auto tuning so there is no need to separate the motor from the system.
- Encoder operating status can be checked.
- The rated current, voltage, efficiency and slip described in the motor nameplate should be entered before performing auto tuning. If efficiency is not indicated on the nameplate, use the preset value.
- All or selected parameters can be tuned in Autotuning mode.
[Motor rotation mode when set to All, Enc Test, Tr]

1. With PG Option installed: if $\mathrm{FU} 2-40$ is set to All, Stator resistance (Rs), Leakage inductance (Lsigma), Stator inductance (Ls), No-load current (Noload-Curr), Speed Encoder status and Rotor constants (Tr) are calculated.
2. Without PG Option installed: if FU2-40 is set to All, Stator resistance (Rs), Leakage inductance (Lsigma), Stator inductance (Ls) and No-load current (Noload-Curr) are calculated.
3. If $\mathrm{FU} 2-40$ is set to $\mathrm{Rs}+$ Lsigma, Stator resistance (Rs), Leakage inductance (Lsigma) are calculated.
4. Either PG Status or Rotor constant (Tr) can be checked with PG option card installed.
[Motor non-rotation mode when set to Rs + Lsigma]
5. Stator resistance (Rs), Leakage inductance (Lsigma) can be calculated by setting FU2-40 to Rs + Lsigma.
6. User should set Stator resistance (Rs), No-load current (Noload-Curr) and Rotor constants (Tr).
7. To automatically calculate the Stator inductance (Ls), No-load current (Noload-Curr) and Rotor constants (Tr), set the motor rotation mode and FU2-40 to All.

[With PG option card installed]

1. Set EXT-12 to Feed-back.
2. Set EXT-15 to $(A+B)$.
3. If FU2-40 is set to All, Stator resistance (Rs), Leakage inductance (Lsigma), Stator inductance (Ls), No-load current (Noload-Curr), and Rotor constants (Tr) are calculated.
4. Stator resistance (Rs), Leakage inductance (Lsigma) can be calculated by setting FU2-40 to Rs + Lsigma.
5. User should set the Stator inductance (Ls), No-load current (Noload-Curr) and Rotor constants (Tr) if FU2-40 is set to Rs + Lsigma.

[Without PG option card installed]

1. If FU2-40 is set to All, Stator resistance (Rs), Leakage inductance (Lsigma), Stator inductance (Ls), No-load current (Noload-Curr) are calculated.
2. If FU2-40 is set to Rs + Lsigma, Stator resistance (Rs), Leakage inductance (Lsigma) is calculated.
3. User should set the Stator inductance (Ls), No-load current (Noload-Curr).

FU2-40	LCD display	Description
0	No	Auto-tuning disabled
1	All	Auto-tuning all parameters
2	Rs + Lsigma	Stator resistance (Rs) and Leakage inductance (Lsigma) Auto-tuning
3	Enc Test	PG status check
4	Tr	Rotor constant(Tr) calculation

Note 1: Ls and Noload-Curr are only valid during Motor Rotation mode.
Note 2: The motor constants values change with temperature change, so auto tuning is to be conducted after the temperature of the motor is stabilized.
Note 3: The auto-tuning result could be different unless LG motor is used.
Note 4: The actual motor parameters (Rs, Rr, Lsigma, Tr) can be used or set by user.

Code	LCD display	Name	Description
FU2- 34	Noload-Curr	No Load Motor Current (RMS)	Setting and display the No Load Motor Current (RMS)
FU2- 40	Auto tuning	Auto Tuning	Auto-tuning enable
FU2-	Rs	Stator resistance	Setting and display the Stator resistance Rs
FU2- 42	Lsigma	Leakage inductance	Seting and display the Lsigma
FU2- 43	Ls	Stator inductance	Setting and display the Stator inductance Ls
FU2- 44	Tr	Rotor constant	Setting and display the Rotor constant Tr.

[Keypad error display after Encoder test]

Code	Display		Description
	LED	7-Segment	
FU2-	Enc Err	T6	Dis Encoder wiring error occurs
	Enc Rev	T7	Displayed when Encoder wiring is connected reversly.

[Motor parameter display corresponding to inverter capacity]

Class	inverter capacity	Motor parameter			
		Rs	Lsigma	Ls	Tr
200 V	$\begin{aligned} & 0.8[\mathrm{~kW}] \sim \\ & 5.5[\mathrm{~kW}] \end{aligned}$	$\begin{gathered} \text { X.XXX } \\ \text { ohm } \end{gathered}$	$\begin{gathered} \mathrm{X.XX} \\ \mathrm{mH} \end{gathered}$	$\begin{gathered} X . X X \\ \mathrm{mH} \end{gathered}$	$\begin{gathered} \mathrm{XXX} \\ \mathrm{~ms} \end{gathered}$
	$7.5[\mathrm{~kW}] \sim 55 \mathrm{~kW}]$	$\begin{gathered} \mathrm{X} . \mathrm{X} \\ \text { mohm } \end{gathered}$	$\begin{gathered} \mathrm{X} . \mathrm{XXX} \\ \mathrm{mH} \end{gathered}$	$\begin{gathered} \mathrm{X} . \mathrm{XX} \\ \mathrm{mH} \end{gathered}$	$\begin{gathered} \mathrm{XXX} \\ \mathrm{~ms} \end{gathered}$
400 V	$\begin{aligned} & 0.8[\mathrm{~kW}] \sim \\ & 1.5[\mathrm{~kW}] \end{aligned}$	$\begin{aligned} & \text { X.XX } \\ & \text { ohm } \end{aligned}$	X. XmH	X.mH	$\begin{gathered} \mathrm{XXX} \\ \mathrm{~ms} \end{gathered}$
	2.2[kW] ~ $15[\mathrm{~kW}$]	$\begin{gathered} \mathrm{X} . \mathrm{XXX} \\ \text { ohm } \end{gathered}$	$\begin{gathered} \mathrm{XXX} \\ \mathrm{mH} \end{gathered}$	X. XmH	XXX
	$\begin{gathered} 18.5[\mathrm{~kW}] \sim \\ 75[\mathrm{~kW}] \end{gathered}$	$\begin{gathered} \mathrm{X} . \mathrm{X} \\ \text { mohm } \end{gathered}$	$\underset{\mathrm{mH}}{\mathrm{X} . \mathrm{XXX}}$	X.XX	$\begin{gathered} \mathrm{XXX} \\ \mathrm{~ms} \end{gathered}$

Note: For 7 -segment Keypad, parameter unit is not displayed.

Related Functions: FU2-30~37 [Motor related parameters] FU2-39 [Control mode selection] EXT-01 [Sub Board Type Display] EXT-14 [Encoder Feedback Frequency] EXT-15 [Pulse Input Signal Selection]

FU2-45: P Gain for Sensorless Control FU2-46: I Gain for Sensorless Control

[Keypad display during Auto-tuning of motor parameters]

Code	Display		Description
	LED	7-Seg.	
$\begin{gathered} \text { FU2- } \\ 40 \end{gathered}$	Rs Tuning	T1	Displayed during Stator resistance (Rs) Auto-tuning
	Lsigma Tuning	T2	Displayed during Leakage inductance (Lsigma) autotuning.
	Ls Tuning	T3	Displayed during Stator inductance (Ls) and No-load current auto-tuning.
	ENC Test	T4	Displayed during Encoder autotuning.
	Tr Tuning	T5	Displayed during Rotor filter time constant (Tr) auto-tuning

$\begin{aligned} & \text { FU2 SL P- } \\ & 45 \end{aligned}$	$\begin{aligned} & \text { yain } \\ & 1000 \end{aligned}$	45	1000
Factory Default:	1000		1000

SL P-gain is the proportional gain of speed controller. If this value is set high, you can get fast speed response characteristic. However, if this value is set too high, the steady state characteristics may become unstable.

| FU2 SL
 46 | $\mathbf{4 6}$ I-gain |
| :--- | :--- | :--- |
| Factory Default: 100 | |
| SL I-gain is the integral gain of speed controller. If this | |
| value is set low, you can get better transient response | |
| characteristic and steady state characteristic. However, | |
| if this value is set too low, there may be an overshoot in | |
| speed control. | |

Note: The response time of a system is affected by the load inertia. For better control performance, set the FU237 [Load Inertia] correctly.

Related Functions: FU2-30 ~ FU2-37 [Motor Parameters] FU2-40 [Control Method]

FU2-47: PID Operation Selection

FU2 Proc PI mode 47 --- No ---	$\mathbf{4 7}$	$\mathbf{0}$
Factory Default:	No	$\mathbf{0}$

This code selects the PID control.
For HVAC or Pump applications, the PID control can be used to adjust the actual output by comparing a feedback with a 'Set-point' given to the inverter. This 'Set-point' can be in the form of Speed, Temperature, Pressure, Flow level, etc. The 'Set-point' and the feedback signals are provided externally to the inverter analog input terminals $\mathrm{V} 1, \mathrm{~V} 2$ or I. The inverter compares the signals in calculating 'total-error' which is reflected in the inverter output.
Please see FU2-50 to FU2-54 for more detail.

Note: PID control can be bypassed to manual operation temporarily by defining one of the multifunction input terminals (P1~P3) to "Open-loop". The inverter will change to manual operation from PID control when this terminal is ON , and change back to PID control when this terminal is OFF.

Related Functions: DRV-04 [Frequency Mode] I/O-01 to I/O-10 [Analog Signal Setting] I/0-12 to I/O-14 [Multi-Function Input] EXT-15 to EXT-21 [Pulse Input Setting] FU2-50 to FU2-54 [PID Feedback]

FU2-48: PID F Gain

FU2-49: PID Reference Mode Selection
FU2-50: PID Output Direction Selection

FU2 PID 48	F-Gain 0.0
Factory Default:	0.0%

When it is set to 100%, the responsiveness (\%) of output F gain value from controller reference value is 100%. Used when fast response is needed.
Caution) Control System output may become unstable if this value is set too high.

$\begin{aligned} & \text { FU2 Aux Re } \\ & 49 \end{aligned}$	Mode None	49	0
Factory Default:	None		0

This code selects reference input for PID control.

FU2 PID Out Dir $50 \quad$ Target Freq.
$\mathbf{5 0}$
Factory Default: \quad Target Freq.

This code selects the direction of output value of PID controller. The output value is added to Target frequency.

FU2-51: PID Feedback Signal Selection
 FU2-52: P Gain for PID Control
 FU2-53: I Time for PID Control
 FU2-54: D Time for PID Control
 FU2-55: High Limit Frequency for PID Control
 FU2-56: Low Limit Frequency for PID Control

FU2 PID 51\quad F /B		
51	$\mathbf{5 1}$	$\mathbf{0}$
Factory Default: \quad I	$\mathbf{0}$	

Select the feedback signal for PID control. This can be set one of ' '' ($4-20 \mathrm{~mA}$), 'V1', 'V2' according to the signal (current or voltage) and the terminal (V1 ($0-10 \mathrm{~V}$) or V2 (Sub-B board)). Refer to I/O 6-10 for I, I/O1-5 for V1 and EXT-5-10 [V2 Analog Ref. Freq setting] for V2.

$\left\lvert\, \begin{array}{lr} \text { FU2 } & \text { PID } \\ 52 & 1 \end{array}\right.$		52	1.0
Factory Default:	1.0		1.0

Set the proportional gain for PID control. When P-Gain is set at 100% and I-Time at 0.0 second, it means the PID controller output is 100% for 100% error value. P-Gain is set to 50% and I - Time to 0.0 sec , PID controller output becomes 50% for 100% error value.

$\begin{array}{\|lr\|} \hline \text { FU2 } & \text { PID } \\ 53 & 1 \end{array}$	$\begin{gathered} \text { I-time } \\ 10.0 \mathrm{sec} \end{gathered}$	53	10.0
Factory Default:	t: 10.0		10.0

Set the integral gain for PID control. This is the time the PID controller takes to output 100\% for 100% error value.

FU2 PID 54	D-time 0.0	$\mathbf{5 4}$	$\mathbf{0 . 0}$

Factory Default:	0.0 ms	$\mathbf{0 . 0}$

Set the differential gain for PID control.

This is the frequency upper limit at which the output frequency is limited during PID control.

FU2 PID limit-L 56 $\mathbf{5 6}$ $\mathbf{0 . 0 0}$ Factory Default: $\quad 0.00 \mathrm{~Hz}$ \quad

This is the frequency lower limit at which the output frequency is limited during PID control.

FU2-57: PID Output Inversion
 FU2-58: PID Output Scale
 FU2-59: PID P2 Gain
 FU2-60: P Gain Scale

FU2 PID	Out Inv.		
57	---	No	---

Factory Default: No \quad O

This code is used to invert PID controller output.

$\begin{array}{ll} \hline \text { FU2 } & \text { PID } \\ 58 & \text { Ou } \end{array}$	cale \%	58	100.0
Factory Default:	100.0		100.0

This code sets the scale of PID controller output.

FU2 PID P2-gain 59 100.0 $\%$	$\mathbf{5 9}$	$\mathbf{1 0 0 . 0}$	
Factory Default:	100.0	$\%$	$\mathbf{1 0 0 . 0}$

This code sets the second P-Gain for PID control.

This code sets the scale of P-Gain and P2-Gain. (FU252, FU2-59)

- PID output value can be set to ' 0 ' by setting a multifunction input terminal (P1 ~ P6) to 'Open loop' in //O-12 ~ I/O-14 or EXT-02 ~ EXT-04.
- The accumulated value by I-Gain can be set to '0' by setting a multi-function input terminal (P1 ~ P6) to 'iTerm Clear' in I/O-12 ~ I/O-14 or EXT-02 ~ EXT-04.
- The second P-Gain can be selected for PID controller by setting a multi-function input (//0-12 ~ I/O14 or EXT-02 ~ EXT-04) to 'Open-loop'.
[P Control] This is to compensate the error of a system proportionally. This is used to make the controller response fast for an error. When P control is used alone, the system is easily affected by an external disturbance during steady state.
[I Control] This is to compensate the error of a system integrally. This is used to compensate the steady state error by accumulating them. Using this control alone makes the system unstable.
[PI control] This control is stable in many systems. If "D control" is added, it becomes the $3{ }^{\text {rd }}$ order system. In some systems this may lead to system instability.
[D Control] Since the D control uses the variation ratio of error, it has the merit of controlling the error before the error is too large. The D control requires a large control quantity at start, but has the tendency of increasing the stability of the system. This control does not affect the steady state error directly, but increases the system gain because it has an attenuation effect on the system. As a result, the differential control component has an effect on decreasing the steady state error. Since the D control operates on the error signal, it cannot be used alone. Always use it with the P control or PI control.

Related Functions: DRV-04 [Frequency Mode] FU2-40 [Control Method] 1/0-01 ~//O-10 [Analog Signal Scaling] EXT-15 ~ EXT-21 [Pulse Input Signals]

PID Control Block Diagram

Process PID Control Setting

Deviation

PID Wiring Example

AC220V $50 / 60 \mathrm{~Hz}$

FU2-69: Accel/Decel Change Frequency

FU2 Acc $/ \mathrm{Dec}$ 69 ch 0.00 Hz	$\mathbf{6 9}$
Factory Default: $\quad 0.00 \mathrm{~Hz}$	$\mathbf{0}$

This function is used to change Accel/Decel ramp at a certain frequency. This is useful in textile machine application.

Note: If the multi-function input terminal (//O-12 ~//0-14) is set to 'XCEL-L', XCEL-M', or XCEL-H', The MultiAccel/Decel Time (//O-25 ~//O-38) has the priority.

[Accel/Decel Change Operation]

FU2-70: Reference Frequency for Accel/Decel

This is the reference frequency for acceleration and deceleration. If a decided Accel/Decel time from a frequency to a target frequency is required, set this value to 'Delta freq'.

Setting Range		Description	
LCD	7-Seg		
Max freq	$\mathbf{0}$	The Accel/Decel time is the time that takes to reach the maximum frequency from 0 Hz.	
Delta freq	$\mathbf{1}$	The Accel/Decel time is the time that takes to reach a target frequency from a frequency (currently operating frequency).	

Related Functions: DRV-01, DRV-02 [Accel/Decel Time] FU2-71 [Accel/Decel Time Scale] I/O-25 ~//O-38 [1st $\sim 7^{\text {th }}$ Accel/Decel Time]

FU2-71: Accel/Decel Time Scale

| FU2
 71 Time scale
 0.1
 sec $\mathbf{7 1}$ | $\mathbf{1}$ | |
| :--- | :---: | :---: | :---: |
| Factory Default: | 0.1 sec | $\mathbf{0 . 1}$ |

This is used to change the time scale.

Related Functions:	DRV-01, DRV-02 [Accel/Decel Time]
	FU2-70 [Reference Freq. for Accel/Decel]
	I/O-25 $\sim 1 / 0-38\left[1\right.$ st $\sim 7^{\text {th }}$ Accel/Decel Time]

Setting Range		Description
LCD	7-Seg	The Accel/Decel time is changed by 0.01 second. The maximum setting range is 600 seconds.
0.01 sec	$\mathbf{0}$	$\mathbf{1}$
0.1 sec	The Accel/Decel time is changed by 0.1 second. The maximum setting range is 6000 seconds.	
1 sec	$\mathbf{2}$	The Accel/Decel time is changed by 1 second. The maximum setting range is 60000 seconds.

FU2-72: Power On Display

```FU2 PowerOn disp 72 0```	72 0
Factory Default: 0	0

This code selects the parameter to be displayed first on keypad (DRV-00) when the power is turned on.

Setting   Range	Description
0	DRV-00 [Command Frequency]
1	DRV-01 [Acceleration Time]
2	DRV-02 [Deceleration Time]
3	DRV-03 [Drive Mode]
4	DRV-04 [Frequency Mode]
5	DRV-05 [Step Frequency 1]
6	DRV-06 [Step Frequency 2]
7	DRV-07 [Step Frequency 3]
8	DRV-08 [Output Current]
9	DRV-09 [Motor Speed]
10	DRV-10 [DC link Voltage
11	DRV-11 [User Display selected in FU2-73]
12	DRV-12 [Fault Display]

## FU2-73: User display selection

Related Function: DRV-11 [User display selection]
Select the display as shown below in FU2-73 [User display selection].

Setting	FU2-73	Name	Description
0	Voltage	Output   voltage	Display output voltage of   the inverter (Factory   setting)
1	Watt	Output   power	Display output power of the   inverter

Note: The displayed vlaue of "Watt" is approximate value.

## FU2-74: Gain for Motor Speed Display

| FU2 $\\ ) RPM & factor \\ 74 & \(100 \%$ |
| :--- | ---: |



Factory Default: 100 \% $\mathbf{1 0 0}$
This code is used to change the motor speed display to rotating speed ( $\mathrm{r} / \mathrm{min}$ ) or mechanical speed ( $\mathrm{m} / \mathrm{min}$ ). The display is calculated by following equation.

Rotating speed $=120 \times F / P$, where $F=$ Output frequency, $P=$ motor pole number

Mechanical speed $=$ Rotating speed $\times$ Motor RPM Display Gain

Related Functions: DRV-00 [Output Frequency] DRV-09 [Motor Speed] FU2-31 [Number of Motor Pole]

FU2-75: DB (Dynamic Braking) Resistor Mode Selection

FU2 DB mode   75 Int.   DB-R	$\mathbf{7 5}$	$\mathbf{1}$
Factory Default: $\quad$ Int.	DB-R	$\mathbf{1}$

This code is used to protect the DB resistor from over heating.

Setting Range		Description		
LCD	7-Seg			
None	0	$\begin{array}{l}\text { This is selected when there is no resistor } \\ \text { connected. At this time, inverter does not } \\ \text { generate DB turn on signal. }\end{array}$		
Int. DB-R	1	$\begin{array}{l}\text { This is selected when using the internal } \\ \text { DB resistor. This must be selected for } \\ 1 \sim 5 ~ H P ~ i n v e r t e r s ~ b e c a u s e ~ t h e y ~ h a v e ~\end{array}$		
internal DB resistor as a default.				
Enable Duty (\%): 2~3\%			$\}$	Continuous Turn On Time: 5 seconds
:---	$	$	Exis is selected when using an external	
:---				
DB resistor. This must be selected for				
$1 \sim 30$ HP inverters. This must be selected				
for 1~5 HP inverters in case of using an				
external DB resistor.				
Enable Duty (\%): 0~30\%				
Continuous Turn On Time: 15 seconds				

- The inverter turns the DB turn on signal OFF when the Continuous Turn On Time expires during dynamic braking, and an over voltage fault could occur. When this happens, increase the deceleration time or install an external high-duty DB resistor.
- Install an exterior high-duty DB resistor when the load accelerates and decelerates frequently. Set the FU2-75 [DB Resistor Mode selection] to 'Ext. DB-R', and set the FU2-76 [Duty of DB Resistor]. Refer to Basic Wiring in Chapter 1. Installation or Power Terminal Wiring.
- This does not apply to $40 \sim 100 \mathrm{HP}$ inverters. They need the Optional DB unit to use DB resistor.


## FU2-76: Duty of DB (Dynamic Braking) Resistor

| FU2 DB \%ED <br> 76 10 $\%$ | $\mathbf{7 6}$ | $\mathbf{1 0}$ |
| :--- | :--- | :--- | :--- |
| Factory Default: | $10 \%$ | $\mathbf{1 0}$ |

This must be set when using an external DB resistor. The duty is calculated by $\%$ ED=Decel time * 100 / (Accel time + Steady speed time + Decel time + Stop status time)'.

## FU2-79: Software Version

FU2 $2 /$ W Version	
79	Ver X.X

Factory Default: Ver. X.X K.X
Displays the software version. This will vary depending on software version integrated.

## FU2-81 ~ FU2-90: $2^{\text {nd }}$ Motor Related Functions

These functions are displayed only when one of the multifunction inputs is set at '2nd func' in $1 / 0-12$ to $I / O-14$. When using two motors with an inverter by exchanging them, different values can be set for the $2^{\text {nd }}$ motor by using the multifunction input terminal.
Following table is the $2^{\text {nd }}$ functions corresponding to the $1^{\text {st }}$ functions.

2nd Functions	1st Functions	Description
FU2-81   [2nd Acc time]	DRV-01 [Acc. time]	Acceleration time
FU2-82   [2nd Dec time]	DRV-02   [Dec. time]	Deceleration time
FU2-83   [2nd BaseFreq]	FU1-21 [Base freq]	Base Frequency
$\begin{aligned} & \text { FU2-84 } \\ & {[2 n d \mathrm{~V} / \mathrm{F}]} \\ & \hline \end{aligned}$	FU1-29 [V/F Pattern]	Volts/Hz mode
$\begin{aligned} & \text { FU2-85 } \\ & \text { [2nd F-boost] } \end{aligned}$	FU1-27   [Fwd Boost]	Forward torque boost
$\begin{aligned} & \text { FU2-86 } \\ & \text { [2nd R-boost] } \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { FU1-28 } \\ \text { [Rev Boost] } \end{array} \\ & \hline \end{aligned}$	Reverse torque boost
$\begin{aligned} & \text { FU2-87 } \\ & \text { [2nd Stall] } \end{aligned}$	FU1-60 [Stall Level]	Stall prevention level
$\begin{aligned} & \text { FU2-88 } \\ & \text { [2nd ETH 1min] } \end{aligned}$	$\begin{aligned} & \hline \text { FU1-51 } \\ & \text { [ETH 1 min] } \\ & \hline \end{aligned}$	ETH level for 1 minute
$\begin{aligned} & \text { FU2-88 } \\ & \text { [2nd ETH cont] } \end{aligned}$	FU1-52 [ETH cont]	ETH level for continuous
$\begin{aligned} & \text { FU2-90 } \\ & \text { [2nd R-Curr] } \end{aligned}$	$\begin{aligned} & \text { FU2-33 } \\ & \text { [Rated-Curr] } \end{aligned}$	Motor rated current

- The 1 st functions are applied if the multifunction terminal is not defined to '2nd Func' or ifit is not ON . The $2^{\text {nd }}$ function parameters are applied when the multifunction input terminal set to '2nd Func' is ON. Parameters not listed on the table above are applied to the $2^{\text {nd }}$ motor as to the ${ }^{\text {st }}$ motor.
- Exchange the motor connection from the $1^{\text {st }}$ motor to the $2^{\text {nd }}$ motor or the opposite when the motor is stopped. Over voltage or over current fault can occur when the motor connection is exchanged during operation.
- The 'User V/F' function of FU1-29 [V/F Pattern] is used for both the 1st motor and the 2nd motor.


## FU2-91: Parameter Read FU2-92: Parameter Write

```
\begin{tabular}{|ll|}
\hline FU2 Para. read \\
\(91 \quad---\quad\) No --- \\
\hline
\end{tabular}
```

Factory Default: No


Factory Default: No
This is useful for programming multiple inverters to have same parameter settings. The LCD keypad can read (upload) the parameter settings from the inverter memory and can write (download) them to other inverters. This function is only available with LCD keypad.


## FU2-93: Parameter Initialize

FU2 Para. init   $93---$ No ---	$\mathbf{9 3}$
Factory Default: $\quad$ No	$\mathbf{0}$

This is used to initialize parameters back to the factory default values. Each parameter group can be initialized separately.

Setting Range		Description	
LCD	7-Seg		
No	0	Displayed after initializing   parameters.	
All Groups	1	All parameter groups are initialized   to factary default value.	
DRV	2	Only Drive group is initialized.	
FU1	3	Only Function 1 group is initialized.	
FU2	4	Only Function 2 group is initialized.	
IO	5	Only Input/Output group is initiaized.	
EXT	6	Only External group is initialized.	
COM	7	Only Communication group is   initialized.	
APP	8	Only Application group is initialized.	

Note: FU1-30 ~ FU1-37 [Motor Parameters] must be set first after initializing parameters.

## FU2-94: Parameter Lock

| FU2 Para. lock <br> 94 |
| :--- | :--- |
| Factory Default: 0 | | This function is used to lock the parameters from being |
| :--- |
| changed. When the parameters are locked, the display |
| arrow changes from solid to dashed line. |
| The lock and unlock code is ' 12 '. |

## FU2-99: Return Code (7-Segment Keypad)

99	1
Factory Default:	1

This code is used to exit a group when using a 7 segment keypad. After pressing PROG/ENT key, set the value to '1' and press the PROG/ENT key again to exit.

Related Functions: FU1-99 [Return Code] I/O-99 [Return Code] EXT-99 [Return Code] COM-99 [Return Code]

### 6.4 Input/Output Group [/O]

## 1/O-00: Jump to Desired Code \#



Factory Default: 1
Jumping directly to any parameter code can be accomplished by entering the desired code number. This code is available only with LCD keypad.

## I/O-01 ~ I/O-05: Analog Voltage Input (V1) Signal Adjustment

This is used to adjust the analog voltage input signal when the frequency is referenced by the control terminal 'V1'. This function is applied when DRV-04 is set to 'V1' or ' $\mathrm{V} 1+1$ '. Reference frequency versus Analog voltage input curve can be made by four parameters of $/ / 0-02 \sim$ 1/0-04.

$\begin{aligned} & \mathrm{I} / \mathrm{O} \text { V1 fi } \\ & 01 \end{aligned}$	$\begin{aligned} & \text { ter } \\ & 10 \mathrm{~ms} \end{aligned}$	01	10
Factory Default:	10 ms		10

This is the filtering time constant for V1 signal input. Increase this value if the V 1 signal is affected by noise causing unstable operation of the inverter. Increasing this value makes response time slower.

| I/ V1 <br> 02 volt x1 <br> 0.00 $\mathbf{0 2}$ | $\mathbf{0 . 0 0}$ |
| :--- | :---: | :---: |
| Factory Default: $\quad 0.00 \mathrm{~V}$ | $\mathbf{0 . 0 0}$ |

This is the minimum voltage of the V 1 input at which inverter outputs minimum frequency.


This is the inverter output minimum frequency when there is the minimum voltage (//O-02) on the V 1 terminal. In torque mode, the display is changed to [\%].


Factory Default: $10.00 \mathrm{~V} \quad \mathbf{1 0 . 0 0}$
This is the maximum voltage of the V 1 input at which inverter outputs maximum frequency.

$\begin{array}{lll} \hline \text { I/O V1 } & \text { f } \\ 05 & & 6 \end{array}$	60.00
Factory Default:	60.00

This is the inverter output maximum frequency when there is the maximum voltage $(/ / 0-03)$ on the V 1 terminal. In torque mode, the display is changed to [\%].
Setting FU2-39 [Control mode select] to Vector_Torque or Sensorless_T, the setting value is changed to Torque value as below.

Code	Factory Default	Setting Range
I/O-02	$0[\mathrm{~V}]$	$0 \sim 10[\mathrm{~V}]$
$\mathrm{I} / 0-03$	$0[\%]$	$0 \sim 150[\%]$
$\mathrm{I} / \mathrm{O}-04$	$10[\mathrm{~V}]$	$0 \sim 10[\mathrm{~V}]$
$\mathrm{I} / 0-05$	$100[\%]$	$0 \sim 150[\%]$

Reference Frequency

[Reference Frequency vs. Analog Voltage Input, V1 (0 to 10V)]

> | Related Functions: | DRV-04 [Frequency Mode] |
| :--- | :--- |
|  | FU1-20 [Maximum Frequency] |

## I/O-06 ~ I/O-10: Analog Current Input (I) Signal Adjustment

This is used to adjust the analog current input signal when the terminal ' 1 ' references the frequency. This function is applied when DRV-04 is set to ' V 1 ' or $\mathrm{V} 1+\mathrm{l}$ '. Reference frequency versus Analog current input curve can be made by four parameters of $1 / 0-07 \sim / / 0-10$.

I/O I filter   06	I   10 ms	$\mathbf{0 6}$

This is the filtering time constant for 'l' signal input. If the ' 1 ' signal is affected by noise causing unstable operation of the inverter, increase this value. Increasing this value makes response time slower.


This is the minimum current of the 'l' input at which inverter outputs minimum frequency.

$I / O \downarrow$   08	freq y1   0.00 Hz	$\mathbf{0 8}$	$\mathbf{0 . 0 0}$


Factory Default:	0.00 Hz	$\mathbf{0 . 0 0}$

This is the inverter output minimum frequency when there is minimum current $(1 / 0-07)$ on the 'I' terminal. In torque mode, the display is changed to [\%].

I/O   09	I curr   20.00 mA	$\mathbf{0 9}$	$\mathbf{2 0 . 0 0}$
Factory Default:	20.00 mA	$\mathbf{2 0 . 0 0}$	

This is the maximum current of the 'l' input at which inverter outputs maximum frequency.

| $\mathrm{I} / \mathrm{O}$ | I | freq $\mathrm{y}^{2}$ |
| :--- | :--- | :--- | :--- |
| 10 |  | 60.00 Hz |$\quad \mathbf{1 0} \quad \mathbf{6 0 . 0 0}$

Factory Default: $\quad 60.00 \mathrm{~Hz} \quad \mathbf{6 0 . 0 0}$
This is the inverter output maximum frequency when there is the maximum current $(1 / 0-09)$ on the ' 1 ' terminal. In torque mode, the display is changed to [\%].
Setting FU2-39 [Control mode select] to Vector_Torque or Sensorless_T, the setting value is changed to Torque value as below;

Code	Default	Setting	Code	Default	Setting
$1 / 0-07$	$4[\mathrm{~mA}]$	$0 \sim 20[\mathrm{~mA}]$	$1 / 0-09$	$20[\mathrm{~mA}]$	$0 \sim 20[\mathrm{~mA}]$
$1 / 0-08$	$0[\%]$	$0 \sim 150[\%]$	$1 / 0-10$	$100[\%]$	$0 \sim 150[\%]$


[Reference Frequency vs. Analog Current Input, I (4 to 20mA)]
Related Functions: DRV-04 [Frequency Mode] FU1-20 [Maximum Frequency]

## I/O-11: Criteria for Analog Input Signal Loss

I/O Wire broken   None	$\mathbf{1 1}$	$\mathbf{0}$
Factory Default: $\quad$ None	$\mathbf{0}$	

This is to set the criteria for analog input signal loss when DRV-04 [Frequency Mode] is set to 'V1', 'I' or 'V1+1'. Following table shows the setting value.

Setting Range		Description
LCD	7-Seg	
None	0	Does not check the analog input signal.
half of x 1	1	The inverter determines that the frequency   reference is lost when the analog input   signal is less than half of the minimum   value (I/O-02 or I/O-07).
below x 1	2	The inverter determines that the frequency   reference is lost when the analog input   signal is less than the minimum value (I/O-   02 or I/O-07).

When the analog input signal is lost, inverter displays the following table.

Setting		Description
LCD	7-Seg	Loss of frequency reference from Option Board   (DPRAM time out)
LOP	PL	
LOR	RL	Loss of frequency reference from Option Board   (Communication fault)
LOV	VL	Loss of analog input signal, V1
LOI	IL	Loss of analog input signal, I
LOX	XL	Loss of frequency reference from Sub-Board, V2 or   ENC

Related Functions: //O-48 [Lost command] selects the operation after determining the loss of frequency reference.

The following table shows the selection in I/O-48.

Setting Range		Description	
LCD	7-Seg	Continuous operating after loss of   frequency reference.	
None	0	Inverter cuts off its output after   determining loss of frequency reference.	
FreeRun	1	Inverter stops byits Decel lagtern and   Decel time after determining loss of   frequency reference.	
Stop			

I/O-49 [Time out] sets the waiting time before determining the loss of reference signal. Inverter waits to determine the loss of a reference signal until times out.

Command frequency can be issued as Rpm when setting rpm in DRV-16 [Hz/Rpm Display] and as Torque reference when FU2-39 [Control Mode Select]. Torque reference sets as the percentage of Rated Torque Current.

Note: I/O-48 and I/O-49 also apply when DRV-04 is set to 'Keypad-1' or 'Keypad-2' for determining the loss of command frequency.

Related Functions: DRV-04 [Frequency Mode]
I/O-02 [V1 Input Minimum Voltage]
I/O-07 [I Input Minimum Current]
I/O-48 [Lost command]
I/O-49 [Time out]

## I/0-12~14, 93~97: Multi-function Input Terminal 'P1, P2, P3', ‘RST', ‘BX', 'JOG', ‘FX', 'RX' Define



I/O   14	P3 define   Speed-H	$\mathbf{1 4}$
Factory Default: $\quad$ Speed-H	$\mathbf{2}$	

Multi-function input terminals can be defined for many different applications. The following table shows the various definitions for them.
Note: From 40 HP and above inverter, only BX is settable In I/O-94.

Setting Range		Description
LCD	7-Seg	
Speed-L	0	Multi-step speed - Low
Speed-M	1	Multi-step speed - Mid
Speed-H	2	Multi-step speed - High
XCEL-L	3	Multi-accel/decel - Low
XCEL-M	4	Multi-accel/decel - Mid
XCEL-H	5	Multi-accel/decel - High
Dc-brake	6	DC injection braking during stop
2nd Func	7	Exchange to 2nd functions
Exchange	8	Exchange to commercial power line
-Reserved-	9	Reserved for future use
Up	10	Up drive
Down	11	Down drive
3-Wire	12	3 wire operation
Ext Trip-A	13	External trip A
Ext Trip-B	14	External trip B
iTerm Clear	15	Used for PID control
Open-loop	16	Exchange between PID mode and VIF mode
Main-drive	17	Exchange between Option and Inverter
Analog hold	18	Hold the analog input signal
XCEL stop	19	Disable accel and decel
P Gain2	20	Used for PID control
SEQ-L	21	Sequence operation - Low
SEQ-M	22	Sequence operation - Mid
SEQ-H	23	Sequence operation - High
Manual	24	Exchange between Sequence operation and Manual operation
Go step	25	Triggering Sequence operation (Auto-B)
Hold step	26	Hold last step (Auto-A)
Trv Off.Lo	27	Used for Traverse Operation
Trv Off. Hi	28	Used for Traverse Operation
Interlock1	29	
Interlock2	30	Used for MMC operation
Interlock3	31	Used forMMC operaion
Interlock4	32	
Speed-X	33	Additional Step frequency selection
Reset	34	Reset
BX	35	Emergency Stop
JOG	36	Jog
FX	37	Forward Run/Stop
RX	38	Reverse Run/Stop
Ana Change	39	Analog input Switch-over
Pre excite	40	Pre excitation.
Spd/Torque	41	Speed/Torque Switch-over
ASR P/PI	42	ASR P/PI control select

Note: Refer to DRV-05~7, //O-20~24, //O-85~92 for I/O ~2, 33 Speed-L, Speed-M, Speed-H and Speed-X.

## [Speed-L, Speed-M, Speed-H]

By setting P1, P2, P3 terminals to 'Speed-L', 'Speed-M' and 'Speed-H' respectively, inverter can operate at the preset frequency set in DRV-05 ~ DRV-07 and I/O-20 ~ I/0-24.

The step frequencies are determined by the combination of P1, P2 and P3 terminals as shown in the following table.

Step Frequency	Parameter   Code	Speed-H   (P3)	Speed-M   (P2)	Speed-L   (P1)
Step Freq-	DRV-00	0	0	0
$\begin{array}{\|c\|} \hline \text { Step Freq- } \\ 1 \\ \hline \end{array}$	DRV-05	0	0	1
Step Freq- $2$	DRV-06	0	1	0
$\begin{gathered} \text { Step Freq- } \\ 3 \end{gathered}$	DRV-07	0	1	1
$\begin{gathered} \hline \text { Step Freq- } \\ 4 \\ \hline \end{gathered}$	I/O-21	1	0	0
$\begin{gathered} \text { Step Freq- } \\ 5 \\ \hline \end{gathered}$	I/O-22	1	0	1
$\begin{gathered} \hline \text { Step Freq- } \\ 6 \\ \hline \end{gathered}$	I/O-23	1	1	0
Step Freq- $7$	I/O-24	1	1	1

0: OFF, 1: ON
(5. I/O-20 [Jog Frequency] can be used as one of the step frequencies.
If the 'Jog' terminal is ON, inverter operates to Jog frequency regardless of other terminal inputs.

[Multi-Step Frequency Operation]

Related Functions: DRV-05 ~ DRV-07 [Step Frequency] I/O-20 [Jog Frequency] 1/0-20 ~ I/0-24 [Step Frequency]

Note: The frequency for 'Speed 0 ' is determined by DRV04.

## [XCEL-L, XCEL-M, XCEL-H]

By setting P1, P2 and P3 terminals to 'XCEL-L', 'XCELM ' and 'XCEL-H' respectively, up to 8 different Accel and Decel times can be used. The Acce/Decel time is set in DRV-01 ~ DRV-02 and I/O-25 ~ I/O-38.
The Accel/Decel time is determined by the combination of P1, P2 and P3 terminals as shown in the following table.

Accel/Decel Time	Parameter Code	XCEL-H   (P3)	XCEL-M   (P2)	XCEL-L   (P1)
Accel Time-0	DRV-01	0	0	0
Decel Time-0	DRV-02			
Accel Time-1	I/O-25	0	0	1
Decel Time-1	1/0-26			
Accel Time-2	I/O-27	0	1	0
Decel Time-2	1/0-28			
Accel Time-3	1/0-29	0	1	1
Decel Time-3	1/0-30			
Accel Time-4	1/0-31	1	0	0
Decel Time-4	1/0-32			
Accel Time-5	1/0-34	1	0	1
Decel Time-5	I/O-35			
Accel Time-6	1/0-36	1	1	0
Decel Time-6	I/0-37			
Accel Time-7	1/0-38	1	1	1
Decel Time-7	I/O-39			

0: OFF, 1: ON

[Multi-Accel/Decel Time Operation]
Related Functions: $\quad$ I/ $0-25 \sim 1 / 0-38\left[{ }^{\text {st }} \sim 7^{\text {th }}\right.$ Accel/Decel Time]

## [Dc-brake]

DC Injection Braking can be activated during inverter stopped by configuring one of the multi-function input terminals ( $\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3$ ) to 'Dc-bake'. To activate the DC Injection Braking, close the contact on the assigned terminal while the inverter is stopped.

## [Exchange]

Exchange is used to bypass the motor from the inverter line to commercial power or the opposite. To bypass the motor to commercial line, set the 'Exchange' function in multi-function output terminal and 'INV line', 'COMM line' function in multi-function output terminal. Speed search function (FU2-22) is activated automatically during exchanging operation.

[Wiring to By-Pass Motor to Commercial line]

[Exchanging Sequence]

## [Up, Down]

By using the Up and Down function, the drive can accelerate to a steady speed and decelerate down to a desired speed by using only two input terminals.


## [3-Wire]

This function is for 3 -wire start/stop control. This function is mainly used with a momentary push button to hold the current frequency output during acceleration or deceleration.

[Wiring for 3-Wire Operation, P2 set to '3-Wire']

[3-Wire Operation]

## [Ext Trip-A]

This is a normally open contact input. When a terminal set to 'Ext Trip-A' is ON, inverter displays the fault and cuts off its output. This can be used as an external latch trip.

## [Ext Trip-B]

This is a normally closed contact input. When a terminal set to 'Ext Trip-B' is OFF, inverter displays the fault and cuts off its output. This can be used as an external latch trip.

## [iTerm Clear]

This function is used for PID control. When this terminal is ON , the accumulated value by I -Gain is set to ' 0 '.
Refer to PID Control Block Diagram.

## [Open-loop]

This is used to exchange the control mode of inverter from PID mode (Close Loop) to V/F mode (Open Loop). DRV-03 [Drive Mode] and DRV-04 [Frequency Mode] are applied when the mode has been changed.
Note: This function can be used only when the inverter is stopped.

## [Main-drive]

When an option board (like RS485, DeviceNet, F-Net) is installed and used for the frequency setting and the run/stop command, the inverter operation can be changed to manual operation using this function without changing parameters.
FU1-02 [Frequency Mode] and FU1-01 [Drive Mode] are applied when the mode has been changed.
Note: this function can be used only when the inverter is stopped.

## [Analog hold]

When there is an analog input signal for frequency reference and 'Analog hold' terminal is ON, inverter fixes its output frequency regardless of the frequency reference change. The changed frequency reference is applied when the terminal is OFF.
This function is useful when a system requires constant speed after acceleration.

[Analog hold Operation]

## [XCEL stop]

Inverter stops accelerating and decelerating when this terminal is ON .

## [P Gain2]

This function is used to change P-Gain during PID operation. When this terminal is $\mathrm{ON}, \mathrm{PID}$ controller changes P-Gain with PID P2-Gian set in FU2-59. Refer to PID Control Block Diagram.

## [SEQ-L, SEQ-M, SEQ-H]

These functions are used for Auto drive ( $/ / 0-50$ ). Five different sequences can be selected according to the combination of these terminals. Eight step frequencies, Acce/Decel time and steady speed time can be set for each sequence. The following table shows the sequence of selection.

Sequence \#	Parameter Code	Speed-H (P3)	Speed-M   (P2)	Speed-L (P1)
Sequence 1	$\begin{gathered} \text { I/O-50 ~ } \\ \text { I/O-84 } \end{gathered}$	0	0	1
Sequence 2		0	1	0
Sequence 3		1	0	0
Sequence 4		0	1	1
Sequence 5		1	0	1

0: OFF, 1: ON

Note: The inverter stops after finishing all steps of that sequence once the Auto (Sequence) operation is started. To stop the inverter during sequence operation, use ' BX ' terminal on the control terminal strip.

Related Functions: I/O-51 ~ I/O-84 [Sequence Operation]

## [Manual]

This is used to exchange the operation mode of inverter from Auto (Sequence) to manual operation.
DRV-03 [Drive Mode] and DRV-04 [Frequency Mode] are applied when the mode has been changed.

Note: This function can be used only when the inverter is stopped.

## [Go step]

This is used to trigger the next step in a sequence of Auto-B operation.

## [Hold step]

This is used to hold the last step frequency in Auto-A operation.

## Related Functions: I/O-51 ~ I/O-84 [Sequence Operation]


['Go step' in Auto-B Operation]


## [Trv Off.Lo]

This function is used to make negative offset during traverse operation.

Related Functions: APP-06 ~ APP-07 [Traverse Offset]

## [Trv Off.Hi]

This function is used to make positive offset during traverse operation.

Related Functions: APP-06 ~ APP-07 [Traverse Offset]

## [Interlock1, 2, 3, 4]

This function is used for MMC operation. Refer to MMC operation.

## Related Functions: APP-29 [Inter-Lock Selection]

## [Reset]

This function is set to use it as fault reset terminal when ON.

## [BX]

This function is set to use it as Emergency Stop terminal when ON.
[JOG]
This function is set to use Jog operation terminal when ON.

## [FX]

This function is set to issue Forward Run.

## [RX]

This function is set to issue Reverse Run.

## [Ana Change]

Inverter changes its frequency reference source from V1 to I when ON.

## [Pre excite]

This setting switches the inverter in pre-exciting state when assignning Pre excite to the desired terminal. This function applies only the exciting current to a motor in Sensorless_S control. In Vector_SPD control, the inverter conducts pre-exciting to start a motor after the magnetic-flux is established and holding torque, even $200 \%$ of motor nominal torque is guaranteed. When the operation command is set to ON, the state changes from pre-exciting to normal.


## [Spd/Trq]

Speed or Torque mode select in Vector control.
Disabled in Sensorless vector

## [ASR P/PI]

P or PI control select in Vector_SPD control.
Disabled in Sensorless vector

## 1/O-15: Terminal Input Status <br> I/O-16: Terminal Output Status

| I/O <br> 15 In status <br> 000000000  |
| :--- | $\mathbf{1 5} \quad \mathbf{0 0 0 0} 9$.

This code displays the input status of control terminals. Terminals P4, P5, P6 and Q1, Q2, Q3 are provided on optional Sub-Board.

[LCD Keypad Display]									
Input	JOG	FX	RX	P6	P5	P4	P3	P2	P1
Terminals	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
$\begin{aligned} & \text { OFF } \\ & \text { status } \end{aligned}$	0	0	0	0	0	0	0	0	0
ON status	1	1	1	1	1	1	1	1	1

## [7-Segment Keypad Display]

The 'JOG' terminal is not displayed on 7-Segment keypad.


This code displays the output status of control terminals.

I/O Out status   16	$\mathbf{1 6}$	$\mathbf{0 0 0 0}$
Factory Default:	0000	

## [LCD Keypad Display]

Output Terminals	AXA-AXC	Q3	Q2	Q1
	Bit 3	Bit 2	Bit 1	Bit 0
OFF status	0	0	0	0
ON status	1	1	1	1

## [7-Segment Keypad Display]

The 'JOG' terminal is not displayed on 7-Segment keypad.


1/0-17: Filtering Time Constant for Multi-function Input Terminals

I/O Ti   17 Filt Num$\quad 15$
Factory Default:

## I/0-20: Jog Frequency

$\begin{array}{\|lr} \hline \text { I/O } & \text { Jog } \\ 20 & 1 \end{array}$	$\begin{aligned} & \hline e q \\ & 0 \mathrm{~Hz} \end{aligned}$	20	10.00
Factory Default:	10.00	Hz	10.00

I/O-21~24: Step Frequency 4, 5, 6, 7
I/O-85~92: Step Frequency 8, 9, 10, 11, 12... 15

frequencies are applied when the multi-function input terminals (P1, P2, P3, RST, BX, JOG, FX and RX) select the step. See [Speed-L, Speed-M, Speed-H, Speed-X] in I/O-12~14, //O-33.
Related Functions: DRV-04 [Frequency mode] DRV-05 ~ DRV-07 [Step Frequency 1 ~ 3] I/O-12~ ~ 14, 93~97 [Multi-function inputs] //0-17 [Filtering Time Constant]

Step   Freq.	Code	Spd-X	Spd-H   (P3)	Spd-   M(P2)	Spd-L   (P1)	Jog   Ter.
$\begin{gathered} \text { Step } \\ \text { Freq-0 } \\ \hline \end{gathered}$	DRV-00	0	0	0	0	0
Jog	I/O-20	X	X	X	X	1
$\begin{gathered} \text { Step } \\ \text { Freq-1 } \end{gathered}$	DRV-05	0	0	0	1	0
$\begin{gathered} \text { Step } \\ \text { Freq-2 } \\ \hline \end{gathered}$	DRV-06	0	0	1	0	0
$\begin{gathered} \text { Step } \\ \text { Freq-3 } \end{gathered}$	DRV-07	0	0	1	1	0
$\begin{gathered} \text { Step } \\ \text { Freq-4 } \end{gathered}$	I/O-21	0	1	0	0	0
$\begin{gathered} \text { Step } \\ \text { Freq-5 } \end{gathered}$	I/O-22	0	1	0	1	0
$\begin{gathered} \text { Step } \\ \text { Freq-6 } \end{gathered}$	1/0-23	0	1	1	0	0
$\begin{gathered} \text { Step } \\ \text { Freq-7 } \end{gathered}$	I/O-24	0	1	1	1	0
$\begin{gathered} \text { Step } \\ \text { Freq-8 } \\ \hline \end{gathered}$	I/0-85	1	0	0	0	0
$\begin{gathered} \text { Step } \\ \text { Freq-9 } \end{gathered}$	1/0-86	1	0	0	1	0


Step   Freq-10	$1 / 0-87$	1	0	1	0	0
Step   Freq-11	$1 / 0-88$	1	0	1	1	0


| Step <br> Freq-12 | $1 / 0-89$ | 1 | 1 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | 00

7- $0:$ OFF, 1: ON, X: Jog
** Speed-X: The highest speed input bit (used when one of RST, BX, JOG, FX, RX set to Speed-X)
( $/ 0-20[J o g$ Frequency] can be used as one of the step frequencies.

If the 'Jog' terminal is ON, inverter operates to Jog frequency regardless of other terminal inputs.

['JOG' and 'Multi-Step' Operation]

## I/O-25 ~ I/0-38: $1^{\text {st }} \sim \mathbf{7}^{\text {th }}$ Accel/Decel Time

I/O Acc time-1   25 20.0 sec	25	20.00
Factory Default: 20.0	0 sec	20.0
$\square$		
$\begin{array}{\|ll\|} \hline \text { I/O } & \text { Dec } \\ 38 & 20.0 \mathrm{sec}-7 \\ \hline \end{array}$	38	20
Factory Default: 20.0		20.0

These codes are applied when the multi-function input terminals (P1, P2, P3) select the Accel/Decel time. See [XCEL-L, XCEL-M, XCEL-H] in I/O-12 ~ / /O-14.

Related Functions: DRV-01~DRV-02 [Accel/Decel Time] FU2-70 [Reference Freq. for Accel/Decel] FU2-71 [Accel/Decel Time Scale] I/O-12 ~ / / $0-14$ [Multi-function inputs]

## I/O-40: FM (Frequency Meter) Output <br> I/O-41: FM Adjustment



Frequency meter displays the inverter output Frequency, Current, Voltage and DC link voltage with pulse signals on the FM terminal. The average ranges from OV to 10 V . I/O-41 is used to adjust the FM value.

## [Frequency]

FM terminal outputs inverter output frequency. The output value is determined by,
FM Output Voltage $=$ (Output freq. $/$ Max. freq.) $\times 10 \mathrm{~V} \times$ 10-41 / 100

## [Current]

FM terminal outputs inverter output current. The output value is determined by,
FM Output Voltage $=($ Output current $/$ Rated current $) \times$ $10 \mathrm{~V} \times 10-41 / 150$

## [Voltage]

FM terminal outputs inverter output voltage. The output value is determined by,
FM Output Voltage $=($ Output voltage $/$ Max. output voltage) $\times 10 \mathrm{~V} \times 10-41 / 100$

## [DC link vtg]

FM terminal outputs the DC link voltage of inverter. The output value is determined by,
FM Output Voltage = (DC link voltage / Max. DC link voltage) $\times 10 \mathrm{~V} \times 10-41 / 100$

## [Torque]

FM terminal outputs the Torque of inverter. The output value is determined by,
FM Output Voltage $=$ (Torque current $/$ Rated Torque current) $\times 10 \mathrm{~V} \times 10-41 / 150$


## 1/0-42: FDT (Frequency Detection) Level I/O-43: FDT Bandwidth

$\begin{array}{lc} \hline \text { I/O FDT freq } \\ 42 & 30.00 \mathrm{~Hz} \end{array}$	42	30.00
Factory Default: 30.00	Hz	30.00
I/O FDT band   43 10.00 Hz	43	10.00
Factory Default: 10.00	Hz	10.00

These functions are used in I/O-44 [Multi-function Auxiliary Contact Output]. See [FDT-\#] in I/O-44.

Use Sub-Boards if you need to use multi-function output terminal Q1, Q2, and Q3.

Related Functions: I/O-44 [Multi-function Auxiliary Output]


## I/O-44: Multi-function Auxiliary Contact Output define (AXA-AXC)



The auxiliary contact works (Close) when the defined condition has occurred.

Setting Range		Description
LCD	7-Seg	
FDT-1	0	Output frequency arrival detection
FDT-2	1	Specific frequency level detection
FDT-3	2	Frequency detection with pulse
FDT-4	3	Frequency detection with contact   closure
FDT-5	4	Frequency detection with contact   closure (inverted FDT-4)
OL	5	Overload detection
IOL	6	Inverter overload detection
Stall	7	Stall prevention mode detection
OV	8	Over voltage detection
LV	9	Low voltage detection
OH	10	Overheat detection
Lost Command	11	Lost command detection
Run	12	Inverter running detection
Stop	13	Inverter stop detection
Steady	14	Steady speed detection
INV line	15	Exchange signal outputs
COMM line	16	Ing
Ssearch	17	Speed search mode detection
Step pulse	18	Step detection in Auto mode
Seq pulse	19	Sequence detection in Auto mode
Ready	20	Inverter ready detection
Trv. ACC	21	Traverse acceleration frequency
Trv. DEC	22	Traverse deceleration frequency
MMC	23	Used for MMC operation
Zspd Dect	24	O rpm Detection in Vector control
Torq Dect	25	Torque Detection

## [FDT-1]

When the output frequency reaches the reference frequency (target frequency), AXA-AXC terminal is CLOSED.

[AXA-AXC configured as 'FDT-1']

## [FDT-2]

AXA-AXC is CLOSED when the reference frequency is in I/O-43 [FDT Bandwidth] centered on I/O-42 [FDT Frequency], and the output frequency reaches $I / 0-43$ centered on I/O-42.

[AXA-AXC configured as 'FDT-2']

## [FDT-3]

AXA-AXC is CLOSED when the output frequency reaches the band centered on the FDT frequency. The output is OPENED when the output frequency goes outside the FDT bandwidth centered on the FDT frequency.

[AXA-AXC configured as 'FDT-3']

## [FDT-4]

AXA-AXC is CLOSED when the output frequency reaches the FDT frequency. The output is OPENED when the output frequency goes below the FDT bandwidth centered on the FDT frequency.

[AXA-AXC configured as 'FDT-4']

## [FDT-5]

This is the inverted output of [FDT-4].

[AXA-AXC configured as 'FDT-5']

## [OL]

AXA-AXC is CLOSED when the output current has reached the FU1-54 [Overload Warning Level] for the FU1-55 [Overload Warning Time].

[AXA-AXC configured as 'OL']
Related Functions: FU1-54 [Overload Warning Level] FU1-55 [Overload Warning Time]

## [IOL]

AXA-AXC is CLOSED when the output current is above the $150 \%$ of rated inverter current for 36 seconds. If this situation is continued for one minute, the inverter will cut off its output and displays 'IOL' (Inverter overload) Trip. See the nameplate for the rated inverter current.

[AXA-AXC configured as 'IOL']

## [Stall]

AXA-AXC is CLOSED when the inverter is on the stall prevention mode.

$\begin{array}{ll}\text { Related Functions: } & \text { FU1-59 [Stall Prevention Mode] } \\ & \text { FU1-60 [Stall Prevention Level] }\end{array}$

## [OV]

AXA-AXC is CLOSED when the DC link voltage is above the Over-voltage level.


## [LV]

AXA-AXC is CLOSED when the DC link voltage is below the Low-voltage level.
DC Link Voltage

[AXA-AXC configured as 'LV']

## [OH]

AXA-AXC is CLOSED when the heat sink of the inverter is above the reference level.

## [Lost Command]

AXA-AXC is CLOSED when frequency reference is lost.

## Related Functions: $\quad / / 0-11$ [Criteria for Analog Signal Loss] I/O-48 [Operating Method at Signal Loss] //0-49 [Waiting Time for Time Out]

## [Run]

AXA-AXC is CLOSED when the inverter is running.

## [Stop]

AXA-AXC is CLOSED when the inverter is stopped.

## [INV line, COMM line]

This function is used in conjunction with 'Exchange' function of multi-function input for commercial line exchange. To use both signal of 'INV line' and 'COMM line', the optional Sub-A or Sub-C board must be installed.

[AXA-AXC configured as 'COMM line' and 'Q1' as INV line']
Related Functions: $\quad$ //O-12 ~ //O-14 [Multi-function input] - [Exchange]

## [Ssearch]

AXA-AXC is CLOSED during the inverter is speed searching.

## [Step pulse]

When Auto (Sequence) operation is selected in I/O-50, AXA-AXC outputs pulse signals on every step.

## Related Functions: I/O-50 ~ I/O-84 [Auto Operation]



AXA-AXC个

[AXA-AXC configured as 'Step pulse']

## [Seq pulse]

When Auto (Sequence) operation is selected in $1 / 0-50$, AXA-AXC outputs pulse signals on the last step.

[AXA-AXC configured as 'Step pulse']

## [Ready]

AXA-AXC is CLOSED when the inverter is ready to run.
[Trv. ACC]
CLOSED when output frequency reaches Accel frequency.

## [Trv. DEC]

CLOSED when output frequency reaches Decel frequency.
[MMC]
Automatically set to 'MMC' when 'MMC' is selected in APP-01.

## [Zspd Dect]

0 rpm detection signal in Vector Control

## [Torq Dect]

Torque detection signal in Vector and Sensorless Vector Control.

I/0-45: Fault Output Relay (30A, 30B, 30C)


This function is used to allow the fault output relay to operate when a fault occurs. The output relay terminal is $30 \mathrm{~A}, 30 \mathrm{~B}, 30 \mathrm{C}$ where $30 \mathrm{~A}-30 \mathrm{C}$ is a normally open contact and 30B-30C is a normally closed contact.

Bit	Settin   $\mathbf{g}$	Display	Description
Bit 0   (LV)	0	000	Fault output relay does not   operate at 'Low voltage' trip.
Bit 1	1	001	Fault output relay operates at   'Low voltage' trip.
(Trip)	1	010	Fault output relay does not   operate at any fault.
Bit 2	0	000	Fault output relay operates at   any fault except 'Low voltage'   and 'BX' (inverter disable) fault.
	Fault output relay does not   operate regardless of the retry   number.		
(Retry)	1	100	Fault output relay operates   when the retry number set in   FU2-26 decreases to 0 by   faults.

When several faults occurred at the same time, Bit 0 has the first priority.

## Related Functions: DRV-12 [Fault Display]

 FU2-26 [Retry number]
## 1/0-46: Inverter Number

## 1/0-47: Baud Rate



This code sets the inverter number. This number is used in communication between inverter and communication board.

I/O   47	Baud rate   9600   bps	$\mathbf{4 7}$	$\mathbf{9 6 0 0}$
Factory Default:	9600	$\mathbf{9 6 0 0}$	

This code sets the communication speed. This is used in communication between inverter and communication board.

## 1/0-48: Operating at Loss of Freq. Reference I/0-49: Waiting Time after Loss of Freq. Reference

I/OLost command   None	$\mathbf{4 8}$
Factory Default: $\quad$ None	$\mathbf{0}$

There are two kinds of loss of frequency reference. One is the loss of digital frequency reference and the other is of analog frequency reference.

Loss of digital frequency reference is applied when DRV04 [Frequency Mode] is set to 'Keypad-1' or 'Kepad-2'. At this time, the 'Loss' means the communication error between inverter and keypad or communication board during the time set in I/O-49.

Loss of analog frequency reference is applied when DRV-04 [Frequency Mode] is set to other than 'Keypad1' or 'Kepad-2'. At this time, the 'Loss' is determined by the criteria set in I/O-11 [Criteria for Analog Input Signal Loss].

Setting Range		Description
LCD	7-Seg	
None	0	Inverter keeps on operating at the   previous frequency.
FreeRun   (Coast to stop)	1	Inverter cuts off its output.
Stop	2	Inverter stops with Decel time (DRV-   02) and Decel pattern (FU1-26).



Related Functions: DRV-04 [Frequency Mode] I/O-11 [Criteria for Analog Signal Loss]

## 1/0-50: Auto (Sequence) Operation

1/0-51: Sequence Number Selection (Seq \#)
1/0-52: The Number of Steps of Sequence \#

I/O	Auto mode
50	None

50 $\square$
Factory Default: None $\mathbf{0}$
There are two modes of 'Auto-A' and 'Auto-B' in Auto mode. Auto operation is activated by the multi-function input terminals set to [SEQ-L], [SEQ-M], [SEQ-H] and [Go step] in $1 / 0-12 \sim 1 / 0-14$.


Factory Default: 1
This code selects the sequence to set frequency, transient time, steady speed time and motor direction the steps.

I/O Step number   52	$\mathbf{5 2}$	$\mathbf{2}$
Factory Default:	2	

This code sets the number of steps to use for the sequence number selected in $I / 0-51$.

## [Auto-A]

This mode will allow the inverter to operate automatically followed by its pre-programmed sequence. According to this sequence, eight different steps of Frequency, Transient Time, Steady Speed time and Motor Direction can be initiated with only a single multi-function input contact closure (//0-12 ~ I/0-14). The sequence and steps are set in $/ / 0-51 \sim$ //0-84.

Step   Frequency	Parameter Code	Speed-H (P3)	Speed-M (P2)	Speed-L   (P1)
Sequence 1	$\begin{gathered} \text { I/O-50 ~ } \\ \text { I/O-84 } \end{gathered}$	0	0	1
Sequence 2		0	1	0
Sequence 3		1	0	0
Sequence 4		0	1	1
Sequence 5		1	0	1

0: OFF, 1: ON

[Example 1 of 'Auto-A' operation]

[Example 2 of 'Auto-A' operation]

## [AUTO B]

This mode can be also used to program up to 8 different steps as Auto A. However, to switch from one step to another, an external contact closure set to 'Go step' is required.


Note: When a new sequence is selected during a sequence operating, the new sequence starts after the current sequence is finished.

## I/O-53 ~ //O-84: Frequency, Transient Time, Steady Speed Time, Motor Direction setting of each Step and Sequence

These parameter codes set the frequency, transient time, steady speed time, and motor direction. These codes are displayed according to the sequence number and steps.

I/0-85~ I/O 97: Step frequecy 8, 9, 10, 11, 12, 13, 14, 15, Multi-function input terminal RST, BX, JOG. FX, RX Define

See the description pages of I/O 21~39 for more details.

### 6.5 External Group [EXT]

EXT group appears only when an optional Sub-Board is installed.

## EXT-00: Jump to Desired Code \#

EXT	Jump code
00	1

Factory Default: 1
Jumping directly to any parameter code can be accomplished by entering the desired code number. This code is available only with LCD keypad.

## EXT-01: Sub-Board Display

EXT   01	Sub B/D   None	$\mathbf{0 1}$
Factory Default: $\quad$ None	$\mathbf{0}$	

This code automatically displays the kind of Sub-Board installed.

Setting Range		Description
LCD	7-Seg	
Sub-A	1	This board provides three multi-function   input terminals (P4, P5, P6), three multi-   function output terminals (Q1, Q2, Q3),   Load meter output (LM) and second input   frequency reference (V2).
Sub-B	2	This board provides encoder input terminals   (AOC, BOC / A+, A-, B+, B-), encoder   output terminals (FBA, FBB) and power   terminals (+5V input, Vcc output).
Sub-C	3	This board provides three multi-function   input terminals (P4, P5, P6), one multi-   function output terminal (Q1), isolated   second input frequency reference (V2) and   two analog meters (AM1, AM2).

[^15]
## EXT-02 ~ EXT-04: Multi-Function Input Terminal

 Define (P4, P5, P6) - Sub-A, Sub-C| EXT <br> 02 | P4 define <br> XCEL-L | $\mathbf{0 2}$ |
| :--- | :---: | :---: |


Factory Default: $\quad$ XCEL-L	$\mathbf{3}$

An optional Sub-Board is needed if an application requires more than three multi-function input terminals. 'Sub-A' and 'Sub-C' boards provide additional three multi-function terminals. These terminals are used in conjunction with P1, P2 and P3 terminals. Refer to I/O$12 \sim / / 0-14$ for use. The following table shows the terminal definitions.

Setting Range		Description
LCD	7-Seg	
Speed-L	0	Multi-Step Speed - Low
Speed-M	1	Multi-Step Speed - Mid
Speed-H	2	Multi-Step Speed - High
XCEL-L	3	Multi-Accel/Decel - Low
XCEL-M	4	Multi-Accel/Decel - Mid
XCEL-H	5	Multi-Accel/Decel - High
Dc-brake	6	DC injection braking during stop
2nd Func	7	Exchange to 2 ${ }^{\text {nd }}$ functions
Exchange	8	Exchange to commercial power line
-Reserved-	9	Reserved for future use
Up	10	Up drive
Down	11	Down drive
3-Wire	12	3 wire operation
Ext Trip-A	13	External trip A
Ext Trip-B	14	External trip B
iTerm Clear	15	Used for PID control
Open-loop	16	Exchange between PID mode and V/F mode
Main-drive	17	Exchange between Option and Inverter
Analog hold	18	Hold the analog input signal
XCEL stop	19	Disable accel and decel
P Gain2	20	Used for PID control
SEQ-L	21	Sequence operation - Low
SEQ-M	22	Sequence operation - Mid
SEQ-H	23	Sequence operation - High
Manual	24	Exchange between Sequence operation and Manual operation
Go step	25	Triggering Sequence operation (Auto-B)
Hold step	26	Hold last step (Auto-A)
Trv Off.Lo	27	Used for Traverse Operation
Trv Off.Hi	28	
Interlock1	29	Used for MMC operation
Interlock2	30	
Interlock3	31	
Interlock4	32	
Speed-X	33	Additional Step frequency selection
Reset	34	Reset


Setting Range		Description	
LCD	7-Seg	Emergency Stop	
BX	35	lmerg	
JOG	36	Jog	
FX	37	Forward Run/Stop	
RX	38	Reverse Run/Stop	
Ana Change	39	Analog input Switch-over	
Pre excite	40	Pre excitation.	
Spd/Torque	41	Speed/Torque Switch-over	
ASR P/PI	42	ASR P/PI control select	

## EXT-05: V2 Mode Selection - Sub-A, Sub-C

| EXT <br> 05 | V2 mode |
| :--- | :---: | :---: | :---: |
| None |  |$\quad \mathbf{0 5} \quad \mathbf{0}$

Factory Default: None 0
'V2' signal can be used as the frequency reference and override function.

## [None]

V 2 signal is not used.

## [Override]

'V2' signal override the frequency reference signal (V1, I, $\mathrm{V} 1+\mathrm{I})$ selected in DRV-04.

## [Reference]

'V2' signal is used as the frequency reference. At this time, the frequency reference selected in DRV-04 is ignored.

## EXT-06 ~ EXT-10: Analog Voltage Input (V2) Signal Adjustment - Sub-A, Sub-C

This is used to adjust the analog voltage input signal when the frequency is referenced or overridden by the 'V2' control terminal. This function is applied when EXT05 is set to 'Override' or 'Reference'. Reference Frequency versus Analog Voltage Input Curve can be made by four parameters of EXT-07 ~ EXT-10.


Factory Default:	10 ms	$\mathbf{1 0}$

This is the filtering time constant for ' $V 2$ ' signal input. If the ' $V 2$ ' signal is affected by noise causing unstable operation of the inverter, increase this value. Increasing this value may make response time slower.


This is the minimum frequency the inverter outputs when there is the minimum voltage (EXT-07) on the 'V2' terminal.


This is the maximum voltage of the ' V 2 ' input at which the inverter outputs maximum frequency.


[Reference Frequency vs. Analog Voltage Input, V2 (0 to 10V)]

> | Related Functions: | DRV-04 [Frequency Mode] |
| :--- | :--- |
|  | I/O-01~I/O-05 [V1 Adjustment] |

## EXT-12: Usage of Pulse Input Signal - Sub-B

EXT   12	F mode   None	$\mathbf{1 2}$
Factory Default: $\quad$ None	$\mathbf{0}$	

This function is to select the usage of encoder pulse signal of 'Sub-B' board. The pulse signal from encoder can be used as the motor speed feedback or frequency reference.

## [None]

The encoder pulse signal is not used.

## [Feed-back]

The encoder pulse signal is used as the motor speed feedback. The inverter can maintain the motor speed constantly, regardless of the load fluctuation, by using the encoder feedback. Set the encoder pulse method and the number of pulse in EXT-15 and 16. Main speed is set in DRV-04 [Frequency mode]. The encoder pulse related functions must be set correctly for better performance in EXT-15 ~ EXT-24.

Code	LCD Display	Setting in Feed back
EXT-12	F mode	Feed-back
EXT-15	F pulse set	A+B
EXT-16	F pulse num	$360 \sim 4096$
EXT-22	PG P-gain	$0 \sim 30000$
EXT-23	PG I-gain	$0 \sim 30000$
EXT-24	PG Slip Freq	$0 \sim 200[\%]$
EXT-25	ASR P-Gain	$10 \sim 500[\%]$
EXT-26	ASR I-Gain	$10 \sim 9999[\mathrm{mSec}]$
EXT-27	Trq + Limit	$0 \sim 200[\%]$
EXT-28	Trq - Limit	$0 \sim 200[\%]$

## [Reference]

The encoder pulse signal is used as the frequency reference. When this function is selected, the frequency reference selected in DRV-04 is ignored. Reference Frequency versus Pulse Input Curve can be made by four parameters of EXT-18 ~ EXT-21.

Code	LCD Display	Setting in Reference
EXT-12	F mode	Reference
EXT-15	F pulse set	A
EXT-17	F filter	$0 \sim 10000[\mathrm{msec}]$
EXT-18	F pulse x1	$0 \sim 10[\mathrm{kHz}]$
EXT-19	F freq y1	$0 \sim$ Max Freq $[\mathrm{Hz}]$
EXT-20	F pulse x2	$0 \sim 10[\mathrm{kHz}]$
EXT-21	F freq y2	$0 \sim$ Max Freq $[\mathrm{Hz}]$



## EXT-13: Real Speed Direction - Sub-B

EXT   13	RealSpdDir   RX	$\mathbf{1 3}$

It displays actual motor rotation direction regardless of control mode selected, when Sub-B board is installed and EXT-12 is set to Feed-back.

## EXT-14: Encoder Feedback Frequency - Sub-B

EXT ENC FeedBac    14 0.00 Hz	14	0.00
Factory Default:		N/A

It displays frequency regardless of control mode selected, when Sub-B board is installed and EXT-12 is set to Feed-back.


This code sets the encoder pulse to use. $[A+B]$ uses two encoder signal lines of $A$ and $B$, and $[A]$ uses one encoder signal line of $A$ or $B$.

## EXT-16: Encoder Pulse Number - Sub-B

| EXT F pulse <br> 16 | 1024 |
| :--- | ---: | :---: |$\quad \mathbf{1 6}$| 1024 |
| :--- |
| Factory Default: |

This code sets the encoder pulse per rotation of encoder.

$$
\begin{aligned}
& \text { EXT-17: Filtering Time Constant for Pulse Input } \\
& \text { Signal - Sub-B }
\end{aligned}
$$

$\begin{aligned} & \mathrm{EXT} \quad \mathrm{~F} \text { fi } \\ & 17 \end{aligned}$	ter   10 ms	17	10
Factory Default:	10 ms		10

This is the filtering time constant of pulse input signal. This is used to make the inverter respond slowly to the pulse input signal when the EXT-14 is set to 'Reference'.

## EXT-18 ~ EXT-21: Pulse Input Signal Adjustment - Sub-B

This is used to adjust the pulse input signal when the pulse input through Sub-B board references the frequency. This function is applied when EXT-14 is set to 'Reference'. Reference Frequency versus Analog Voltage Input Curve can be made by four parameters of EXT-18 ~ EXT-21.

EXT   18	Fulse x1   0.0 kHz	$\mathbf{1 8}$	$\mathbf{0 . 0}$
Factory Default:	0.0	kHz	$\mathbf{0 . 0}$

This is the minimum pulse frequency at which the inverter outputs minimum frequency.

EXT   19	Freq Y1   $0.00 ~ H z$	$\mathbf{1 9}$	$\mathbf{0 . 0 0}$		
Factory Default: $\quad 0.00 ~ \mathrm{~Hz}$ $\mathbf{0 . 0 0}$					
:---					

This is the minimum frequency the inverter outputs when there is the minimum pulse frequency (EXT-18).

EXT	F	pulse	x2
20	10.0	kHz	

20
10.0

Factory Default:	10.0 kHz	$\mathbf{1 0 . 0}$

This is the maximum pulse frequency at which the inverter outputs maximum frequency.

EXT   21	F freq Y2   $60.00 ~ H z$	$\mathbf{2 1}$	$\mathbf{6 0 . 0 0}$
Factory Default: $\quad 60.00 \mathrm{~Hz}$	$\mathbf{6 0 . 0 0}$		

This is the maximum frequency the inverter outputs when there is the maximum pulse frequency (EXT-20).

## EXT-22 ~ EXT-23: Gains for 'Sub-B' Board

Factory Default: 3000		3000
$\begin{array}{\|l\|} \hline \text { EXT PG P-gain } \\ 22 \end{array} \quad 3000$	22	3000

This is the proportional gain when the EXT-14 is set to 'Feed-back'.

Factory Default: 50		50
$\begin{array}{\|l\|} \hline \text { EXT PG I-gain } \\ 23 \end{array}$	23	50

This is the integral gain when the EXT-14 is set to 'Feedback'.

## EXT-24: Slip Frequency for 'Sub-B' Board

Factory Default: 100		100
$\begin{array}{\|ll\|} \hline \text { EXT PG Slip } & \text { Freq } \\ 24 & 100 \% \end{array}$	24	100

This is the limit frequency the inverter uses to compensate the motor speed drop due to load fluctuation. The set point value is the percentage of FUN-32 [Rated Motor Slip].

## EXT-25: Sensored Vector_SPD P

$\begin{aligned} & \text { EXT ASR P- } \\ & 25 \end{aligned}$	$\begin{aligned} & \text { Gain } \\ & 100 \% \end{aligned}$	25	100
Factory Default:	100		100

This is the proportional gain when the control mode is set to 'Sensored Vector_SPD'.
Adjust the gain when the speed and torque response is slow.

## EXT-26: Sensored Vector_SPD I

$\begin{aligned} & \text { EXT ASR I- } \\ & 26 \end{aligned}$	26	200
Factory Default:		20
This is the integral gain when the control mode is set to 'Sensored Vector_SPD'.   Adjust the gain when the speed and torque response is slow.		

## EXT-27: + Torque Limit

$\begin{aligned} & \text { EXT Trq + } \\ & 27 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Limit } \\ & 180 \% \end{aligned}$	27	180
Factory Default:	180		180

## EXT-28: - Torque Limit

| EXT Trq -Limit <br> 180 $\%$ | $\mathbf{2 8}$ | $\mathbf{1 8 0}$ |
| :--- | ---: | :---: | :---: |
| 28 | $180 \%$ | $\mathbf{1 8 0}$ |

This is the Reverse Torque Limit when the control mode is set to 'Sensored Vector_SPD'.

## EXT-30 ~ EXT-32: Multi-Function Output Terminal (Q1, Q2, Q3) Define - Sub-A, Sub-C

Q1, Q2, Q3 terminals are provided on Sub-A and Sub-C board as an open collector output. The functions of these terminals can be selected the same as $1 / 0-44$ [Multi-function Auxiliary Contact Output Define].


## EXT-34: LM (Load Meter) Output - Sub-A <br> EXT-35: LM Adjustment



Load meter displays the inverter output Frequency, Current, Voltage and DC link voltage with pulse signals on the LM terminal of Sub-A board. The average ranges from 0 V to 10 V . EXT-35 is used to adjust the LM value.

## [Frequency]

LM terminal outputs inverter output frequency. The output value is determined by,
LM Output Voltage $=$ (Output freq. $/$ Max. freq.) $\times 10 \mathrm{~V} \times$ FM output gain (I/O-41) / 100

## [Current]

LM terminal outputs inverter output current. The output value is determined by,
LM Output Voltage $=($ Output current $/$ Rated current $) \times$ $10 \mathrm{~V} \times \mathrm{XFM}$ output gain (//O-41)/150

## [Voltage]

LM terminal output inverter output voltage. The output value is determined by,
LM Output Voltage $=($ Output voltage $/$ Max. output voltage) $\times 10 \mathrm{~V} \times \mathrm{FM}$ output gain ( $/ \mathrm{I}-41$ ) / 100 [DC link vtg]
LM terminal outputs the DC link voltage of inverter. The output value is determined by,
LM Output Voltage = (DC link voltage / Max. DC link voltage) $\times 10 \mathrm{~V} \times \mathrm{FM}$ output gain (//0-41)/ 100

## [Torque]

FM terminal outputs the motor torque. The output value is determined by,
FM terminal output voltage= (Torque current/Rated torque current) X10V X FM output gain (//0-41) / 150

[LM Output (LM-CM terminal)]
Related Functions: I/O-40 ~ I/O-41 [FM Output]

## EXT-40: AM1 (Analog Meter 1) Output - Sub-C <br> EXT-41: AM1 Adjustment <br> EXT-42: AM2 (Analog Meter 2) Output - Sub-C EXT-43: AM2 Adjustment

These terminals are provided on Sub-C board.

EXT AM1 mode    40 Frequency$\quad \mathbf{4 0}$	0
Factory Default: Frequency	0
EXT AM1    41 $100 \%$   11	100
Factory Defaul: 100 \%	100
	3
Factory Default: DC link Vtg	3
EXT AM2   43 $\mathbf{A d j u s t}$	100
Factory Default: 100 \%	100

Analog meter displays the inverter output Frequency, Current, Voltage, DC link voltage and Torque with analog voltage on the AM1 and AM2 terminals of Sub-C board. The output voltage ranges from 0 V to 10 V . EXT41 and EXT-43 are used to adjust the AM output value.

## [Frequency]

The AM terminal outputs inverter output frequency. The output value is determined by,
AM Output Voltage $=($ Output freq. $/ \mathrm{Max}$. freq. $) \times 10 \mathrm{~V}$ X AM Output Gain (EXT41~42)/ 100

## [Current]

The AM terminal outputs inverter output current. The output value is determined by,
AM Output Voltage $=($ Output current $/$ Rated current $) \times$ 10V X AM Output Gain (EXT41~42)/ 150

## [Voltage]

The AM terminal outputs inverter output voltage. The output value is determined by,
AM Output Voltage $=$ (Output voltage $/$ Max. output voltage) $\times 10 \mathrm{~V}$ X AM Output Gain (EXT41~42)/ 100

## [DC link vtg]

The AM terminal outputs the DC link voltage of inverter.
The output value is determined by,
AM Output Voltage = (DC link voltage $/$ Max. DC link voltage) $\times 10 \mathrm{~V}$ X AM Output Gain (EXT41~42)/ 100

## [Torque]

The AM terminal outputs inverter output torque. The output value is determined by,
AM Output Voltage $=($ Output Torque $/$ Rated Torque current) $\times 10 \mathrm{~V}$ X AM Output Gain (EXT41~42)/ 150

## EXT-50~53 [Speed limit for Torque mode operation]

Code	LCD   display	Description	Factory   setting	Setting   range
EXT-   50	Speed   Limit	Speed Limit   Level	$100[\%]$	$0-$   $100[\%]$
EXT-   51	Speed   Bias	Speed Limit   Bias	$100[\%]$	$0-$   $200[\%]$
EXT-   52	Speed   Gain	Speed Limit   Gain	1	$1-10$
EXT-   53	Speed Dir	Speed Limit   Direction	1   (Forward)	0   (Reverse)   1   (Forward)

By setting speed limit, this parameter prevents the motor from rotating excessively high speed due to no-load or light load connection during Vector_TRQ in FU2-39 [Control mode].

Set as the percent of EXT-50 [Speed limit level] and EXT-51 [Speed Limit Bias] to FU1-20 [Max Freq].

If EXT-53 [Speed Limit Direction]= FWD, EXT-51 [Speed Limit Bias]

FWD Torque control is set, the FWD Torque control is shown as below. In other words, when the motor rotates in Forward direction, FWD torque is kept controlled in the range of EXT-50 [Speed Limit Level] + EXT-51 [Speed bias]. When the motor rotates in Reverse direction, REV torque is controlled in EXT-51[Speed Limit Bias] and torque is controlled constant in the above speed range. EXT-52 [Speed limit gain] is the curve value to reduce the FWD torque or to increase to the constant torque in Reverse direction.


Related parameters: FU2-39 [Control mode selection] FU1-20 [max Freq] EXT-27[Trq + Limit] EXT-28[Trq - Limit]

The following illustrations show the relationship between torque, motor speed and speed limit direction.

Torque Dir.	FWD	REV
Speed limit direction	FWD	REV
Torque change		
Torque change		

## EXT-54: Zero Speed Detection Level EXT-55: Zero Speed Detection Bandwidth

Used to set the zero speed detection (SUB-B)

- Only valid when FU2-39 [Control mode selection] is set to Vector_SPD, Vector_TRQ.
- Detect the zero speed using I/O-44 [Multi-function auxiliary contact output selection]. Set Zspd Dect in I/O-44 [Multi-function auxiliary contact output] to activate this function.

Note: Sub-board is needed to use multi-function output terminal Q1, Q2, Q3.

Code	Keypad   Display	Parameter   Name	Factory   setting	Setting   range
EXT-   54	ZSD   Level	Zero Speed   Detection   Level	$2[\mathrm{~Hz}]$	$0-120$   $[\mathrm{~Hz}]$
EXT-   55	ZSD   Band	Zero Speed   Detection   Bandwidth	$1[\mathrm{~Hz}]$	$0-5[\mathrm{~Hz}]$

Auxiliary contact relay activates as shown below if the following settings are applied to EXT-54 [Zero Speed Detection Level] and EXT-55 [Zero Speed Detection Bandwidth].


Related Functions: FU2-39 [Control mode selection] I/O-44 [Multi-function auxiliary contact output]

## EXT-56: Torque Detection Level EXT-57: Torque Detection Bandwidth

Use to set output torque detection (SUB-B)

- Only valid when FU2-39 [Control mode selection] is set to Vector_SPD, Vector_TRQ.
- Detect Torque using I/O-44 [Multi-function auxiliary contact output selection].

Note: Sub-board should be mounted to use multifunction output terminal Q1, Q2, Q3.

Code	Keypad   Display	Description	Factory   setting	Setting   range
EXT-56	TD Level	Torque   Detection   Level	$100[\%]$	$0-150[\%]$
EXT-57	TD Band	Torque   Detection   Bandwidth	$5[\%]$	$0-10[\%]$

EXT-56 [Torque Detection Level] and EXT-57 [Torque Detection Bandwidth] are activated in the following conditions as shown below.


Related Functions: FU2-39 [Control mode select] I/O-44 [Multi-function auxiliary contact output selection]

### 6.6 Application Group [APP]

## APP-00: Jump to desired code \#



Factory Default: 1
Jumping directly to any parameter code can be accomplished by entering the desired code number. This code is available only with LCD keypad.

## APP-01: Application Mode Selection

APP   01	App. mode   None	$\mathbf{0 1}$
Factory Default: $\quad$ None	$\mathbf{0}$	

This code sets the application mode.

Setting Range		Description	
LCD	7-Seg		
None	0	Application mode is not selected.	
Traverse	1	Traverse mode if selected in application   group. Related functions (APP-02~07)   are displayed.	
MMC	2	MMC (Multi-Motor Control) mode is   selected in application group. Related   functions (APP-088)	
DRAW are disppayed.	3	DRAW mode is selected in application   group. Related functions (APP-32~33)   are displayed.	

[Traverse]: This is a mechanism to wind thread to an intended shape on a reel with a rotary motion and reciprocation. Adjusting the speed of mechanical reciprocation can make different shapes of thread reel. The following figure shows an example. The guide should move with low speed at the center of the reel and fast at the edge of the reel.

Related Functions: APP-02 to APP-07 [Traverse Parameters] I/O-12 to //O-14 [Multi-Function Input] EXT-30 to EXT-32 [Multi-Function Output]

[An example of Traverse Operation]

[Traverse Operation Pattern]
[MMC]: The 'PID' control should be selected in FU2-47 to use this function.

- One inverter can control multiple motors. This function is often used when controlling the amount and pressure of flow in fans or pumps. Built-in PI controller controls a main motor after receiving process control value and keeps the control value constant by connecting auxiliary motors to commercial line when needed.
- In case that flow amount or flow pressure is beyond or below the reference so the main drive cannot control by itself, auxiliary motors are automatically turned on/off. Maximum four (Q1~3 and Aux. output) auxiliary motors can be run. Each Starting and Stop Frequency should be set to four auxiliary motors.
- Auto Change can be selected to automatically switch the order of the running motors for keeping motor runtime constant. Set mode ' 1 ' for automatic changing of auxiliary motors only and set mode ' 2 ' for automatic changing of all motors including main motor. For mode '2', external sequence (Refer to APP-26) should be configured.
- Abnormal motor can be skipped from running by using the multi-function input terminals (P1, P2, P3, and P4). If a multi-function terminal is opened, the inverter stops all running motors and restarts operation with only normal motors except the abnormal motor. (Refer to APP-29)
- Sleep function is initiated when flow demand is low. Inverter stops motor when the motor runs below Sleep Frequency (APP-24) during Sleep Delay Time (APP-23). While in the sleep state, inverter keeps monitoring and initiates Wake-Up function when the real value of the controlling amount has decreased below the Wake-Up level (APP-25).

Note: Only one auxiliary motor can be connected with AUX terminal on control terminal strip without using MMC Option Board.

Related Functions: APP-08 to APP-31 [MMC Parameters] DRV-04 [Frequency Mode] FU2-47 [PID Operation Selection] I/O-01 to I/O-10 [Analog Signal Input] EXT 15 to EXT21 [Pulse Input Signal] I/O-12 to I/O-14 [Multi-Function Input] EXT-30 to EXT-32 [Multi-Function Output]

[MMC Diagram]
[Draw]: This is a kind of Open-Loop Tension Control. This is used to maintain constant tension of material with the speed difference between main motor and subordinate motor.

Related Functions:	APP-32 to APP-33 [Draw Parameters]
	DRV-04 [Frequency Mode]
	I/O-01 to IO-10 [Analog Signal Input]
	EXT 0 to EXT-10 [Analog Input Setting]
	I/O-12 to //O-14 [Multi-Function Innut]
	EXT-02 to EXT-04 [Multi-Function Input]

## APP-02: Traverse Amplitude

| APP Trv. Amp [\%] <br> 02 $\mathbf{0 2}$ <br> $0.0 \%$  | $\mathbf{0 . 0}$ |
| :--- | :---: | :---: |
| Factory Default: $0.0 \%$ | $\mathbf{0 . 0}$ |

This code sets the frequency amplitude of traverse operation. The value is the percentage of reference frequency. The output value is determined by, Trv. Amp Frequency = (Reference Freq. * Trv. Amp)/100

## APP-03: Traverse Scramble Amplitude

APP Trv. Scr $[\%]$   03 $\mathbf{0 3}$   $0.0 \%$	$\mathbf{0 . 0}$
Factory Default: $0.0 \%$	$\mathbf{0 . 0}$

This code sets the frequency amplitude of scramble operation. The output value is determined by,
Trv. Scr Frequency = (Trv. Amp Frequency * (100-Trv. Scr)/(100

## APP-04: Traverse Accel Time APP-05: Traverse Decel Time

APP Trv Acc Time    04 2.0 sec	04	2.0
Factory Default: 2.0 sec		2.0
APP Trv Dec Time    05 3.0 sec	05	3.0
Factory Default: 3.0 sec		3.0

Sets the acceleration and deceleration time for traverse operation.

The 'Trv Acc' terminal set in EXT-30 to EXT-32 is ON during traverse acceleration time. (Open Collector Output)
The 'Trv Dec' terminal set in EXT-30 to EXT-32 is ON during traverse deceleration time. (Open Collector Output)
APP-04 and APP-05 should be set to a value less than APP-03. If not, traverse control does not accomplished correctly.

## APP-06: Traverse Offset (Hi) Setting

APP-07: Traverse Offset (Lo) Setting

APP    06 Trv Off Hi   0.0	$\mathbf{0 6}$	$\mathbf{0 . 0}$
Factory Default:	$0.0 \%$	$\mathbf{0 . 0}$

This code makes positive offset during traverse operation by multi-function input terminal. When the 'Trv Off Hi' terminal is ON, the offset frequency is added to the reference frequency. To use this function, set a terminal out of multi-function input terminals (P1, P2, P3) to 'Trv Off Hi' in I/O-12 ~ I/O-14. The offset value is determined by,
Trv. Off Hi Frequency =(Reference Frequency * Trv. Off $\mathrm{Hi}) / 100$


This code makes negative offset during traverse operation by multi-function input terminal. When the 'Trv Off Lo' terminal is ON, the offset frequency is subtracted from the reference frequency. To use this function, set a terminal out of multi-function input terminals (P1, P2, P3) to 'Trv Off Lo' in I/O-12 ~ I/O-14. The offset value is determined by,
Trv. Off Lo Frequency =(Reference Frequency * Trv. Off Lo)/100

## APP-08: Running Auxiliary Motor Number Display

| APP Aux Mot Run <br> 08  <br> 08 08 <br> Factory Default: 0 <br> 0 $\mathbf{0}$ |
| :--- | :---: | :---: |

This code shows how many auxiliary motors are running by MMC control.

## APP-09: Starting Auxiliary Motor Selection

APP Starting   09	Aux	
09	1	$\mathbf{0 9}$
Factory Default:	1	$\mathbf{1}$


This code sets the starting auxiliary motor for MMC
control.

## APP-10: Operation Time Display on Auto Change



APP-11: Start Frequency of Aux. Motor 1
APP-12: Start Frequency of Aux. Motor 2
APP-13: Start Frequency of Aux. Motor 3
APP-14: Start Frequency of Aux. Motor 4

APP Start freq1   $11 \quad 49.99 \mathrm{~Hz}$	11	49.99
Factory Default: 49.99	Hz	49.99
$\begin{aligned} & \text { APPStart freq2 } \\ & 12 \quad 49.99 \mathrm{~Hz} \end{aligned}$	12	49.99
Factory Default: 49.99	Hz	49.99


APPStart freq3   1349.99 Hz	13	49.99


Factory Default:	49.99 Hz	$\mathbf{4 9 . 9 9}$


order if the output frequency is over the frequencies set in APP-11 to APP-14, respectively, and the time is over APP-19.

## APP-15: Stop Frequency of Aux. Motor 1

APP-16: Stop Frequency of Aux. Motor 2
APP-17: Stop Frequency of Aux. Motor 3
APP-18: Stop Frequency of Aux. Motor 4


$\begin{array}{\|l\|l} \hline \text { APP } & \text { Stop } \text { freq2 } \\ 16 & 15.00 \mathrm{~Hz} \end{array}$	16	15.00
Factory Default: 15.00	Hz	15.00
APP Stop freq3   17 15.00 Hz	17	15.00
Factory Default: 15.00	Hz	15.00


APP	Stop
18	15.00 Hz 4

18

| Factory Default: 15.00 Hz | $\mathbf{1 5 . 0 0}$ |
| :--- | :--- | :--- |

The inverter turns off RLY3, RLY2, RLY1, and AUX in order if the output frequency is below the frequencies set in APP-15 to APP-18, respectively, and the time is over APP-20.

## APP-19: Delay Time before Operating Aux. <br> Motor <br> APP-20: Delay Time before Stopping Aux. Motor

APP Aux Start DT    19 60.0 sec	$\mathbf{1 9}$	$\mathbf{6 0 . 0}$
Factory Default:	60.0 sec	$\mathbf{6 0 . 0}$

Sets the time the inverter waits before starting the auxiliary motors.

APP Aux Stop DT     20 60.0 $\mathbf{~ s e c}$	$\mathbf{2 0}$	$\mathbf{6 0 . 0}$
Factory Default: $\quad 60.0 \mathrm{sec}$	$\mathbf{6 0 . 0}$	

Sets the time the inverter waits before stopping the auxiliary motors.

[Aux. Motor Start/Stop with MMC]

APP-21: The Number of Aux. Motors

APP Nbr Aux's   21	$\mathbf{2 1}$	$\mathbf{4}$
Factory Default: 4	4	
Sets the number of auxiliary motors connected to the   inverter.		

## APP-22: PID Bypass Selection

APP Regul Bypass   $22 \quad---$ No ---	$\mathbf{2 2}$	$\mathbf{0}$
Factory Default: $\quad$ No	$\mathbf{0}$	

This is used to bypass the PID operation selected in FU2-47. Select this code to 'Yes' when using MMC function without PID control. The frequency is determined by real value of control amount instead PID controller output. The real value is also used as the Start/Stop reference of Aux. motors.

The following figure shows the running pattern with this function applied for controlling the flow rate of a tank. To control the flow rate according to the water level of a tank, divide the water level of the tank into the region to the number of Aux. motors plus one, and map each region from staring frequency to maximum frequency. The inverter increases output frequency to lower the water level in the tank when the water level in the tank rises. When reaching maximum frequency, inverter
connects aux. motors connected directly to commercial line. After connecting aux. motor, inverter starts again from the starting frequency. By selecting APP-22 to 'Yes', PID operation is disabled and Control Mode (FU2-47) is changed to 'V/F'. PID Bypass is available only when Freq. Mode (DRV-04) is set to 'V1', '1' or 'V2'. The level in a tank can be checked in APP-30 [Actual Value] and APP-31 [Actual Percent].

[Aux. Motor Start/Stop without PID Control]
APP-23: Sleep Delay Time
APP-24: Sleep Frequency
APP-25: Wake-Up Level


APP Sleep Freq    24 F   $0.19 ~ H z$	$\mathbf{2 4}$	$\mathbf{0 . 1 9}$
Factory Default: $\quad 0.19 \mathrm{~Hz}$	$\mathbf{0 . 1 9}$	


APPD WakeUp level    25 35 $\%$	$\mathbf{2 5}$	$\mathbf{3 5}$
Factory Default:	$35 \%$	$\mathbf{3 5}$

Sleep function is initiated when flow demand is low. Inverter stops motor when the motor runs below Sleep Frequency (APP-24) during Sleep Delay Time (APP-23). While in the sleep state, inverter keeps monitoring and initiates Wake-Up function when the real value of the controlling amount has decreased below the Wake-Up level (APP-25).

Note: Sleep function is not operated if the Sleep Delay
Time (APP-23) is set to ' 0 '.

[Sleep Operation]

## APP-26: Auto Change Mode Selection

APP    26 AutoCh_Mode   26 $\mathbf{1}$	$\mathbf{2 6}$	$\mathbf{1}$	
Factory Defaul:	1		$\mathbf{1}$

This function is used to change the running order of the motors to regulate their run-time when multiple motors are connected for MMC.
[0]: Not using Auto Change Function.
The inverter keeps the order Main motor $\Rightarrow$ RLY1 $\Rightarrow$ RLY2 $\Rightarrow$ RLY3 $\Rightarrow$ AUX and do not change the running order of auxiliary motors.
[1]: Auto Change Function is applied only to aux. motors.
The inverter changes the order of auxiliary motors except the main motor connected to the drive. Running order is Main Motor $\Rightarrow$ RLY1 $\Rightarrow$ RLY2 $\Rightarrow R L Y 3 \Rightarrow$ AUX. And then it is changed to Main Motor $\Rightarrow \mathrm{RLY} 2 \Rightarrow$ $R L Y 3 \Rightarrow A U X \Rightarrow$ RLY1.
[2]: Auto Change Function is applied to all motors. The inverter changes the order of all motors. The inverter operates the initial motor and the others are directly powered by commercial line. It should be used with Inter-lock function after configuring external inter-lock sequence circuit as shown below.

[Wiring Diagram for Inter-Lock Configuration]

[Sequence Circuit for Inter-Lock Configuration]

## APP-27: Auto Change Time APP-28: Auto Change Level

$\begin{array}{lr} \text { APP AutoEx-intv } \\ 27 & 72: 00 \end{array}$	27	72:00
Factory Default: 72:00		72:00
$\begin{array}{\|cc\|} \hline \text { APP AutoEx-level } \\ 28 & 20 \% \end{array}$	28	20
Factory Default: 20 \%		20

This function is used to protect motor from running alone for a long time by changing operation to other motor.

Auto Change is accomplished when the following conditions are satisfied:

1) The time set in APP-27 is over.
2) The actual value of controlling amount is less than the value set in APP-28.
3 ) Only one motor is running.
When above three conditions are met, the inverter stops the running motor, and changes motor to run by the order set in APP-26. and then continues operation according to new order.
If Auto Change Level (APP-28) is set to ' 0 ', the function is initiated only when the motor is in Stop or Sleep state.
The count time for Auto Change is depend on Auto Change Mode (APP-26). In mode ' 0 ', inverter starts counting only when auxiliary motor is running. In mode ' 1 ' or ' 2 ', inverter starts counting when any motor is running including main motor.

APP-29: Inter-Lock Selection

APP Inter-lock   29   - - No ---	$\mathbf{2 9}$	$\mathbf{0}$
Factory Default: $\quad$ No	$\mathbf{0}$	

By setting this code to 'Yes', the multi-function input terminals (P1~P4) are used as auxiliary motor operating condition of RLY1, RLY2, RLY3, and AUX. The multi-function input terminal should be turned on to run the corresponding auxiliary motor. If running with any multi-function input terminal open with this function, the inverter starts motors except the corresponding motor. If multi-function input happens to be turned off during motor running, the inverter stops all running motors and restarts running with only normal motors except the subject motor. By setting this parameter to 'Yes', the multi-function input terminals (P1~P4) are set to 'Interlock1' through 'Interlock4' automatically.

Note: P1 through P4 cannot be used for other purpose it this code is set to 'Yes'.

Related Functions: I/O-12 to I/O-14 [Multi-Function Input] EXT-02 to EXT-04 [Multi-Function Input]

## APP-30: Feedback Freq. / Percentage Display

APP Fbk/PER	30	0.00
30 [ Hz$] /[\%]$		0.00

Factory Default: - 0.00
This code displays the feedback value using on PID controller in Hz or $\%$.

## APP-31: Actual Value Display in Percentage

$\operatorname{APP}$ Prs    31 $[\mathrm{Bar}] /[\mathrm{Pa}]$	$\mathbf{3 1}$	$\mathbf{0}$
Factory Default: -	$\mathbf{0}$	

This code displays the value using on PID controller in percentage.

## APP-32: Pressure Display Scale

$\begin{aligned} & \text { APP Scale } \\ & 32 \end{aligned}$	$\begin{aligned} & \hline \text { Disp } \\ & 1000 \end{aligned}$	32	1000
Factory Default:	1000		1000

This parameter adjusts APP-31.

## APP-33: Draw Mode Selection

APP    33 Draw Mode   None	$\mathbf{3 3}$	$\mathbf{0}$
Factory Default: None	$\mathbf{0}$	

This code sets the signal input to use for Draw operation. The main reference frequency is set in DRV-04. This parameter should be set to a signal that is not selected in DRV-04.

## APP-34: Draw Size Setting

$\begin{aligned} & \text { APP Draw } \\ & 34 \end{aligned}$		\%	34	100
Factory Default:	100\%			100

This code sets the frequency bandwidth during Draw
operation. For example, when Reference Frequency (DRV-00) is set to '30Hz', Draw Mode (APP-33) to 'V1_Draw' and Draw Size (APP-33) to ' $10 \%$ ', the frequency difference during Draw operation is between 27 Hz and 33 Hz . The following figure shows the block diagram for Draw and Override operation.


Code	LCD Display	Description	Factory Default	Setting Range
				0(None)
APP-33	Draw Mode	Draw Mode Select	0(None)	1(V1_Draw)   2(I_Draw)   3(V2_Draw)
				$0.0-150.0 \%$
APP-34	DrawPerc	Draw Size Setting	$100.0 \%$	0.0

Note:

1. APP-33 Setting Guide: Ref. Frequency setting mode should not be duplicated:

Ref. Freq Setting: DRV-04 [V1] APP-33 [Draw Mode]: 1(V1_Draw) (X)
Ref. Freq Setting: DRV-04 [V1] APP-33 [Draw Mode]: 2(I_Draw) (0)
2. APP-34 sets the freq limit scale during Draw Mode.

Ex) If Ref freq (Keypad-1)=30Hz, APP-33=1(V1_Draw), APP-34=10\%, the ref freq for Draw mode will be issued from 27 Hz to 33 Hz .

## CHAPTER 7 - OPTIONS

The iS5 series inverter provides many options for various applications. See the following option table and select the proper options according to your application.
Note: Refer to option manual for more details.

The following table shows the Sub-Board Selection Guide according to Functions.

Code	Function Description	Sub-Board Type		
		SUB-A Board	SUB-B Board	SUB-C Board
EXT-02	Multi-Function Input Terminal 'P4'	$\checkmark$		$\checkmark$
EXT-03	Multi-Function Input Terminal 'P5'	$\sqrt{ }$		$\checkmark$
EXT-04	Multi-Function Input Terminal 'P6'	$\checkmark$		$\checkmark$
EXT-05	V2 Mode Selection	$\checkmark$		$\checkmark$
EXT-06	Filtering Time Constant for V2 Input Signal	$\sqrt{ }$		$\checkmark$
EXT-07	V2 Input Minimum Voltage	$\sqrt{ }$		$\sqrt{ }$
EXT-08	Frequency Corresponding to V2 Input Minimum Voltage	$\checkmark$		$\checkmark$
EXT-09	V2 Input Maximum Voltage	$\checkmark$		$\checkmark$
EXT-10	Frequency Corresponding to V2 Input Maximum Voltage	$\checkmark$		$\checkmark$
EXT-14	Usage for Pulse Input Signal		$\sqrt{ }$	
EXT-15	Pulse Input Signal Selection		$\checkmark$	
EXT-16	Encoder Pulse Selection		$\sqrt{ }$	
EXT-17	Filtering Time Constant for Pulse Input Signal		$\sqrt{ }$	
EXT-18	Pulse Input Minimum Frequency		$\sqrt{ }$	
EXT-19	Frequency Output corresponding to Pulse Input Minimum Frequency		$\checkmark$	
EXT-20	Pulse Input Maximum Frequency		$\sqrt{ }$	
EXT-21	Frequency Output corresponding to Pulse Input Maximum Frequency		$\checkmark$	
EXT-22	P-Gain for PG Option		$\checkmark$	
EXT-23	I-Gain for PG Option		$\sqrt{ }$	
EXT-24	Slip Frequency for PG Option		$\sqrt{ }$	
EXT-25	P-Gain for (Sensored) Vector_SPD			
EXT-26	I-Gain for (Sensored) Vector_SPD			
EXT-27	Forward Torque Limit			
EXT-28	Reverse Torque Limit			
EXT-30	Multi-function Output Terminal 'Q1'	$\sqrt{ }$		$\checkmark$
EXT-31	Multi-function Output Terminal 'Q2'	$\checkmark$		
EXT-32	Multi-function Output Terminal 'Q3'	$\checkmark$		
EXT-34	LM (Load Meter) Output Selection	$\sqrt{ }$		
EXT-35	LM Output Adjustment	$\sqrt{ }$		
EXT-40	AM1 (Analog Meter 1) Output Selection			$\checkmark$
EXT-41	AM1 Output Adjustment			$\checkmark$
EXT-42	AM2 (Analog Meter 2) Output Selection			$\checkmark$
EXT-43	AM2 Output Adjustment			$\checkmark$

### 7.1 Sub-A board

### 7.1.1 Board configuration



Note) 1. : Main circuit O : Control circuit
2. Output voltage is adjustable up to 12 V .
3. Three types of External speed signal input available.
( $\mathrm{V}, \mathrm{I}, \mathrm{V}+\mathrm{I}$, Refer to Parameter list and description for more details)

### 7.1.2 Terminal Configuration



### 7.1.3 Terminal Description

Section		Terminal	Name	Description
$\begin{aligned} & \stackrel{\rightharpoonup}{\vec{Z}} \\ & \underline{\underline{I}} \end{aligned}$	Contact Input	P4, P5, P6	Multi-Function Input	Used as the extended function of P1, P2, P3 (I/O-12 ~ / / O-14)
		CM	Common Terminal	Common terminal for P4, P5, P6
	Analog   Frequency   Reference	VR	Power Supply for V2	DC voltage output terminal for $\mathrm{V} 2(+12 \mathrm{~V}, 10 \mathrm{~mA})$
		V2	Analog Voltage Input	Analog voltage input terminal for frequency reference or override.
		5G	Common Terminal	Common terminal for VR and V2
$\begin{aligned} & \text { ت訁 } \\ & \text { Di } \\ & \text { O } \end{aligned}$	+15V Pulse   Output	LM	Load Meter	Used to monitor one of Output Frequency, Output Current, Output Voltage, DC link Voltage.   (+15V Pulse output, Average voltage: $0 \sim 10 \mathrm{~V}$ DC)
		CM	Common Terminal	Common terminal for LM
	Open Collector Output	Q1, Q2, Q3	Multi-Function Output (Open-Collector Output)	Used as the extended function of AXA, AXC (I/O-44)
		EXTG	External Common Terminal	Common terminal for Q1, Q2, Q3
		NC	Not Used	

### 7.1.4 Parameters of Sub-A Board

Code	Parameter Description	Code	Parameter Description
EXT-01	Sub Board Type Display	EXT-09	Analog Voltage Input Signal (V2) Adjustment
EXT-02	Muti-Function Input Terminal (P4, P4, P6) Define	EXT-10	
EXT-03		EXT-30	Multi-Function Output Terminal (Q1, Q2, Q3) Define
EXT-04		EXT-31	
EXT-05	V2 Mode Selection	EXT-32	
EXT-06	Filtering Time Constant for V2 Input Signal	EXT-34	LM Output Adjustment
EXT-07	Analog Voltage Input Signal (V2) Adjustment	EXT-35	
EXT-08			

### 7.2 Sub-B Board

### 7.2.1 Board configuration



Note) 1. : Main circuit O : Control circuit
2. Three types of External speed signal input available
(V, I, V+I, Refer to Parameter list and description for more details)

### 7.2.2 Terminal Configuration (total 14 pins)

AOC	BOC	A+	A-	B+	B-	FBA	FBB	GND	GND	+5 V	+5 V	VCC	VCC

### 7.2.3 Terminal Description

Section		Terminal	Name	Description
Encoder Signal Input	Open Collector Type	AOC	A Pulse Input Terminal	Connects A signal of Open Collector type encoder.
		BOC	B Pulse Input Terminal	Connects B signal of Open Collector type encoder.
	Line Drive Type	A+	A + Pulse Input Terminal	Connects A+ signal of Line Drive type encoder.
		A-	A- Pulse Input Terminal	Connects A- signal of Line Drive type encoder.
		B+	B + Pulse Input Terminal	Connects $\mathrm{B}+$ signal of Line Drive type encoder.
		B-	B- Pulse Input Terminal	Connects B - signal of Line Drive type encoder.
Signal Output	Encoder Signal Output	FBA	Encoder A Pulse Output	Outputs A signal received from the encoder.
		FBB	Encoder B Pulse Output	Outputs B signal received from the encoder.
Power Supply Input		+5V	+5V DC Input Terminal   (For Line Drive type)	Provides +5 V DC power output to encoder.   (5V DC, Minimum 0.5A)
		VCC	+12 to 15V DC Input/output Terminal from External Power   Supply to Encoder   (For Open collector type)	Encoder supply voltage, Supply proper voltage according to the encoder specification.   ( +12 to 15 V DC, Minimum 0.5A)
		GND	Ground Terminal	Ground for Power supply and encoder signal.

### 7.2.4 Parameters of Sub-B Board

Code	Parameter Description	Code	Parameter Description
EXT-01	Sub Board Type Display	EXT-21	Pulse Input Signal Adjustment
EXT-14	Usage for Pulse Input Signal	EXT-22	P-Gain
EXT-15	Pulse Input Signal Selection	EXT-23	I-Gain
EXT-16	Encoder Pulse Number	EXT-24	Slip Frequency
EXT-17	Filtering Time Constant	EXT-25	P-Gain for (Sensored) Vector_SPD
EXT-18	Pulse Input Signal Adjustment	EXT-26	I-Gain for (Sensored) Vector_SPD
		EXT-27	Forward Torque Limit
			EXT-28
Reverse Torque Limit			

## 1. Sub-B board with

Line Drive type encoder


Note) 1. - Main circuit, O : Control circuit.

[^16]
## 2. Sub-B board with Open collector type encoder



Note) $1 . \bullet$ : Main circuit, $\bigcirc:$ Control circuit
2. External speed command: V1, I, and V1+I (Refer to Function list)

### 7.3 Sub-C Board (Isolated)

### 7.3.1 Board Configuration



## 7．3．2 Terminal Configuration



## 7．3．3 Terminal Description

	Section	Terminal	Name	Description
$\begin{aligned} & \text { 郭 } \\ & \underline{\underline{c}} \end{aligned}$	Contact Input	P4，P5，P6	Multi－Function Input	Used as the extended function of P1，P2，P3 $(1 / 0-12 \sim 1 / 0-14) .$
		CM	Common Terminal	Common terminal for P4，P5，P6
	Analog   Frequency   Reference	VR	Power supply for V2	DC voltage output terminal for V2 $(+12 \mathrm{~V}, 10 \mathrm{~mA})$
		V2	Analog Voltage Input	Analog voltage or current input terminal for frequency reference or override．（0～10V DC， 4 ～20mA）   Connecting jumper pin（J1）select current input．
		5G	Common Terminal	Common terminal for VR and V2
$\begin{aligned} & \text { \#⿳亠口口口口 } \\ & \text { O } \end{aligned}$	Analog Voltage	AM1	Analog Meter 1	Used to monitor one of Output Frequency，Output Current，Output
		AM2	Analog Meter 2	Voltage，DC link Voltage   （ $0 \sim 10 \mathrm{~V}$ DC analog output， 1 mA ）
		GND	Common Terminal	Common terminal for LM
	Open Collector Output	Q1	Multi－function Output	Used as the extended function of AXA，AXC（／／O－44）
		EXTG	External Common Terminal	Common terminal for Q1
		NC	Not Used	

## 7．3．4 Parameters of Sub－C Board

Code	Parameter Description	Code	Parameter Description
EXT－01	Sub Board Type Display	EXT－09	Analog Voltage Input Signal（V2）Adjustment
EXT－02	Multi－Function Input Terminal（P4，P4，P6）define	EXT－10	
EXT－03		EXT－30	Multi－function Output Terminal（Q1）define
EXT－04		EXT－40	AM1，AM2 Adjustment
EXT－05	V2 Mode Selection	EXT－41	
EXT－06	Filtering Time Constant for V2 Input Signal	EXT－43	
EXT－07	Analog Voltage Input Signal（V2）Adjustment	EXT－43	
EXT－08			

### 7.4 Communication option boards

### 7.4.1 F-Net (Needed for Communication with LS GLOFA PLC)

Open network system protocol based on IEC/ISA FieldBus
\& Specification

- Topology: Linear Bus Topology
- Band Method: Baseband
- Protocol: Fnet Protocol
- Media Access Method: Token
- Drive link: Fiber optics
- Number of nodes: up to 64 nodes/Bus
- Max. Data transmission size: 256byte
- Baud rate: 1 Mbps
- Transmission distance: 750m Max.
- Error check: CRC-16
- Encoding method: Menchester Biphase-L
- Station: 0-63 (Setting via Keypad. Dip-switch not provided)


### 7.4.2 Device-Net (Field bus)

$\triangleleft$ Features

- Topology: Linear Bus Topology
- Band Method: Baseband
- Protocol: DeviceNet Protocol
- Media Access Method: CSMA/CD-NBA
- (Carrier Sense Multiple Access / Collision Detection - Nondestructive Bitwise Arbitration)
- Drive link: 5 -wire Cable (Twisted Pair)
- Number of nodes: 64 nodes/Bus Max
- Max. Data transmission size: max 8 bytes (64bits)
- Data rates and Max. Cable length (thick): $125 \mathrm{kbps}(500 \mathrm{~m} / 1640 \mathrm{ft})$, $250 \mathrm{kbps}(250 \mathrm{~m} / 820 \mathrm{ft}), 500 \mathrm{kbps}$ ( $100 \mathrm{~m} / 328 \mathrm{ft}$ )
$\triangleleft$ Specification
- Device type: AC Drive
- Communication control method:
(1) Explicit Peer to Peer Messaging
(2) Master/Scanner (Predefined M/S Connection)
(3) I/O Slave Messaging: Polling Connection
- Baud rate: $125 \mathrm{kbps}, 250 \mathrm{kbps}$, 500 kbps
- Supply voltage: 11-25V
- Faulted Node Recovery
- Station: 0-63 (Setting via Keypad, Dip-switch not provided)
- Output Assembly Instance: 20, 21 (100, 101 vendor specific)
- Input Assembly Instance: 70, 71(110, 111 vendor specific)
- Open Style Connector
- Interface: DPRAM
- Supports EDS files
* Refer to communication option manuals for details.


### 7.4.3 RS485 \& MODBUS-RTU Communication

Category	Specification
Communication Method	RS485 (RS232-485 Converter)
Transmission Form	Bus method Multi-drop Link System
Applicable Inverter	SV-iS5 series
Converter	Converter equipped with RS232
Number of connectable Inverter	31, Max.
Transmission Distance	Max. 1200m (Within 700m is desired)

[Hardware Specification]

Category		Specification
Installation		Install on the Control Board of Inverter using option connector (CN2)
Power   Supply	Control Board	Powered by Inverter
	Communication Board	Powered by Control Board Power (Isolated Power)


Communication Specifica	
Category	Specification
Communication Speed	19200/9600/4800/2400/19200 bps User Selectable
Control Procedure	Asynchronous Communication System
Communication System	Half duplex system
Character System	ASCII (8 bit)
Stop Bit Length	1 bit
Error Check (CRC16)	2 byte
Parity check	None

### 7.4.4 12Bit Binary (DI) Input

Category		Specification
BIT		Digital 12Bit input
Communication		Install on the Control Board of Inverter using option connector (CN2)
Power	Control Board	Powered by Inverter
Supply	24V Power	Powered by Inverter 24 V using connector

### 7.4.5 Installing Option Board

Connect the option board to Control board using Connector CN2.

Option board


### 7.5 Keypad

The is5 series has two kind of keypad for convenience.

### 7.5.1 LCD Keypad

(Weight: 140g, Unit: mm)


### 7.5.2 7-Segment Keypad

(Weight: 110g, Unit: mm)


### 7.5.3 RS485 Communication

The serial interface supports operation, configuration and monitoring of inverter functions through RS485 connection.

1) Terminal block configuration

P	N	G	S	T1	T2

2) Terminal Description

Terminal Name	Description
T1,T2	Short the terminal to connect the termination resistor on   board
S	SHEILD
G	Power grounding terminal for RS485
P	Connect the RS485 signal - High   Signal input/output terminal for RS 485
N	Connect the RS485 signal - Low   Reference terminal for RS 485

### 7.5.4 Remote cable

Ordering Number	Description
051050025	Remote cable -2 m
051050026	Remote cable -3 m
051050027	Remote cable -5 m

### 7.6 DB Resistors

1) Internal DB Resistor

SV-iS5 inverters up to 3.7 kW have built-in DB resistor on Power stack as factory installation. Installing the external DB resistor (Optional) kit is strongly recommended when the unit is used for continuous operation or motor rating is above 3.7 kW .

Voltage	Applied motor capacity (kW/HP)	Operating rate (\%ED/Continuous Braking Time)	Built in DB resistor (Braking Torque: 100\%)
200V Class	0.75 / 1	$3 \% / 5 \mathrm{Sec}$	200 ohm, 100W
	$1.5 / 2$	$3 \% / 5 \mathrm{Sec}$	100 ohm, 100W
	$2.2 / 3$	$2 \% / 5$ Sec	60 ohm, 100W
	$3.7 / 5$	2\% / 5 Sec	40 ohm, 100W
400V Class	$0.75 / 1$	$3 \% / 5 \mathrm{Sec}$	900 ohm, 100W
	$1.5 / 2$	$3 \% / 5$ Sec	450 ohm, 100W
	$2.2 / 3$	$2 \% / 5 \mathrm{Sec}$	300 ohm, 100W
	$3.7 / 5$	$2 \% / 5 \mathrm{Sec}$	200 ohm, 100W

2) DB Resistor (For External Installation, Optional)

DB transistor is integrated for ratings below 7.5 kW . Install the external DB resistor if necessary. However, DB transistor is not provided for the ratings above 11 kW , installing both external DB unit and DB resistor are required. See the following table for more details (ED: $5 \%$, Continuous Braking Time: 15 sec ). If Enable duty (\%ED) is increased to $10 \%$, use the external DB resistor having twice Wattage rating.

3) DB Resistor Wiring

When wiring, connect the DB Resistor as SHORT as possible.

- DB resistor wiring for $1-5 \mathrm{HP}$ Inverter


DB resistor terminal	Terminal description
B1, B2	Connect the DB Resistor to Inverter terminal B1, B2.
TH1, TH2	Thermal sensors provided with the DB resistor.   P1 is ON (TH1-TH2 Shorted) at normal (ambient temp) and P1 is OFF (TH1-TH2   Open) at overheated status. Connect the thermal sensor to one of the multi-function   input (P1, P2 or P3, I/O 12-14 setting: Ext Trip-B).

- DB resistor wiring for 7.5-10HP Inverter


DB resistor terminal	Terminal description
B1, B2	Connect the DB Resistor to Inverter terminal B1, B2.
TH1, TH2	Thermal sensors provided with the DB resistor.   P1 is ON (TH1-TH2 Shorted) at normal (ambient temp) and P1 is OFF (TH1-TH2   Open) at overheated status. Connect the thermal sensor to one of the multi-function   input (P1, P2 or P3, I/O 12-14 setting: Ext Trip-B).

-DB resistor wiring for 15~30HP Built-in DB Unit Inverter


DB resistor terminal	Terminal description
B1, B2	Connect the DB Resistor to Inverter terminal B1, B2.
TH1, TH2	Thermal sensors provided with the DB resistor.   P1 is ON (TH1-TH2 Shorted) at normal (ambient temp) and P1 is OFF (TH1-TH2   Open) at overheated status. Connect the thermal sensor to one of the multi-function   input (P1, P2 or P3, I/O 12-14 setting: Ext Trip-B).

- DB Resistor/Unit wiring for 15-100 HP Inverter


DB resistor terminal	Terminal description
$\mathrm{B} 1, \mathrm{~B} 2$	Connect the DB Resistor to DBU terminal P/B1, B2.
TH1, TH2	Thermal sensors provided with the DB resistor.   P1 is ON (TH1-TH2 Shorted) at normal (ambient temp) and P1 is OFF (TH1-TH2   Open) at overheated status. Connect the thermal sensor to one of the multi-function   input (P1, P2 or P3, I/O 12-14 setting: Ext Trip-B).

* For DBU, refer to 7.7 DB Unit.


## 4) DB Resistor Dimensions

DB Resistor	Inverter Model	Type	Dimensions [mm]					
			W	H	D	A	B	C
BR0400W150J	SV 008IS5-2	1	64	412	40	-	400	6.3
BR0400W060J	SV 015IS5-2	1	64	412	40	-	400	6.3
BR0400W050J	SV 022IS5-2	1	64	412	40	-	400	6.3
BR0600W033J	SV 037IS5-2	2	128	390	43	64	370	5
BR0800W020J	SV 055IS5-2	3	220	345	93	140	330	7.8
BR1200W015J	SV 075IS5-2	3	220	345	93	140	330	7.8
BR2400W010J	SV 110IS5-2	3	220	445	93	140	430	7.8
BR2400W008J	SV 150IS5-2	3	220	445	93	140	430	7.8
BR3600W005J	SV 185IS5-2	3	220	445	165	140	430	7.8
BR3600W005J	SV 220IS5-2	3	220	445	165	140	430	7.8
BR0400W600J	SV 008IS5-4	1	64	412	40	-	400	6.3
BR0400W300J	SV 015IS5-4	1	64	412	40	-	400	6.3
BR0400W200J	SV 022IS5-4	1	64	412	40	-	400	6.3
BR0600W130J	SV 037IS5-4	2	128	390	43	64	370	5
BR1000W085J	SV 055IS5-4	3	220	345	93	140	330	7.8
BR1200W060J	SV 075IS5-4	3	220	345	93	140	330	7.8
BR2000W040J	SV 110IS5-4	3	220	445	93	140	430	7.8
BR2400W030J	SV 150IS5-4	3	220	445	93	140	430	7.8
BR3600W020J	SV 185IS5-4	3	220	445	165	140	430	7.8
BR3600W020J	SV 220IS5-4	3	220	445	165	140	430	7.8

[^17]

* Type 2 (Max. 600 Watt)

* Type 3



### 7.7 DB (Dynamic Brake) Unit

1) DBU models

UL	Inverter	Applicable motor rating	DB Unit	Dimension
Non UL type	200 V	$11 \sim 15 \mathrm{~kW}$	SV150DBU-2	Group 1.   See 4) Dimensions
	200 V	18.5 ~ 22 kW	SV220DBU-2	
	200 V	$30 \sim 37 \mathrm{~kW}$	SV370DBU-2	Group 2.   See 4) Dimensions
	200 V	$45 \sim 55 \mathrm{~kW}$	SV550DBU-2	
	400 V	$11 \sim 15 \mathrm{~kW}$	SV150DBU-4	Group 1.   See 4) Dimensions
	400 V	18.5 ~ 22 kW	SV220DBU-4	
	400 V	$30 \sim 37 \mathrm{~kW}$	SV370DBU-4	Group 2.   See 4) Dimensions
	400 V	$45 \sim 55 \mathrm{~kW}$	SV550DBU-4	
	400 V	75 kW	SV750DBU-4	
UL Type	200 V	$11 \sim 15 \mathrm{~kW}$	SV150DBU-2U	Group 3.   See 4) Dimensions
	200 V	$18.5 \sim 22 \mathrm{~kW}$	SV220DBU-2 U	
	200 V	$30 \sim 37 \mathrm{~kW}$	SV370DBU-2 U	
	200 V	$45 \sim 55 \mathrm{~kW}$	SV550DBU-2 U	
	400 V	$11 \sim 15 \mathrm{~kW}$	SV150DBU-4 U	
	400 V	18.5 ~ 22 kW	SV220DBU-4 U	
	400 V	$30 \sim 37 \mathrm{~kW}$	SV370DBU-4 U	
	400 V	$45 \sim 55 \mathrm{~kW}$	SV550DBU-4 U	
	400 V	75 kW	SV750DBU-4 U	

2) Terminal configuration


- Group 2:

- Group 3:


Terminal	Description
G	Grounding teminal
B2	Connect it to DB Resistor terminal B2
B1	Connect it to DB Resistor terminal B1
N	Connect it to Inverter terminal N
P	Connect it to Inverter terminal P
CM	Common for Terminal OH
OH *	Overheat Trip Output Terminal   (Open Collector output: 20mA, 27V DC)

3) DB Resistor/Unit wiring for 15-100 HP Inverter

4) Dimensions

- Group 1

- Group 2

- Group 3:

(5) Monitoring LEDs
* Group 1


LED	Description
OHT	When heat sink is overheated and the level exceeds its setting
(GREEN,	limit, overheat protection is activated and OHT LED is turned ON   LEFT)   after DBU''s signal is sut off.
POWER	POWER LED is turned ON upon inverter Power ON because
(RED)	normally it is connected to the inverter.
RUN	RUN LED is blinking while DBU is operating normally by motor
(GREEN,	Regenerating energy.   RIGHT)

* Group 2


LED	Description
RESET	Press this switch to release OCT FAULT status. Pressing this   turns the OCT LLD off.
POWER	POWER LED is turned ON upon inverter Power ON because   (GREEN)   normally it is connected to the inverter.
RUN	RUN LLD is blinking while DBU is operating normally by motor   (GREEN)   regenerating energy.
OHT (RED)	When heat sink is overheated and the level exceeds its setting   limit, overheat protection is activated and OHT LED is turned ON   after DBU's signal is shut off.
OCT (RED)	Over current trip signal. When overcurrent is flowed to the iGBTT   protection function shuts off the operating signal and OCT LED is   tured ON.

* Group 3


LED	Description
POWER	POWER LED is turned ON upon inverter Power ON because normally it is connected to the inverter.
$\begin{gathered} \text { RUN } \\ \text { (GREEN) } \end{gathered}$	RUN LED is blinking while DBU is operating normally by motor regenerating energy.
$\begin{aligned} & \text { OHT } \\ & \text { (RED) } \end{aligned}$	When heat sink is overheated and the level exceeds its setting limit, overheat protection is activated and OHT LED is turned ON after DBU's signal is shut off.
$\begin{gathered} \text { OCT } \\ \text { (RED) } \end{gathered}$	Over current trip signal. When overcurrent is flowed to the iGBT, protection function shuts off the operating signal and OCT LED is tured ON.
$\begin{aligned} & \hline \text { FOT } \\ & \text { (RED) } \\ & \hline \end{aligned}$	FOT LED is turned ON when fuse is opened to shut the overcurrent during braking.

## CHAPTER 8 - TROUBLESHOOTING \& MAINTENANCE

### 8.1 Fault Display

When a fault occurs, the inverter turns off its output and displays the fault status in DRV-07. The last 5 faults are saved in FU2-01 through FU2-05 with the operation status at the instance of fault.

Keypad Display		Protective Function	Description
LCD	7-Segment		
Over Current 1	OC1	Over Current Protection	The inverter turns off its output when the output current of the inverter flows more than $200 \%$ of the inverter rated current.
Ground Fault	GF	Ground Fault Protection	The inverter turns off its output when a ground fault occurs and the ground fault current is more than the internal setting value of the inverter. Over current trip function may protect the inverter when a ground fault occurs due to a low ground fault resistance.
Over Voltage	OV	Over voltage protection	The inverter turns off its output if the $D C$ voltage of the main circuit increases higher than the rated value when the motor decelerates or when regenerative energy flows back to the inverter due to a regenerative load. This fault can also occur due to a surge voltage generated at the power supply system.
Over Load	OLT	Current Limit Protection (Overload Protection)	The inverter turns off its output if the output current of the inverter flows at $180 \%$ of the inverter rated current for more than the current limit time (SNW).
Fuse Open	FUSE	Fuse Open	The inverter turns off its output by opening the fuse when something is wrong with the main circuit IGBT to protect the wiring from being damaged from short currents.
Over Heat	OH	Heat Sink Over Heat	The inverter turns off its output if the heat sink over heats due to a damaged cooling fan or an alien substance in the cooling fan by detecting the temperature of the heat sink.
E-Thermal	ETH	Electronic Thermal	The internal electronic thermal of the inverter determines the over heating of the motor. If the motor is overloaded the inverter turns off the output. The inverter cannot protect the motor when driving a multi-pole motor or when driving multiple motors, so consider thermal relays or other thermal protective devices for each motor.   Overload capacity: $150 \%$ for 1 min
External-A	EXTA	External fault A	Use this function if the user needs to turn off the output by an external fault signal. (Normal Open Contact)
External-B	EXTB	External fault B	Use this function if the user needs to turn off the output by an external fault signal. (Normal Close Contact)
Low Voltage	LV	Low Voltage Protection	The inverter turns off its output if the $D C$ voltage is below the detection level because insufficient torque or over heating of the motor can occurs when the input voltage of the inverter drops.
Over Current 2	OC2	IGBT Short	The inverter turns off the output if an IGBT short through or an output short occurs.
Phase Open	PO	Output Phase open	The inverter turns off its output when the one or more of the output ( $\mathrm{U}, \mathrm{V}, \mathrm{W}$ ) phase is open. The inverter detects the output current to check the phase open of the output.
BX	BX	BX Protection (Instant Cut Off)	Used for the emergency stop of the inverter. The inverter instantly turns off the output when the $B X$ terminal is turned $O N$, and returns to regular operation when the $B X$ terminal is turned OFF. Take caution when using this function.
Option (*)	OPT	Option Fault	Fault at the internal option of the inverter.
HW-Diag	HW	Inverter H/W Fault	A fault signal is output when an error occurs to the control circuitry of the inverter. There are the Wdog error, the EEP error, and the ADC Offset for this fault
COM Error CPU Error	Err	Communication Error	This fault is displayed when the inverter cannot communicate with the keypad.


Keypad Display		Protective   Function	
LCD	7-Segment		Description

To reset fault, Press RESET key, Close RST-CM terminals or connect input power.
If a problem persists, please contact the factory or your local distributor.

### 8.2 Fault Remedy

Protective Function	Cause	Remedy
Over Current Protection	1) Acceleration/Deceleration time is too short compared to the $\mathrm{GD}^{2}$ of the load.   2) Load is larger than the inverter rating.   3) Inverter turns output on when the motor is free running.   4) Output short or ground fault has occurred.   5) Mechanical brake of the motor is operating too fast.   6) Components of the main circuit have overheated due to a faulty cooling fan.	1) Increase Accel/Decel time.   2) Increase inverter capacity.   3) Operate after motor has stopped.   4) Check output wiring.   5) Check mechanical brake operation.   6) Check cooling fan.   (Caution) Operating inverter prior to correcting fault may damage the IGBT.
Ground Current Protection	1) Ground fault has occurred at the output wiring of inverter.   2) The insulation of the motor is damaged due to heat.	1) Investigate the output wiring of inverter.   2) Exchange motor.
Over Voltage Protection	1) Acceleration time is too short compared to the $G D^{2}$ of load.   2) Regenerative load at the output   3) Line voltage high	1) Increase deceleration time.   2) Use regenerative resistor option.   3) Check line voltage.
Current Limit Protection (Overload Protection)	1) Load is larger than the inverter rating.   2) Incorrect inverter capacity selected.   3) Set incorrect V/F pattern.	1) Increase capacity of motor and inverter.   2) Select correct inverter capacity.   3) Select correct V/F pattern.
Fuse Damage	1) Damaged due to over use of over current protection.   2) Damaged due to instant deceleration when motor is at an excessive excitation status.	Exchange the fuse.   (Caution) The IGBT receives damages on many occasions when Fuse Open Trip occurs.
Heat Sink Overheat	1) Cooling fan damaged or an alien substance inserted.   2) Cooling system has faults.   3) Ambient temperature high.	1) Exchange cooling fans and/or eliminate alien substance.   2) Check for alien substances in the heat sink.   3) Keep ambient temperature under $40{ }^{\circ} \mathrm{C}$.
Electronic Thermal	1) Motor has overheated.   2) Load is larger than inverter rating.   3) ETH level too low.   4) Incorrect inverter capacity selected.   5) Set incorrect V/F pattern.   6) Operated too long at low speeds.	1) Reduce load and/or running duty.   2) Increase inverter capacity.   3) Adjust ETH level to an appropriate level.   4) Select correct inverter capacity.   5) Select correct V/F pattern.   6) Install a cooling fan with a separate power supply.
External fault A	External fault has occurred.	Eliminate fault at circuit connected to external fault terminal or cause of external fault input.
External fault B	External fault has occurred.	Eliminate fault at circuit connected to external fault terminal or cause of external fault input.
Low Voltage Protection	1) Line voltage low.   2) Load larger than line capacity is connected to line. (welding machine, motor with high starting current connected to the commercial line)   3) Faulty magnetic switch at the input side of the inverter	1) Check line voltage.   2) Increase line capacity.   3) Exchange magnetic switch.
Over Current 2	1) Short has occurred between the upper and lower IGBT.   2) Short has occurred at the output of the inverter.   3) Acceleration/Deceleration time is too short compared to the $\mathrm{GD}^{2}$ of load.	1) Check IGBT.   2) Check output wiring of inverter.   3) Increase acceleration time.
Output Phase Open	1) Faulty contact of magnetic switch at output 2) Faulty output wiring	1) Check magnetic switch at output of inverter.   2) Check output wiring.
Overspeed	1) Encoder wiring error ( $A$ and $B$ wiring switched)   2) Encoder parameter setting is incorrect.   3) Sub-B board or Encoder error	1) Check for the wiring of inverter and encoder   2) Check for parameter setting of EXT-14, 15, and 16.   3) Exchange inverter and encoder for a new one.
H/W Fault	1) Wdog error (CPU fault)   2) EEP error (memory fault)	Exchange inverter.


Protective   Function	Cause	Remedy
	3) ADC Offset (current feedback circuit fault)	
Communication   Fault	1) Faulty connection between inverter and keypad   2) Inverter CPU malfunction	1) Check connector.   2)
Operating   Method when the   Speed   Reference is   Lost	LOP (Loss of reference from the Option),   LOR (Remote)   LOV (V1),   LOI (I),   LOX (Sub-V2, ENC)	Eliminate cause of fault.
Inverter	1) Load is larger than inverter rating.   Overload	2) Incorrect inverter capacity selected.

### 8.3 Troubleshooting

Condition	Check Point
	1)      Main circuit inspection:   2)   2s the input (line) voltage normal? (Is the LED in the inverter is lit?)
The Motor Does Not inspectionn:   Rotated correctly?	
Check the operating signal input to the inverter.	

### 8.4 How to Check Power Components

Before checking the power components, be sure to disconnect AC Input supply and wait until the Main Electrolytic Capacitors (DCP-DCN) discharge.


Diode Module Check

Check point	Resistance to be Good
$R, S, T-P 1$	50 k ohms or more
$\mathrm{R}, \mathrm{S}, \mathrm{T}-\mathrm{N}$	50 k ohms or more

Charge Resistor Check

Check point	Resistance to be Good
Contactor terminals	Depending on model

- DB (Dynamic Braking) IGBT (Option)

Check point	Resistance to be Good
B2 -N	50 k ohms or more
$\mathrm{G}-\mathrm{N}$	A few kilo ohms

IGBT Module Check

Check point	Resistance to be Good
B2 -N	50 k ohms or more
G -N	A few kilo ohms

### 8.5 Maintenance

The iS5 series is an industrial electronic product with advanced semiconductor elements. However, temperature, humidity, vibration and aging parts may still affect it. To avoid this, it is recommended to perform routine inspections.

### 8.5.1 Precautions

- Be sure to remove the drive power input while performing maintenance.
- Be sure to perform maintenance only after checking that the bus has discharged. The bus capacitors in the electronic circuit can still be charged even after the power is turned off.
- The correct output voltage can only be measured by using a rectifier voltage meter. Other voltage meters, including digital voltage meters, are likely to display incorrect values caused by the high frequency PWM output voltage of the drive.


### 8.5.2 Routine Inspection

Be sure to check the following before operation:

- The conditions of the installation location
- The conditions of the drive cooling
- Abnormal vibration
- Abnormal heating


### 8.5.3 Periodical Inspection

- Are there any loose bolt, nut or rust caused by surrounding conditions? If so, tighten them up or replace them.
- Are there any deposits inside the drive-cooling fan? If so, remove using air.
- Are there any deposits on the drive's PCB (Printed Circuit Boards)? If so, remove using air.
- Are there any abnormalities in the various connectors of the drive's PCB? If so, check the condition of the connector in question.
- Check the rotating condition of the cooling fan, the size and condition of the capacitors and the connections with the magnetic contactor. Replace them if there are any abnormalities.


### 8.5.4 Internal Fuse Replacement

When the internal fuse is opened the IGBT's should be checked thoroughly before replacing the fuse.
Contact the factory for replacement fuse information.

### 8.6 Daily and Periodic Inspection Items

		Inspection	Period			Inspection Method	Criterion	Measuring Instrument
			$\frac{\lambda}{\overline{\bar{N}}}$	$\stackrel{\text { 늟 }}{\stackrel{1}{\approx}}$	$\stackrel{\text { N }}{\stackrel{\text { N }}{\top}}$			
All	Ambient Environment	Is there any dust? Is the ambient temperature and humidity adequate?	O			Refer to the precautions.	Temperature: $-10 \sim+40$ no freezing. Humidity: Under 50\% no dew	Thermometer Hygrometer, Recorder
	Equipment	Is there any abnormal oscillation or noise?	O			Use sight and hearing.	No abnormality	
	Input Voltage	Is the input voltage of the main circuit normal?	O			Measure the voltage between the terminals R, S, T.		Digital MultiMeter/Tester
	All	Megger check (between the main circuit and the ground)   Are any fixed parts removed?   Are there any traces of overheating at each component's cleaning?		$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	O	Undo the inverter connections short the terminals $\mathrm{R}, \mathrm{S}, \mathrm{T}, \mathrm{U}, \mathrm{V}, \mathrm{W}$ and measure between these parts and the ground.   Tighten the screws.   Visual check.	Over 5M $\Omega$ No fault	DC 500V class Megger
	Conductor/ Wire	Is the conductor rusty? Is the wire coating damaged?		$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \end{aligned}$		Visual check	No fault	
	Terminal	Is there any damage?		O		Visual check	No fault	
	IGBT   Module   /Diode   Module	Check the resistance between each of the terminals.			O	Undo the inverter connection and measure the resistance between $\mathrm{R}, \mathrm{S}$, $\mathrm{T} \Leftrightarrow \mathrm{P}, \mathrm{N}$ and $\mathrm{U}, \mathrm{V}, \mathrm{W} \Leftrightarrow \mathrm{P}, \mathrm{N}$ with a tester.	(Refer 'How to Check Power Components")	Digital MultiMeter/Analog Tester
	Smoothing Capacitor	Is there any liquid coming out? Is the safety pin out, and is there any swelling?   Measure the capacitance.	$\mathrm{O}$ $\mathrm{O}$	O		Visual check Measure with a capacitancemeasuring device.	No fault Over $85 \%$ of the rated capacity	Capacitance Measuring Device
	Relay	Is there any chattering noise during operation?   Is there any damage to the contact		O   O		Auditory check   Visual check	No fault	
	Resistor	Is there any damage to the resistor insulation?   Is the wiring in the resistor damaged (open)?		O $\mathrm{O}$		Visual check   Disconnect one of the connections and measure with a tester.	No fault Error must be within $\pm 10 \%$ the displayed resistance.	Digital MultiMeter/Analog Tester
	Operation Check	Is there any unbalance between each phases of the output voltage?   Nothing must be wrong with display circuit after executing the sequence protective operation.		$\mathrm{O}$ O		Measure the voltage between the output terminals $\mathrm{U}, \mathrm{V}$ and W .   Short and open the inverter protective circuit output.	The voltage balance between the phases for 200 V ( 800 V ) class is under $4 \mathrm{~V}(8 \mathrm{~V})$. The fault circuit operates according to the sequence.	Digital MultiMeter/Rectifyi ng Voltmeter
	Cooling Fan	Is there any abnormal oscillation or noise? Is the connection area loose?	O	O		Turn OFF the power and turn the fan by hand.   Tighten the connections.	Must rotate smoothly. No fault	
$\frac{\overrightarrow{0}}{\frac{\text { O}}{0}}$	Meter	Is the displayed value correct?	O	O		Check the meter reading at the exterior of the panel.	Check the specified and management values.	Voltmeter/ Ammeter etc.
$\begin{aligned} & \text { 흠 } \\ & \stackrel{0}{0} \end{aligned}$	All	Are there any abnormal vibrations or noise? Is there any unusual odor?	$\begin{aligned} & \hline \mathrm{O} \\ & \mathrm{O} \end{aligned}$			Auditory, sensory, visual check. Check for overheat and damage.	No fault	
	Insulation Resistor	Megger check (between the output terminals and the ground terminal)			O	Undo the $\mathrm{U}, \mathrm{V}$ and W connections and tie the motor wiring.	Over 5M $\Omega$	500 V class Megger

Note: Values in () is for the 400 V class inverters.

## APPENDIX A - FUNCTIONS BASED ON USE

Set the function properly according to the load and operating conditions. Application and related functions are listed in the following table.

Use	Related Parameter Code
Accel/Decel Time, Pattern Adjustment	DRV-01 [Acceleration Time], DRV-02 [Deceleration Time], FU1-05 [Acceleration Pattern], FU1-06 [Deceleration Pattern]
Reverse Rotation Prevention	FU1-03 [Forward, Reverse Prevention]
Minimum Accel/Decel Time	FU1-05 [Acceleration Pattern], FU1-06 [Deceleration Pattern]
Accel/Decel at Continuous Rating Range	FU1-05 [Acceleration Pattern], FU1-06 [Deceleration Pattern]
Braking Operation Adjustment	FU1-07 [Stop Method], FU1-08~11 [DC Braking], FU1-12~13 [DC braking at start]
Operations for Frequencies Over 60 Hz	FU1-20 [Maximum Frequency],   FU1-25 [Frequency Upper Limit],   I/O-05 [Frequency Corresponding to Max. Voltage of V1],   I/O-10 [Frequency Corresponding to Max. Current of I]
Selecting an Appropriate Output Characteristics for the Load	FU1-20 [Maximum Frequency], FU1-21 [Base Frequency]
Motor Output Torque Adjustment	FU1-22 [Starting Frequency], FU1-26~28 [Torque Boost], FU1-59~60 [Stall Prevention], FU2-30 [Rated Motor]
Output Frequency Limit	FU1-23~25 [Frequency Upper/Lower Limit], I/O-01~10 [Analog Frequency Setting]
Motor Overheat Protection	FU1-50~53 [Electronic Thermal], FU2-30 [Rated Motor]
Multi Step Operation	I/O-12~14 [Define the Multi Function Input Terminals], I/O-20~27 [Jog, Multi Step Frequency],   FU1-23-25 [Frequency Upper/Lower Limit]
Jog Operation	1/0-20 [Jog Frequency]
Frequency Jump Operation	FU2-10~16 [Frequency Jump]
Timing the Electronic Brake Operation	I/0-42~43 [Frequency Detection Level], I/O-44 [Multi Function Output]
Displaying the Rotating Speed	DRV-04 [Motor Speed], FU2-74 [Motor RPM Display Gain]
Function Alteration Prevention	FU2-94 [Parameter Lock]
Energy Saving	FU1-39 [Energy Saving]
Auto Restart Operation After Alarm Stop	FU2-27-28 [Auto Retry]
$2^{\text {nd }}$ Motor Operation	FU2-81~90 [20 ${ }^{\text {nd }}$ Function]
PID Feedback Operation	FU2-50~54 [PID Operation]
Frequency Reference Signal and Output Adjusting	I/0-01~10 [Analog Frequency Setting]
Define the Multi-Function Input Terminals	1/0-12~14 [Define the Multi-Function Input Terminals]
Define the Multi-Function Input Terminals	I/O-44 [Multi Function Auxiliary Contact Output Setting]
Commercial Line $\Leftrightarrow$ inverter Switchover Operation	I/0-12~14 [Define the Multi-Function Input Terminals], I/O-44 [Multi-Function Auxiliary Contact Output Setting]
Frequency Meter Calibration	I/O-40~41 [FM Output]
Operate by Communicating with a Computer	I/O-46 [Inverter No.], 1/0-47 [communication Speed], 1/0-48~49 [Loss of Reference]

## APPENDIX B - PARAMETERS BASED ON APPLICATION

Application	Parameter Code
DRV Group	
When you want to change the frequency setting	DRV-00
When you want to change the acceleration and deceleration time of the motor	DRV-01, DRV-02
When you want to change the run/stop method	DRV-03
When you want to change the frequency reference source	DRV-04
When you want to set the multi-function	DRV-005 ~ 07
When you want to see the output current, motor speed and the DC link voltage of inverter	DRV-08 ~ 10
When you want to see the output voltage, output power, output torque from the user display	DRV-11
When you want to check the fault of the inverter	DRV-12
FU1 Group	
When you want to use the Jump Code	FU1-00
When you want to prevent the motor from rotating at opposite directions	FU1-03
When you want to select the acceleration and deceleration pattern suitable for your application	FU1-05 ~ 06
When you want to change the stopping method	FU1-07
When you want to change the stopping accuracy for steady stop	FU1-08 ~ 11
When DC injection braking is required before starting	FU1-12 ~ 13
When you want to set the maximum frequency and the base frequency according to the rated torque of the motor	FU1-20 ~ 21
When you want to adjust the starting frequency	FU1-22
When you want to limit the mechanical rotating speed to a fixed value	FU1-23 ~ 25
When a large starting torque is needed for loads such as elevators (Manual/Auto Torque Boost)	FU1-26 ~ 28
When you want to select an appropriate output characteristic (V/F characteristic) according to loads	FU1-29
When you want to se up your own V/F pattern	FU1-30 ~ 37
When you want to adjust the output voltage of the inverter	FU1-38
When you want to use the energy saving function	FU1-39
When you want to protect the motor from overheating	FU1-50 ~ 53
When you want to output a signal when the overload condition lasts more than a fixed amount of time	FU1-54 ~ 55
When you want to cut off the output when the overload condition lasts more than a fixed amount of time	FU1-56 ~ 58
When you want to set the stall prevention function	FU1-59 ~ 60
FU2 Group	
When you want to check the fault history of the inverter	FU2-01 ~ 06
When you want to use dwell function	FU2-07 ~ 08
When you want to prevent the resonance from the oscillating characteristics of a machine	FU2-10 ~ 16
When you want to protect inverter from input/output phase loss	FU2-19
When you want to start the inverter as soon as the power is turned ON	FU2-20
When you want to restart the inverter by resetting the fault when a fault occur	FU2-21
When you want to use the instant power failure restart function (Speed Search)	FU2-22 ~ 25
When you want to use the retry function	FU2-26 ~ 27
When you want to enter the motor constants	FU2-30 ~ 37
When you want to reduce noise or leakage current by changing the PWM carrier frequency	FU2-39
When you want to change the control method (V/F, slip compensation, PID, or sensorless operation)	FU2-40
When you want to use the auto tuning function	FU2-41 ~ 44
When you want to operate using PID feedback	FU2-50 ~ 54
When you want to change the reference frequency for acceleration and deceleration	FU2-70


Application	Parameter Code
When you want to change the acceleration and deceleration time scale	FU2-71
When you want to set the initial keypad display that is displayed when the power is turned ON	FU2-72
When you want to set the user defined display	FU2-73
When you want to adjust the gain for the motor RPM display	FU2-74
When you want to set the dynamic braking (DB) resistor mode	FU2-75 ~ 76
When you want to verify the inverter software version	FU2-79
When you want to change the connection from one motor to the other motor which use difference parameters	FU2-81 ~ 90
When you want to copy the inverter parameter to another inverter	FU2-91~92
When you want to initialize the parameters	FU2-93
When you want to prevent the parameters from being changed	FU2-94
I/O Group	
When you want to set the analog voltage or current for the frequency reference	I/O-01 ~ 10
When you want to set the operating method when the frequency reference is lost	1/0-11
When you want to change the functions for the input terminals P1, P2, and P3	I/O-12 ~ 14
When you want to check the status of the input/output terminals	I/0-15 ~ 16
When you want to change the response time of the input terminals	1/0-17
When you want to use the JOG and multi step speed operation	I/O-20 ~ 24
When you want to change the $1^{\text {st }} \sim 7^{\text {th }}$ acceleration/deceleration time	I/0-25 ~ 38
When you want to use the FM meter terminal output	I/0-40 ~ 41
When you want to set the frequency detection level	I/0-42 ~ 43
When you want to change the functions of the multi function auxiliary contact output (AXA-AXC)	1/0-44
When you want to exchange the motor to commercial power line from inverter or the opposite	1/0-44
When you want to use the fault relay (30A, 30B, 30C) functions	1/0-45
When you want to use RS232/485 communication	1/0-46 ~ 47
When you want to set the operating method when the frequency reference is lost	1/0-48 ~ 49
When you want to use the auto (sequence) operation	I/O-50 ~ 84
EXT Group (When a Sub-board and/or an option board is installed)	
When you want to define the functions for the input terminals P4, P5, P6 (SUB-A, SUB-C)	EXT-02 ~ 04
When you want to use the analog voltage (V2) input (SUB-A, SUB-C)	EXT-05 ~ 10
When you want to use the encoder pulse for feedback to control the motor speed, or use the pulse input for frequency reference (SUB-B)	EXT-14 ~ 24
When you want to change the functions of the output terminals Q1, Q2, Q3 (SUB-A, SUB-C)	EXT-30 ~ 32
When you want to use the LM meter terminal output (SUB-A, SUB-C)	EXT-34 ~ 35
When you want to use the analog outputs (AM1, AM2 terminals)	EXT-40 ~ 43

## APPENDIX C- PERIPHERAL DEVICES

Inverter   Models	$\begin{aligned} & \text { Motor } \\ & \text { [HP] } \\ & \hline \end{aligned}$	MCCB, ELB	Magnetic   Contactor	Wire, $\mathrm{mm}^{2}$ (AWG)			AC Input Fuse	AC Reactor	DC Reactor
				R, S, T	U, V, w	Ground			
SV008iS5-2	1	TD125U/EBS33b	GMC-9	2 (14)	2 (14)	3.5 (12)	10 A	$2.13 \mathrm{mH}, 5.7 \mathrm{~A}$	$7.00 \mathrm{mH}, 5.4 \mathrm{~A}$
SV015iS5-2	2	TD125U/EBS33b	GMC-12	2 (14)	2 (14)	3.5 (12)	15 A	$1.20 \mathrm{mH}, 10 \mathrm{~A}$	$4.05 \mathrm{mH}, 9.2 \mathrm{~A}$
SV022iS5-2	3	TD125U/EBS33b	GMC-18	2 (14)	2 (14)	3.5 (12)	25 A	$0.88 \mathrm{mH}, 14 \mathrm{~A}$	$2.92 \mathrm{mH}, 13 \mathrm{~A}$
SV037iS5-2	5	TD125U/EBS33b	GMC-32	3.5 (12)	3.5 (12)	3.5 (12)	40 A	$0.56 \mathrm{mH}, 20 \mathrm{~A}$	$1.98 \mathrm{mH}, 19 \mathrm{~A}$
SV055iS5-2	7.5	TD125U/EBS53b	GMC-40	5.5 (10)	5.5 (10)	5.5 (10)	40 A	$0.39 \mathrm{mH}, 30 \mathrm{~A}$	$1.37 \mathrm{mH}, 29 \mathrm{~A}$
SV075iS5-2	10	TD125U/EBS63b	GMC-50	8 (8)	8 (8)	5.5 (10)	50 A	$0.28 \mathrm{mH}, 40 \mathrm{~A}$	$1.05 \mathrm{mH}, 38 \mathrm{~A}$
SV110iS5-2	15	TD125U/EBS103b	GMC-65	14 (6)	14 (6)	14 (6)	70 A	$0.20 \mathrm{mH}, 59 \mathrm{~A}$	$0.74 \mathrm{mH}, 56 \mathrm{~A}$
SV150iS5-2	20	TD125U/EBS203b	GMC-100	22 (4)	22 (4)	14 (6)	100 A	$0.15 \mathrm{mH}, 75 \mathrm{~A}$	$0.57 \mathrm{mH}, 71 \mathrm{~A}$
SV185iS5-2	25	TS250U/EBS203b	GMC-125	30 (3)	30 (3)	22 (4)	100 A	$0.12 \mathrm{mH}, 96 \mathrm{~A}$	$0.49 \mathrm{mH}, 91 \mathrm{~A}$
SV220iS5-2	30	TS250U/EBS203b	GMC-150	38(2)	30 (3)	22 (4)	125 A	$0.10 \mathrm{mH}, 112 \mathrm{~A}$	$0.42 \mathrm{mH}, 107 \mathrm{~A}$
SV300iS5-2	40	TS250U/EBS203b	GMC-180	60(2/0)	60(2/0)	22 (4)	190 A	$0.07 \mathrm{mH}, 160 \mathrm{~A}$	$0.34 \mathrm{mH}, 152 \mathrm{~A}$
SV370iS5-2	50	TS400U/EBS403b	GMC-220	60(2/0)	60(2/0)	22 (4)	220 A	$0.06 \mathrm{mH}, 191 \mathrm{~A}$	$0.29 \mathrm{mH}, 181 \mathrm{~A}$
SV450iS5-2	60	TS400U/EBS403b	GMC-300	100(4/0)	100(4/0)	38 (2)	270 A	$0.05 \mathrm{mH}, 223 \mathrm{~A}$	$0.29 \mathrm{mH}, 233 \mathrm{~A}$
SV550iS5-2	75	TS800U/EBS603b	GMC-400	100(4/0)	100(4/0)	38 (2)	330 A	$0.04 \mathrm{mH}, 285 \mathrm{~A}$	$0.25 \mathrm{mH}, 270 \mathrm{~A}$
SV008iS5-4	1	TD125U/EBS33b	GMC-9	2 (14)	2 (14)	2 (14)	6 A	$8.63 \mathrm{mH}, 2.8 \mathrm{~A}$	$28.62 \mathrm{mH}, 2.7 \mathrm{~A}$
SV015iS5-4	2	TD125U/EBS33b	GMC-9	2 (14)	2 (14)	2 (14)	10 A	$4.81 \mathrm{mH}, 4.8 \mathrm{~A}$	$16.14 \mathrm{mH}, 4.6 \mathrm{~A}$
SV022iS5-4	3	TD125U/EBS33b	GMC-12	2 (14)	2 (14)	2 (14)	10 A	$3.23 \mathrm{mH}, 7.5 \mathrm{~A}$	$11.66 \mathrm{mH}, 7.1 \mathrm{~A}$
SV037iS5-4	5	TD125U/EBS33b	GMC-18	2 (14)	2 (14)	2 (14)	20 A	$2.34 \mathrm{mH}, 10 \mathrm{~A}$	$7.83 \mathrm{mH}, 10 \mathrm{~A}$
SV055iS5-4	7.5	TD125U/EBS33b	GMC-22	3.5 (12)	2 (14)	3.5 (12)	20 A	$1.22 \mathrm{mH}, 15 \mathrm{~A}$	$5.34 \mathrm{mH}, 14 \mathrm{~A}$
SV075iS5-4	10	TD125U/EBS33b	GMC-32	3.5 (12)	3.5 (12)	3.5 (12)	30 A	$1.14 \mathrm{mH}, 20 \mathrm{~A}$	$4.04 \mathrm{mH}, 19 \mathrm{~A}$
SV110iS5-4	15	TD125U/EBS53b	GMC-40	5.5 (10)	5.5 (10)	8 (8)	35 A	$0.81 \mathrm{mH}, 30 \mathrm{~A}$	$2.76 \mathrm{mH}, 29 \mathrm{~A}$
SV150iS5-4	20	TD125U/EBS63b	GMC-50	14 (6)	8 (8)	8 (8)	45 A	$0.61 \mathrm{mH}, 38 \mathrm{~A}$	$2.18 \mathrm{mH}, 36 \mathrm{~A}$
SV185iS5-4	25	TD125U/EBS103b	GMC-65	14 (6)	8 (8)	14 (6)	60 A	$0.45 \mathrm{mH}, 50 \mathrm{~A}$	$1.79 \mathrm{mH}, 48 \mathrm{~A}$
SV220iS5-4	30	TD125U/EBS103b	GMC-65	22 (4)	14 (6)	14 (6)	70 A	$0.39 \mathrm{mH}, 58 \mathrm{~A}$	$1.54 \mathrm{mH}, 55 \mathrm{~A}$
SV300iS5-4	40	TD125U/EBS203b	GMC-100	22 (4)	22 (4)	14 (6)	90 A	$0.287 \mathrm{mH}, 80 \mathrm{~A}$	$1.191 \mathrm{mH}, 76 \mathrm{~A}$
SV370iS5-4	50	TS250U/EBS203b	GMC-125	22 (4)	22 (4)	14 (6)	110 A	$0.232 \mathrm{mH}, 98 \mathrm{~A}$	$0.975 \mathrm{mH}, 93 \mathrm{~A}$
SV450iS5-4	60	TS250U/EBS203b	GMC-150	38(2)	38(2)	22 (4)	140 A	$0.195 \mathrm{mH}, 118 \mathrm{~A}$	$0.886 \mathrm{mH}, 112 \mathrm{~A}$
SV550iS5-4	75	TS250U/EBS203b	GMC-180	38(2)	38(2)	22 (4)	170 A	$0.157 \mathrm{mH}, 142 \mathrm{~A}$	$0.753 \mathrm{mH}, 135 \mathrm{~A}$
SV750iS5-4	100	TS400U/EBS403b	GMC-220	60(2/0)	60(2/0)	22 (4)	230 A	$0.122 \mathrm{mH}, 196 \mathrm{~A}$	$0.436 \mathrm{mH}, 187 \mathrm{~A}$

## Note

1. The capacity of the MCCB should be 1.5 to 2 times the rated output current of the drive.
2. Use an MCCB keep the drive from faulting out instead of using overheat protection ( $150 \%$ for one minute at the rated output current.)

## SHORT CIRCUIT FUSE/BREAKER MARKING

Use Class H or K5 UL Listed Input Fuse and UL Listed Breaker Only. See the table below for the Voltage and Current rating of the fuses and the breakers.

Input Voltage	Motor   [kW]	Inverter	External Fuse		Breaker		Internal Fuse			
			Current   [A]	Voltage [V]	Current   [A]	Voltage [V]	Current   [A]	Voltage [V]	Maker	Model Number
$\begin{aligned} & \text { 200V } \\ & \text { CLASS } \end{aligned}$	0.75	$\begin{gathered} \text { SV008 } \\ \text { iS5-2 } \end{gathered}$	10	500	30	220	10	600	Hinode Elec	660CF10
	1.5	$\begin{aligned} & \text { SV015 } \\ & \text { iS5-2 } \end{aligned}$	15	500	30	220	15	600	Hinode Elec	660CF15
	2.2	$\begin{aligned} & \text { SV022 } \\ & \text { iS5-2 } \end{aligned}$	25	500	30	220	20	600	Hinode Elec	660CF20
	3.7	$\begin{aligned} & \hline \text { SV037 } \\ & \text { iS5-2 } \end{aligned}$	40	500	30	220	30	600	Hinode Elec	660CF30
	5.5	$\begin{aligned} & \text { SV055 } \\ & \text { iS5-2 } \end{aligned}$	40	500	50	220	60	250	Hinode Elec	250FH-60
	7.5	$\begin{aligned} & \text { SV075 } \\ & \text { iS5-2 } \end{aligned}$	50	500	60	220	60	250	Hinode Elec	250FH-60
	11	$\begin{aligned} & \hline \text { SV110 } \\ & \text { iS5-2 } \end{aligned}$	70	500	100	220	125	250	Hinode Elec	250GH-125
	15	$\begin{aligned} & \hline \text { SV150 } \\ & \text { iS5-2 } \end{aligned}$	100	500	100	220	150	250	Hinode Elec	250GH-150
	18.5	$\begin{aligned} & \text { SV185 } \\ & \text { iS5-2 } \\ & \hline \end{aligned}$	100	500	225	220	175	250	Hinode Elec	250GH-175
	22	$\begin{aligned} & \text { SV220 } \\ & \text { iS5-2 } \end{aligned}$	125	500	225	220	225	250	Hinode Elec	250GH-225
	30	$\begin{aligned} & \text { SV300 } \\ & \text { iS5-2 } \end{aligned}$	150	500	225	220	250	250	Hinode Elec	$\begin{aligned} & \text { 250GH- } \\ & \text { 250SUL } \end{aligned}$
	37	$\begin{aligned} & \text { SV370 } \\ & \text { iS5-2 } \end{aligned}$	220	500	225	220	250	250	Hinode Elec	$\begin{aligned} & \text { 250GH- } \\ & \text { 250SUL } \end{aligned}$
	45	$\begin{aligned} & \text { SV450 } \\ & \text { iS5-2 } \end{aligned}$	270	500	300	220	350	250	Hinode Elec	$\begin{aligned} & \text { 250GH- } \\ & 350 \mathrm{SUL} \end{aligned}$
	55	$\begin{aligned} & \text { SV550 } \\ & \text { iS5-2 } \end{aligned}$	330	500	350	220	350	250	Hinode Elec	$\begin{aligned} & \text { 250GH- } \\ & \text { 350SUL } \end{aligned}$
$\begin{aligned} & \text { 400V } \\ & \text { CLASS } \end{aligned}$	0.75	$\begin{aligned} & \text { SV008 } \\ & \text { iS5-4 } \end{aligned}$	10	500	30	460	10	600	Hinode Elec	660CF10
	1.5	$\begin{aligned} & \text { SV015 } \\ & \text { iS5-4 } \end{aligned}$	10	500	30	460	10	600	Hinode Elec	660CF10
	2.2	$\begin{aligned} & \text { SV022 } \\ & \text { iS5-4 } \end{aligned}$	15	500	30	460	15	600	Hinode Elec	660CF15
	3.7	$\begin{aligned} & \text { SV037 } \\ & \text { iS5-4 } \end{aligned}$	20	500	30	460	15	600	Hinode Elec	660CF15
	5.5	$\begin{aligned} & \text { SV055 } \\ & \text { iS5-4 } \end{aligned}$	20	500	30	460	35	600	Hinode Elec	660GH-35
	7.5	$\begin{aligned} & \text { SV075 } \\ & \text { iS5-4 } \end{aligned}$	30	500	30	460	35	600	Hinode Elec	660GH-35
	11	$\begin{aligned} & \text { SV110 } \\ & \text { iS5-4 } \\ & \hline \end{aligned}$	35	500	50	460	63	600	Hinode Elec	660GH-63
	15	$\begin{aligned} & \text { SV150 } \\ & \text { iS5-4 } \end{aligned}$	45	500	60	460	80	600	Hinode Elec	660GH-80
	18.5	$\begin{aligned} & \text { SV185 } \\ & \text { iS5-4 } \end{aligned}$	60	500	100	460	100	600	Hinode Elec	660GH-100
	22	$\begin{aligned} & \text { SV220 } \\ & \text { iS5-4 } \end{aligned}$	70	500	100	460	125	600	Hinode Elec	660GH-125
	30	$\begin{aligned} & \hline \text { SV300 } \\ & \text { iS5-4 } \end{aligned}$	100	500	100	460	125	600	Hinode Elec	600FH-125S
	37	$\begin{aligned} & \text { SV370 } \\ & \text { iS5-4 } \end{aligned}$	100	500	225	460	150	600	Hinode Elec	600FH-150S
	45	$\begin{aligned} & \text { SV450 } \\ & \text { iS5-4 } \end{aligned}$	100	500	225	460	200	600	Hinode Elec	600FH-200S
	55	$\begin{aligned} & \text { SV550 } \\ & \text { iS5-4 } \end{aligned}$	150	500	225	460	200	600	Hinode Elec	600FH-200S
	75	$\begin{aligned} & \hline \text { SV750 } \\ & \text { iS5-4 } \end{aligned}$	200	500	225	460	125	600	Hinode Elec	600FH-125S

## DECLARATION OF CONFORMITY

Council Directives) to which conformity is declared:

CD 73/23/EEC and CD 89/336/EEC

Units are certified for compliance with:

EN 61800-3/A11 (2000)
EN 61000-4-2/A2 (2001)
EN 61000-4-3/A2 (2001)
EN 61000-4-4/A2 (2001)
EN 61000-4-5/A1 (2001)
EN 61000-4-6/A1 (2001)
EN 55011/A2 (2002)
EN 50178 (1997)
IEC/TR 61000-2-1 (1990)
EN 61000-2-2 (2002)
EN 61000-2-4 (1994)
EN 60146-1-1/A1 (1997)

Type of Equipment:
Inverter (Power Conversion Equipment)

Model Name:
SV - iS Series

Trade Mark: LS Industrial Systems Co., Ltd.

Representative:
LG International (Deutschland) GmbH
Address:

Manufacturer:
Address:
Loner Strasse 15,
Frankfurt am Main, 60528,
Germany

LS Industrial Systems Co., Ltd.
181, Samsung-ri, Mokchon-Eup,
Chonan, Chungnam, 330-845,
Korea

We, the undersigned, hereby declare that equipment specified above conforms to the Directives and Standards mentioned.

Place:

## Frankfurt am Main

Germany


Mr. Ik-Seong Yang / Dept. Manager
(Full name / Position)

Chonan, Chungnam,
Korea


Mr. Sin Goo Song / General Manager
(Full name / Position)

## TECHNICAL STANDARDS APPLIED

The standards applied in order to comply with the essential requirements of the Directives 73/23/CEE "Electrical material intended to be used with certain limits of voltage" and 89/336/CEE "Electromagnetic Compatibility" are the following ones:

- EN 50178 (1997)	"Electronic equipment for use in power installations".
- EN 61800-3/A11 (2000)	"Adjustable speed electrical power drive systems. Part 3: EMC product standard including specific methods"
- EN 55011/A2 (2002)	"Industrial, scientific and medical (ISM) radio-frequency equipment. Radio disturbances characteristics. Limits and methods of measurement"
- EN 61000-4-2/A2 (2001)	"Electromagnetic compatibility (EMC). Part 4: Testing and measurement techniques. Section 2: Electrostatic discharge immunity test.
- EN 61000-4-3/A2 (2001)	"Electromagnetic compatibility (EMC). Part 4: Testing and measurement techniques. Section 3: Radiated, radiofrequency, electromagnetic field immunity test.
- EN 61000-4-4/A2 (2001)	"Electromagnetic compatibility (EMC). Part 4: Testing and measurement techniques. Section 4: Electrical fast transients / burst immunity test.
- EN 61000-4-5/A1 (2000)	"Electromagnetic compatibility (EMC). Part 4: Testing and measurement techniques. Section 5: Surge immunity test.
- EN 61000-4-6/A1 (2001)	"Electromagnetic compatibility (EMC). Part 4: Testing and measurement techniques. Section 6: Immunity to conducted disturbances, induced by radio-frequency fields.
- CEI/TR 61000-2-1 (1990)	"Electromagnetic compatibility (EMC). Part 2: Environment. Environment description for low-frequency conducted disturbances and signalling in public low voltages supply systems"
- EN 61000-2-2 (2002)   (<22Kw)	"Electromagnetic compatibility (EMC). Part 2: Environment. Compatibility level for lowfrequency conducted disturbances and signalling in public low voltages supply systems"
$\begin{aligned} & \text { •EN 61000-2-4 (1997) } \\ & \text { (>22Kw) } \end{aligned}$	"Electromagnetic compatibility (EMC). Part 2: Environment. Compatibility level in industrial plants for low-frequency conducted disturbances"
- EN 60146-1-1/A1 (1997) (>22Kw)	"Semiconductor converters. General requirements and line commutated converters. Part 1-1: Specifications of basic requirements"

## RFI FILTERS

THE L.G. RANGE OF POWER LINE FILTERS FF (Footprint) - FE (Standard) SERIES, HAVE BEEN SPECIFICALLY DESIGNED WITH HIGH FREQUENCY LS INVERTERS, THE USE L.G. FILTERS, WITH THE INSTALLATION ADVICE OVERLEAF HELP TO ENSURE TROUBLE FREE USE ALONG SIDE SENSITIVE DEVICES AND COMPLIANCE TO CONDUCTED EMISSION AND IMMUNITY STANDARDS TO EN50081 -> EN 61000-6-3:02 and EN 61000-6-1:02

## CAUTION

IN CASE OF A LEAKAGE CURRENT PROTECTIVE DEVICES IS USED ON POWER SUPPLY, IT MAY BE FAULT AT POWER-ON OR OFF. IN AVOID THIS CASE, THE SENSE CURRENT OF PROTECTIVE DEVICE SHOULD BE LARGER THAN VALUE OF LAKAGE CURRENT AT WORST CASE IN THE BELOW TABLE.

## RECOMMENDED INSTALLATION INSTRUCTIONS

To conform to the EMC directive, it is necessary that these instructions be followed as closely as possible. Follow the usual safety procedures when working with electrical equipment. All electrical connections to the filter, inverter and motor must be made by a qualified electrical technician.

1-) Check the filter rating label to ensure that the current, voltage rating and part number are correct.
2-) For best results the filter should be fitted as closely as possible to the incoming mains supply of the wiring enclosure, usually directly after the enclosures circuit breaker or supply switch.
3-) The back panel of the wiring cabinet of board should be prepared for the mounting dimensions of the filter. Care should be taken to remove any paint etc... from the mounting holes and face area of the panel to ensure the best possible earthing of the filter.
4-) Mount the filter securely.
5-) Connect the mains supply to the filter terminals marked LINE, connect any earth cables to the earth stud provided. Connect the filter terminals marked LOAD to the mains input of the inverter using short lengths of appropriate gauge cable.
6 -) Connect the motor and fit the ferrite core (output chokes) as close to the inverter as possible. Armoured or screened cable should be used with the 3 phase conductors only threaded twice through the center of the ferrite core. The earth conductor should be securely earthed at both inverter and motor ends. The screen should be connected to the enclosure body via and earthed cable gland.
7-) Connect any control cables as instructed in the inverter instructions manual.

IT IS IMPORTANT THAT ALL LEAD LENGHTS ARE KEPT AS SHORT AS POSSIBLE AND THAT INCOMING MAINS AND OUTGOING MOTOR CABLES ARE KEPT WELL SEPARATED.

FF SERIES ( Footprint )


## FE SERIES (Standard)



HFAS

## RFI Filters (Footprint - Standard) for iS5 SERIES



(x) (1) Industrial environment EN 50081-0 (A class) -> EN 61000-6-4:02
(2) Domestic and industrial environment EN 50081-1 (B class) -> EN 61000-6-3:02

RFI Filters (Standard) iS5 SERIES


DIMENSIONS

FF SERIES ( Footprint)


FE SERIES (Standard)


Polígono Industrial de Palou
08400 Granollers (Barcelona)
SPAIN / ESPAÑA
Tel: +34 938611460
Fax: +34 938792664
E-mail: info@lifasa.com vsd@lifasa.es
http: //www.lifasa.com

Revisions

	Publishing date	Changes to be made	$\begin{gathered} \text { S/W } \\ \text { Version } \end{gathered}$	Note
1	Feb, 1999		1.00	
2	April, 2000		1.03	
3	March, 2001		1.05	
4	July, 2001		1.06	
5	May, 2002		1.07	
6	June, 2002		2.00	
7	Dec, 2002		2.01	
8	Jan, 2003	Chapter 7. DB Unit, Appendix C	2.01	Models and description added Peripheral devices added or changed
9	April, 2003	Sub-D board excluded	2.01	Sub-D not available
10	July, 2003	Declaration of Conformity (DOC)	2.01	CE models units ranging from 30 kW to 75 kW added to DOC.
11	Jan., 2004		2.01	1) Page 178, Group 3 DBU dimension revised   2) Page 192~195, DOC revised   3) Page 138, EXT-12 description revised   4) Page 122, [Exchange] diagram, AXB $\rightarrow$ AXC revised   5) Page 131, 132, CLOED $\rightarrow$ CLOSED   6) Page 149 , APP- 247 -segment display $23 \rightarrow 24$   7) Page 153, DB Unit, 15~30HP $\rightarrow$ 15~100HP   8) Page 181, MC Fail and Over speed protection added
12	April, 2004	S/W Update	2.11	1) UL Marking added   2) Fuse and breakers specification added   3) Power/Control Terminal specification revised
13	Feb, 2005		2.11	1) Built-in DBU models included   2) Over speed \& M/C fail added   3) Power Terminal explanation changed
14	June, 2005		2.11	Cl changed
15	Nov, 2005	S/W Update	2.12	
16	Nov, 2006	S/W Update	2.13	1) Wire and terminal lugs specification changed


[^0]:    ${ }^{1}$ Indicates the maximum applicable capacity when using a 4-Pole LG motor.
    ${ }^{2}$ Rated capacity $\left(\sqrt{ } 3^{*} V^{*}\right)$ is based on 220 V for 200 V class and 440 V for 400 V class.
    ${ }^{3}$ Maximum output voltage will not be greater than the input voltage. Output voltage less than the input voltage may be programmed.
    ${ }^{4} 1 \sim 5 \mathrm{HP}$ inverters have internal braking resistors as standard. $7.5 \sim 100 \mathrm{HP}$ inverters utilize optional braking resistors.

[^1]:    ${ }^{5}$ When applying input voltage of $507 \sim 528 \mathrm{~V}$ range, derate the load $10 \%$. For example, when applying 507 V to 5.5 kW inverters (rated current 12A), the max. rated output current would be 10.8 A , calculated by multiplying 12A by 0.9 ( $90 \%$ ).
    ${ }^{6}$ Same as above.

[^2]:    ${ }^{7}$ This $P$ terminal is provided on optional Dynamic Braking Unit.
    ${ }^{8}$ This N terminal is provided on optional Dynamic Braking Unit.

[^3]:    ${ }^{9}$ Apply the rated torque to terminal screws. Loose screws can cause of short circuit or malfunction. Tightening the screws too much can damage the terminals and cause a short circuit or malfunction.
    ${ }^{10}$ Use copper wires only with $600 \mathrm{~V}, 75^{\circ} \mathrm{C}$ ratings.

[^4]:    The FWD or REV LED starts blinking. The RUN LED starts blinking.

[^5]:    ${ }^{11}$ The speed unit is changed to [\%] when FU2-39 is set to 'Sensorless_T' or 'Vector_TRQ'.
    ${ }^{12}$ Code DRV-15 appears only when FU2-47 is set to 'Yes'.
    ${ }^{13}$ Code DRV-23 through DRV-24 appears only when a Sub-Board or an Option Board is installed.

[^6]:    ${ }^{14}$ Code FU1-08 through FU1-11 appears only when FU1-07 is set to 'DC-Brake'.
    ${ }^{15}$ Code FU1-24 through FU1-25 appears only when FU1-23 is set to 'Yes'.

[^7]:    ${ }^{16}$ Code FU1-30 through FU1-37 appears only when FU1-29 is set to 'User V/F'.
    ${ }^{17}$ Code FU1-51 through FU1-53 appears only when FU1-50 is set to 'Yes'.

[^8]:    ${ }^{18}$ Code FU2-11 through FU2-16 appears only when FU2-10 is set to 'Yes'.

[^9]:    ${ }^{19}$ The rated motor is automatically set according to the inverter model name. If different, set the motor capacity connected.
    ${ }^{20}$ This value is automatically entered according to the rated motor set in FU2-30. If different, set the correct value of the motor.
    ${ }^{21}$ Code FU2-41 through FU2-46 appears only when FU2-39 is set to 'Sensorless_X' or 'Vector_XXX'.
    ${ }^{22}$ This value is automatically entered according to the rated motor set in FU2-30. If different, set the correct value of the motor.

[^10]:    ${ }^{23}$ Code FU2-48 through FU2-62 appears only when FU2-47 is set to 'Yes'.

[^11]:    ${ }^{24}$ Code FU2-76 appears only when FU2-75 is set to 'Ext. DB-R'.
    ${ }^{25}$ Code FU2-81 through FU2-90 appear only when one of I/O-12 ~ I/O-14 is set to ' 2 nd function'.

[^12]:    ${ }^{26}$ Code I/O-46 through I/O-49 are used in Option Board like RS485, Device, Net and F-net etc.
    ${ }^{27}$ The 'Seq\#' of code I/O-53 through I/O-60 varies according to the sequence number selected in I/O-51.
    The parameter code may be extended to $1 / 0-84$ depending the number of steps set in $I / O-52$ because the steps can be set up to 8 .

[^13]:    ${ }^{28}$ Code APP-02 through APP-07 appears only when APP-01 is set to 'Traverse'.
    ${ }^{29}$ Code APP-08 through APP-31 appears only when APP-01 is set to 'MMC'.

[^14]:    ${ }^{30}$ Code APP-32 through APP-33 appears only when APP-01 is set to 'Draw'.

[^15]:    See 'Chapter 7 - Options' for more detail descriptions.

[^16]:    2. External speed signal: V1, I, V1+I (Refer to Parameter list)
[^17]:    * Type 1 (Max. 400 Watt)

